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Abstract

The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of
information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random
networks of interacting agents, and only some macroscopic properties (e.g. the resulting wealth distribution) are compared
to real-world data. In this paper, we analyze Bitcoin, which is a novel digital currency system, where the complete list of
transactions is publicly available. Using this dataset, we reconstruct the network of transactions and extract the time and
amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over
time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives
the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We
measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we
find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling law
between the degree and wealth associated to individual nodes.
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Introduction

In the past two decades, network science has successfully

contributed to many diverse scientific fields. Indeed, many

complex systems can be represented as networks, ranging from

biochemical systems, through the Internet and the World Wide

Web, to various social systems [1–7]. Economics also made use of

the concepts of network science, gaining additional insight to the

more traditional approach [8–13]. Although a large volume of

financial data is available for research, information about the

everyday transactions of individuals is usually considered sensitive

and is kept private. In this paper, we analyze Bitcoin, a novel

currency system, where the complete list of transactions is

accessible. We believe that this is the first opportunity to

investigate the movement of money in such detail.

Bitcoin is a decentralized digital cash system, there is no single

overseeing authority [14]. The system operates as an online peer-

to-peer network, anyone can join by installing a client application

and connecting it to the network. The unit of the currency is one

bitcoin (abbreviated as BTC), and the smallest transferable

amount is 10{8BTC. Instead of having a bank account

maintained by a central authority, each user has a Bitcoin address,

that consists of a pair of public and private keys. Existing bitcoins

are associated to the public key of their owner, and outgoing

payments have to be signed by the owner using his private key. To

maintain privacy, a single user may use multiple addresses. Each

participating node stores the complete list of previous transactions.

Every new payment is announced on the network, and the

payment is validated by checking consistency with the entire

transaction history. To avoid fraud, it is necessary that the

participants agree on a single valid transaction history. This

process is designed to be computationally difficult, so an attacker

can only hijack the system if he possesses the majority of the

computational power of participating parties. Therefore the

system is more secure if more resources are devoted to the

validation process. To provide incentive, new bitcoins are created

periodically and distributed among the nodes participating in these

computations. Another way to obtain bitcoins is to purchase them

from someone who already has bitcoins using traditional currency;

the price of bitcoins is completely determined by the market.

The Bitcoin system was proposed in 2008 by Satoshi Nakamoto,

and the system went online in January 2009 [14–17]. For over a

year, it was only used by a few enthusiasts, and bitcoins did not

have any real-world value. A trading website called MtGox was

started in 2010, making the exchange of bitcoins and conventional

money significantly easier. More people and services joined the

system, resulting a steadily growing exchange rate. Starting from

2011, appearances in the mainstream media drew wider public

attention, which led to skyrocketing prices accompanied by large

fluctuations (see Fig. 1). Since the inception of Bitcoin over 17

million transactions took place, and currently the market value of

all bitcoins in circulation exceeds 1 billion dollars. See the
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Methods section for more details of the system and the data used

in our analysis.

We download the complete list of transactions, and reconstruct

the transaction network: each node represents a Bitcoin address,

and we draw a directed link between two nodes if there was at least

one transaction between the corresponding addresses. In addition

to the topology, we also obtain the time and amount of every

payment. Therefore, we are able to analyze both the evolution of

the network and the dynamical process taking place on it, i.e. the

flow and accumulation of bitcoins. To characterize the underlying

network, we investigate the evolution of basic network character-

istics over time, such as the degree distribution, degree correlations

and clustering. Concerning the dynamics, we measure the wealth

statistics and the temporal patterns of transactions. To explain the

observed degree and wealth distribution, we measure the

microscopic growth statistics of the system. We provide evidence

that preferential attachment is an important factor shaping these

distributions. Preferential attachment is often referred to as the

‘‘rich get richer’’ scheme, meaning that hubs grow faster than low-

degree nodes. In the case of Bitcoin, this is more than an analogy:

we find that the wealth of already rich nodes increases faster than

the wealth of nodes with low balance; furthermore, we find

positive correlation between the wealth and the degree of a node.

Results

Evolution of the Transaction Network
Bitcoin is an evolving network: new nodes are added by creating

new Bitcoin addresses, and links are created if there is a

transaction between two previously unconnected addresses. The

number of nodes steadily grows over time with some fluctuations;

especially noticeable is the large peak which coincides with the first

boom in the exchange rate in 2011 (Fig. 1). After five years Bitcoin

now has N~13,086,528 nodes and L~44,032,115 links. To

study the evolution of the network we measure the change of

network characteristics in function of time. We identify two

distinct phases of growth: (i) The initial phase lasted until the fall of

2010, in this period the system had low activity and was mostly

used as an experiment. The network measures are characterized

by large fluctuations. (ii) After the initial phase the Bitcoin started

to function as a real currency, bitcoins gained real value. The

network measures converged to their typical value by mid-2011

and they did not change significantly afterwards. We call this

period the trading phase.

We first measure the degree distribution of the network. We find

that both the in- and the outdegree distributions are highly

heterogeneous, and they can be modeled with power-laws [18].

Figures 2 and 3 show the distribution of indegrees and outdegrees

at different points of time during the evolution of the Bitcoin

network. In the initial phase the number of nodes is low, and thus

fitting the data is prone to large error. In the trading phase, the

exponents of the distributions do not change significantly, and

they are approximated by power-laws pin(kin)*k{2:18
in and

pout(kout)*k{2:06
out .

To further characterize the evolution of the degree distributions

we calculate the corresponding Gini coefficients in function of time

(Fig. 4). The Gini coefficient is mainly used in economics to

characterize the inequality present in the distribution of wealth,

but it can be used to measure the heterogeneity of any empirical

distribution. In general, the Gini coefficient is defined as.

G~
2
Pn

i~1 ixi

n
Pn

i~1 xi

{
nz1

n
ð1Þ

where fxig is a sample of size n, and xi are monotonically ordered,

i.e. xiƒxiz1. G~0 indicates perfect equality, i.e. every node has

the same wealth; and G~1 corresponds to complete inequality,

i.e. the complete wealth in the system is owned by a single

individual. For example, in the case of pure power-law distribution

with a§2 exponent, the Gini coefficient is G~1=(2a{3) [19].

This shows the fact that smaller a exponents yield more

heterogeneous wealth distributions.

In the Bitcoin network we find that in the initial phase the Gini

coefficient of the indegree distribution is close to 1 and for the

outdegree distribution it is much lower. We speculate that in this

phase a few users collected bitcoins, and without the possibility to

trade, they stored them on a single address. In the second phase

the coefficients quickly converge to Gin&0:629 and Gout&0:521,

Figure 1. The growth of the Bitcoin network. Number of addresses with nonzero balance (green), addresses in participating in at least one
transaction in one week intervals (red) and the exchange price of bitcoins in US dollars according to MtGox, the largest Bitcoin exchange site (blue).
The black lines are exponential functions bounding the growth of the network size; the characteristic times are 188 and 386 days.
doi:10.1371/journal.pone.0086197.g001
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indicating that normal trade is characterized by both highly

heterogeneous in- and outdegree distributions.

To characterize the degree correlations we measure the Pearson

correlation coefficient of the out- and indegrees of connected node

pairs:

r~

P
e (jout

e {jout)(kin
e {kin)

Lsoutsin

: ð2Þ

Here jout
i is the outdegree of the node at the beginning of link e,

and kin
i is the indegree of the node at the end of link e. The

summation
P

e
: runs over all links, kin~

P
e kin

e =L and

s2
in~

P
e (kin

e {kin)2=L. We calculate sout and jout similarly.

We find that the correlation coefficient is negative, except for

only a brief period in the initial phase. After mid-2010, the degree

correlation coefficient stays between {0:01 and {0:05, reaching

a value of r&{0:014 by 2013, suggesting that the network is

disassortative (Fig. 5). However, small values of r are hard to

interpret: it was shown that for large purely scale-free networks r

vanishes as the network size increases [20]. Therefore we compute

the average nearest neighbor degree function kin
nn(kout) for the

final network; kin
nn(kout) measures the average indegree of the

neighbors of nodes with outdegree kout. We find clear disassorta-

tive behavior (Fig. 6).

We also measure the average clustering coefficient.

C~
1

N

X

v

Dv

dv(dv{1)=2
, ð3Þ

which measures the density of triangles in the network. Here the

sum
P

v
: runs over all nodes, and Dv is the number of triangles

Figure 2. Evolution of the indegree distribution. Since the beginning of 2011, the shape of the distribution does not change significantly. The
black line shows a fitted power-law for the final network; the exponent is 2:18. The data is log-binned for ease of visual inspection, the power-law is
fitted on the original data [18].
doi:10.1371/journal.pone.0086197.g002

Figure 3. Evolution of the outdegree distribution. The black line shows a fitted power-law for the final network; the exponent is 2:06. The data
is log-binned for ease of visual inspection, the power-law is fitted on the original data [18].
doi:10.1371/journal.pone.0086197.g003
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containing node v. To calculate Dv we ignored the directionality of

the links; dv is the degree of node v in the undirected network.

In the initial phase C is high, fluctuating around 0:15 (see Fig. 5),

possibly a result of transactions taking place between addresses

belonging to a few enthusiasts trying out the Bitcoin system by

moving money between their own addresses. In the trading phase,

the clustering coefficient reaches a stationary value around

C&0:05, which is still higher than the clustering coefficient for

random networks with the same degree sequence

(Crand&0:0037(9)).

To explain the observed broad degree distribution, we turn to

the microscopic statistics of link formation. Most real complex

networks exhibit distributions that can be approximated by power-

laws. Preferential attachment was introduced as a possible

mechanism to explain the prevalence of this property [21].

Indeed, direct measurements confirmed that preferential attach-

ment governs the evolution of many real systems, e.g. scientific

citation networks [22–24], collaboration networks [25], social

networks [26,27] or language use [28]. In its original form,

preferential attachment describes the process when the probability

of forming a new link is proportional to the degree of the target

node [29]. In the past decade, several generalizations and

modifications of the original model were proposed, aiming to

reproduce further structural characteristics of real systems [30–

33]. Here, we investigate the nonlinear preferential attachment

model [30], where the probability that a new link connects to node

v is.

p(kv)~
ka

vP
w ka

w

, ð4Þ

Figure 4. Evolution of the Gini coefficient of the degree and the balance distributions. We observe the distinct initial phase lasting until
mid-2011. The trading phase is characterized by approximately constant coefficients.
doi:10.1371/journal.pone.0086197.g004

Figure 5. Evolution of the clustering coefficient and the out-in degree correlation coefficient. After the initial phase, both measures reach
a stationary value.
doi:10.1371/journal.pone.0086197.g005
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where kv is the indegree of node v, and aw0. The probability that

the new link connects to any node with degree k is

(k)*nk(t)p(k), where nk(t) is the number of nodes with k
degree at the time of the link formation. We cannot test directly

our assumption, because P(k) changes over time. To proceed we

transform P(k) to a uniform distribution by calculating the rank

function R(k,t) for each new link given p(k) and nk(t):

R(k,t)~

Pk
j~0 nj(t)j

a

Pkmax
j~0 nj(t)ja

~

P
kvvk ka

vP
v ka

v

: ð5Þ

If Eq. 4 holds, R(k,t) is uniformly distributed in the interval ½0,1�,
independently of t. Therefore, if we plot the cumulative

distribution function, we get a straight line for the correct

exponent a. To determine the best exponent, we compare the

empirical distribution of the R values to the uniform distribution

for different exponents by computing the Kolmogorov-Smirnoff

distance between the two distributions.

Evaluating our method for indegree distribution of the Bitcoin

network, we find good correspondence between the empirical data

and the presumed conditional probability function; the exponent

giving the best fit is a&1 (Fig. 7). This shows that the overall

growth statistics agree well with the preferential attachment

process. Of course, preferential attachment itself cannot explain

the disassortative degree correlations and the high clustering

observed in the network. We argue that preferential attachment is

a key factor shaping the degree distribution, however, more

detailed investigation of the growth process is necessary to explain

the higher order correlations.

Dynamics of Transactions
In the this section, we analyze the detailed dynamics of money

flow on the transaction network. The increasing availability of

digital traces of human behavior revealed that various human

activities, e.g. mobility patterns, phone calls or email communi-

cation, are often characterized by heterogeneity [34–37]. Here we

show that the handling of money is not an exception: we find

heterogeneity in both balance distribution and temporal patterns.

We also investigate the microscopic statistics of transactions.

The state of node v at time t is given by the balance of the

corresponding address bv(t), i.e. the number of bitcoins associated

to node v. The transactions are directly available, and we can infer

the balance of each node based on the transaction list. Note that

the overall quantity of bitcoins increases over time: Bitcoin

rewards users devoting computational power to sustain the system.

We first investigate the temporal patterns of the system by

measuring the distribution of inactivity times T . The inactivity

time is defined as the time elapsed between two consecutive

outgoing transactions from a node. We find a broad distribution

that can be approximated by the power-law P(T)*1=T (Fig. 8),

in agreement with the behavior widely observed in various

complex systems [34,38–40].

It is well known that the wealth distribution of society is

heterogeneous; the often cited –and quantitatively not precise–80–

20 rule of Pareto states that the top 20% of the population controls

80% of the total wealth. In line with this, we find that the wealth

distribution in the Bitcoin system is also highly heterogeneous. The

proper Pareto-like statement for the Bitcoin system would be that

the 6.28% of the addresses posesses the 93.72% of the total wealth.

We measure the distribution of balances at different points of time,

and we find a stable distribution. The tail of wealth distribution is

generally modeled with a power-law [41–43], following this

practice we find a power-law tail *x{1:984 for balances *>50BTC

(see Fig. 9). However, visual inspection of the fit is not convincing:

the scaling regime spans only the last few orders of magnitude, and

fails to reproduce the majority of the distribution. Instead we find

that the overall behavior is much better approximated by the

stretched exponential distribution P(b)*b{ce{(ab)1{c

, where

c~0:873 and a~8014BTC{1.

To further investigate the evolution of the wealth distribution

we measure the Gini coefficient over time. We find that the

distribution is characterized by high values throughout the whole

lifetime of the network, reaching a stationary value around

G&0:985 in the trading phase (see Fig. 4).

To understand the origin of this heterogeneity, we turn to the

microscopic statistics of acquiring bitcoins. Similarly to the case of

degree distributions, the observed heterogeneous wealth distribu-

tions are often explained by preferential attachment. Moreover,

preferential attachment was proposed significantly earlier in the

context of wealth distributions than complex networks [44]. In

economics preferential attachment is traditionally called the

Matthew effect or the ‘‘rich get richer phenomenon’’ [45]. It

Figure 6. The average indegree of neighbors in the function of
the outdegree kin

nn(kout). In networks without degree correlations, the
degree of connected nodes do not depend on each other, therefore for

such networks we expect that kin
nn(kout) is constant. In the case of the

Bitcoin network, we observe a clear disassortative behavior: kin
nn(kout) is

a decreasing function, indicating that nodes with high outdegree tend
to connect to nodes with low indegree.
doi:10.1371/journal.pone.0086197.g006

Figure 7. Rank function for new link creation. The cumulative
distribution function of the R values (see Eq. 5) for exponents
0:7,0:85,1,1:1,1:2 and 1:35. The inset shows the Kolmogorov-Smirnoff
error for these exponents.
doi:10.1371/journal.pone.0086197.g007
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states that the growth of the wealth of each individual is

proportional to the wealth of that individual. In line with this

principle, several statistical models were proposed to account for

the heterogeneous wealth distribution [41,46–48].

To find evidence supporting this hypothesis, we first investigate

the change of balances in fixed time windows. We calculate the

difference between the balance of each address at the end and at

the start of each month. We plot the differences in function of the

starting balances (Fig. 10). When the balance increases, we observe

a positive correlation: the average growth increases in function of

the starting balance, and it is approximated by the power-law

*b0:857. This indicates the ‘‘rich get richer’’ phenomenon is

indeed present in the system. For decreasing balances, we find that

a significant number of addresses lose all their wealth in the time

frame of one month. This phenomenon is specific to Bitcoin: due

to the privacy concerns of users, it is generally considered a good

practice to move unspent bitcoins to a new address when carrying

out a transaction [49].

To better quantify the preferential attachment, we carry out a

similar analysis to the previous section. However, there is a

technical difference: in the case of the evolution of the transaction

network, for each event the degree of a node increases by exactly

one. In the case of the wealth distribution there is no such

constraint. To overcome this difficulty we consider the increment

of a node’s balance by one unit as an event, e.g. if after a

transaction bv increased by Dbv, we consider it as Dbv separate and

simultaneous events. We only consider events when the balance

associated to an address increases, i.e. the address receives a

payment. We now calculate the rank function R(b,t) defined in

Eq. 5, and plot the cumulative distribution function of the R values

Figure 8. Distribution of time delay between transactions initiated from a single Bitcoin address. We observe a power-law distribution
close to the widely observed P(T)*T{1 , the exponential cutoff corresponds to the finite lifetime of the Bitcoin system.
doi:10.1371/journal.pone.0086197.g008

Figure 9. Evolution of the distribution of balances of individual Bitcoin addresses. The distributions are shifted by arbitrary factors along
the vertical axis for better visibility of the separate lines. The black lines are stretched exponential and power-law fits of the last empirical distribution.
The tail can be approximated by a power-law with exponent {1:984, however, the rest of the fit is unsatisfactory. Therefore, we fit the distribution

with a stretched exponential distribution of form P(b)*b{ce{(ab)1{c

. We find a better approximation of the whole distributions; the parameters are

c~0:873 and a~8014BTC{1 .
doi:10.1371/journal.pone.0086197.g009
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observed throughout the whole time evolution of the Bitcoin

network (Fig. 11). Visual inspection shows that no single exponent

provides a satisfying result, meaning that p(bv) cannot be modeled

by a simple power-law relationship like in Eq. 4. However, we do

find that the ‘‘average’’ behavior is best approximated by

exponents around a&0:8, suggesting that p(bv) is a sublinear

function. In the context of network evolution, previous theoretical

work found that sublinear preferential attachment leads to a

stationary stretched exponential distribution [30], in line with our

observations.

We have investigated the evolution of both the transaction

network and the wealth distribution separately. However, it is

clear that the two processes are not independent. To study the

connection between the two, we measure the correlation between

the indegree and balance associated to the individual nodes. We

plot the average balance of addresses as a function of their degrees

on Fig. 12. For degrees in the range of 1–3000 (over 99:99% of all

nodes with nonzero balance), the average balance is a monoto-

nously increasing function of the degree, and it is approximated by

the power-law b*k0:617
in , indicating that the accumulated wealth

and the number of distinct transaction partners an individual has

are inherently related. Similar scaling was reported by Tseng

et al., who conducted an online experiment where volunteers

traded on a virtual market [48].

Methods

The Bitcoin Network
Bitcoin is based on a peer-to-peer network of users connected

through the Internet, where each node stores the list of previous

transactions and validates new transactions based on a proof-of-

work system. Users announce new transactions on this network,

these transactions are formed into blocks at an approximately

constant rate of one block per 10 minutes; blocks contain a varying

number of transactions. These blocks form the block-chain, where

each block references the previous block. Changing a previous

Figure 10. Change of balances in one month windows. Increase (top) and decrease (bottom, vertical axis is inverted) of node balances in one
month windows as a function of their balance at the beginning of each month. We show the raw data (red), the average (green), median (blue) and
logarithmic average (magenta). The later three are calculated for logarithmically sized bins. We find a clear positive correlation: addresses with high
balance typically increase their wealth more than addresses with low balance. The median and the logarithmic average values almost coincide, which
suggests multiplicative fluctuations. The median and the logarithmic average increase approximately as power-laws for several orders of magnitude.
The black line is a power-law fit for the double logarithmic data; the exponent is 0:857.
doi:10.1371/journal.pone.0086197.g010
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transaction (e.g. double spending) would require the recomputa-

tion of all blocks since then, which becomes practically infeasible

after a few blocks. To send or receive bitcoins, each user needs at

least one address, which is a pair of private and public keys. The

public key can be used for receiving bitcoins (users can send money

to each other referencing the recipient’s public key), while sending

bitcoins is achieved by signing the transaction with the private key.

Each transaction consists of one or more inputs and outputs. In

Fig. 13 we show a schematic view of a typical Bitcoin transaction.

Readers interested in the technical details of the system can consult

the original paper by Satoshi Nakamoto [14] or the various

resources available on the Internet [50,51].

An important aspect of Bitcoin is how new bitcoins are created,

and how new users can acquire bitcoins. New bitcoins are

generated when a new block is formed as a reward to the users

participating in block generation. The generation of a valid new

Figure 11. Rank function for the growth of balances. The cumulative distribution function of the R values (see Eq. 5) for exponents 0, 0:2, 0:4,
0:5, 0:6, 0:7, 0:85 and 1. The inset shows the maximum Kolmogorov-Smirnoff error for these exponents. Here, the results are not as obvious as in the
case of link creation (Fig. 7; a simple power-law form like in Eq. 4 is not sufficient to accurately model the statistics of money flow. On the other hand,
the ‘‘average’’ behavior shows a correlation between the balance and the increase of the balance: the uncorrelated assumption (a~0) clearly gives a
much worse approximate than the exponents that presume preferential attachment (aw0).
doi:10.1371/journal.pone.0086197.g011

Figure 12. Average node balances as a function of the indegrees. We calculate the averages for logarithmically sized bins. We find strong
correlation between the balance and the indegree of individual nodes. The main plot shows indegree values up to kin&3000, only 75 nodes
(0:0063%) have higher indegree, the averages calculated for such small sample result in high fluctuations (see inset). We also measure both the
Pearson and Spearman correlation coefficient: The Pearson correlation coefficient of the full dataset is 0:00185041, while the Spearman rank
correlation coefficient is 0:275881. (Note that the Pearson correlation coefficient measures the linear dependence between two variables, while the
Spearman coefficient evaluates monotonicity). We test the statistical significance of the correlation by randomizing the dataset 1000 times and
calculating the Spearman coefficient for each randomization. We find that the average Spearman coefficient is 10{4 with a standard deviation of
9:5:10{4 , indicating that the correlation is indeed significant.
doi:10.1371/journal.pone.0086197.g012
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block involves solving a reverse hash problem, whose difficulty can

be set in a wide range. Participating in block generation is referred

to as mining bitcoins. The nodes in the network regulate the block

generation process by adjusting the difficulty to match the

processing power currently available. As interest in the Bitcoin

system grew, the effort required to generate new blocks, and thus

receive the newly available bitcoins, has increased over 10 million

fold; most miners today use specialized hardware, requiring

significant investments. Consequently, an average Bitcoin user

typically acquires bitcoins by either buying them at an exchange

site or receiving them as compensation for goods or services.

Due to the nature of the system, the record of all previous

transactions since its beginning are publicly available to anyone

participating in the Bitcoin network. From these records, one can

recover the sending and receiving addresses, the sum involved and

the approximate time of the transaction. Such detailed informa-

tion is rarely available in financial systems, making the Bitcoin

network a valuable source of empirical data involving monetary

transactions. Of course, there are shortcomings: only the addresses

involved in the transactions are revealed, not the users themselves.

While providing complete anonymity is not among the stated goals

of the Bitcoin project [52], identifying addresses belonging to the

same user can be difficult [16], especially on a large scale. Each

user can have an unlimited number of Bitcoin addresses, which

appear as separate nodes in the transaction records. When

constructing the network of users, these addresses would need to

be joined to a single entity.

Another issue arises not only for Bitcoin, but for most online

social datasets: It is hard to determine which observed phenomena

are specific to the system, and which results are general. We do not

know to what extent the group of people using the system can be

considered as a representative sample of the society. In the case of

Bitcoin for example, due to the perceived anonymity of the system,

it is widely used for commerce of illegal items and substances [53];

these types of transactions are probably overrepresented among

Bitcoin transactions. Ultimately, the validity of our results will be

tested if data becomes available from other sources, and

comparison becomes possible.

Data
We installed the open-source bitcoind client and downloaded

the blockchain from the peer-to-peer network on May 7th, 2013.

We modified the client to extract the list of all transactions in a

human-readable format. We downloaded more precise time-

stamps of transactions from the blockchain.info website’s archive.

The data and the source code of the modified client program is

available at the project’s website [54] or through the Casjobs web

database interface [55,56].

The data includes 235,000 blocks, which contain a total of

17,354,797 transactions. This dataset includes 13,086,528 ad-

dresses (i.e. addresses appearing in at least one transaction); of

these, 1,616,317 addresses were active in the last month. The

Bitcoin network itself does not store balances associated with

addresses, these can be calculated from the sum of received and

sent bitcoins for each address; preventing overspending is done by

requiring that the input of a transaction corresponds to the output

of a previous transaction. Using this method, we found that

approximately one million addresses had nonzero balance at the

time of our analysis.

Discussion

We have preformed detailed analysis of Bitcoin, a novel digital

currency system. A key difference from traditional currencies

handled by banks is the open nature of the Bitcoin: each

transactions is publicly announced, providing unprecedented

opportunity to study monetary transactions of individuals. We

have downloaded and compiled the complete list of transactions,

and we have extracted the time and amount of each payment. We

have studied the structure and evolution of the transaction

network, and we have investigated the dynamics taking place on

the network, i.e. the flow of bitcoins.

Measuring basic network characteristics in function of time, we

have identified two distinct phases in the lifetime of the system: (i)

When the system was new, no businesses accepted bitcoins as a

form of payment, therefore Bitcoin was more of an experiment

than a real currency. This initial phase is characterized by large

fluctuations in network characteristics, heterogeneous indegree-

and homogeneous outdegree distribution. (ii) Later Bitcoin

received wider public attention, the increasing number of users

attracted services, and the system started to function as a real

currency. This trading phase is characterized by stable network

measures, dissasortative degree correlations and power-law in- and

outdegree distributions. We have measured the microscopic link

formation statistics, finding that linear preferential attachment

drives the growth of the network.

To study the accumulation of bitcoins we have measured the

wealth distribution at different points in time. We have found that

this distribution is highly heterogeneous through out the lifetime of

the system, and it converges to a stable stretched exponential

distribution in the trading phase. We have found that sublinear

preferential attachment drives the accumulation of wealth.

Investigating the correlation between the wealth distribution and

network topology, we have identified a scaling relation between

the degree and wealth associated to individual nodes, implying

that the ability to attract new connections and to gain wealth is

fundamentally related.

We believe that the data presented in this paper has great

potential to be used for evaluating and refining econophysics

models, as not only the bulk properties, but also the microscopic

statistics can be readily tested. To this end, we make all the data

used in this paper available online to the scientific community in

easily accessible formats [54–56].
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analysis are created pointing from each input to each output address.
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