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Tissue Microarray Analysis Applied 
to Bone Diagenesis
Rafael Barrios Mello1, Maria Regina Regis Silva1, Maria Teresa Seixas Alves1, 
Martin Paul Evison2, Marco Aurelio Guimarães3, Rafaella Arrabaca Francisco3, 
Rafael Dias Astolphi1 & Edna Sadayo Miazato Iwamura1,2

Taphonomic processes affecting bone post mortem are important in forensic, archaeological and 
palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to 
a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age 
at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative 
analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens. 
Standard hematoxylin and eosin, periodic acid-Schiff and silver methenamine, and picrosirius red 
staining, and CD31 and CD34 immunohistochemistry were applied to TMA sections. Osteocyte and 
osteocyte lacuna counts, percent bone matrix loss, and fungal spheroid element counts could be 
measured and collagen fibre bundles observed in all specimens. Decalcification with 7% nitric acid 
proceeded more rapidly than with 0.5 M EDTA and may offer better preservation of histological and 
cellular structure. No endothelial cells could be detected using CD31 and CD34 immunohistochemistry. 
Correlation between osteocytes per lacuna and age at death may reflect reported age-related responses 
to microdamage. Methodological limitations and caveats, and results of the TMA analysis of post 
mortem diagenesis in bone are discussed, and implications for DNA survival and recovery considered.

Bone undergoes a range of changes in the burial environment that are of forensic, archaeological and palaeonto-
logical interest. Analysis of exhumed bone may allow the mechanism of interment or disposal, burial location, 
time since death and time since burial to be established, and possible secondary interments to be identified1–5. 
Forensic, archaeological and palaeontological investigations of bone taphonomy have addressed macroscopic, 
microscopic, physico-chemical and molecular processes occurring post mortem6–15.

In forensic human identification, osteological analysis and DNA profiling are each of fundamental importance 
and understanding of post mortem changes or diagenesis can assist in ensuring investigative procedures can 
accommodate both16–21.

Bone diagenesis in soil is characterized by destruction of histological integrity, alteration in bone porosity and 
mineral crystallinity, and loss of collagen6–9. Collagen loss can be the result of enzymatic hydrolysis promoted 
by collagenase activity, creating pathways that facilitate microbial invasion10,11. Microbial attack in specific areas 
results focal microscopic destruction, during which collagen loss follows bone demineralization, leading to reduc-
tion in bone strength12. The extent of these changes can vary dramatically depending on the time and conditions 
of burial. They are especially influenced by factors such as humidity, pH and temperature: while physico-chemical 
deterioration is accelerated by extreme pH or high temperatures13–15, microbial activity is optimized in conditions 
close to neutral pH.

This study describes the application of tissue microarray (TMA) analysis to the investigation of post mortem 
diagenesis in exhumed human bone. TMA22 analysis is a method in which small cores are precisely extracted 
from conventional paraffin-embedded specimens and inserted into a fresh block so that large numbers of sub-
specimens can be analyzed together in a single multiplex. Cores from the donor block may be selected to give a 
representative cross-section of an original specimen. These cores, which may vary from 0.6 to 2.0 mm in diam-
eter, are extracted with a hollow needle coupled to a precision support and then mounted in a recipient block. 
Up to a thousand specimens may be subsampled and multiplexed in this way. If, for example, slides are cut to a 
thickness of 5 μ m and each of 40 sections is subsampled at the same point, there will be 200 μ m between the first 
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subsample—the entry level—and the fortieth subsample—the deep level, representing a vertical cross-section of 
the original block. Hence, a TMA provides a substantially more informative representation of the donor tissue 
specimen than the original single cut. It permits 3-D visualization of adjacent histological sections, simultaneous 
investigation of large numbers of samples and representative subsamples, standardization of reactions and ready 
comparative interpretation of results, economy of reagents and time, and collaborative use of the TMA blocks in 
multi-centre studies. The multiplexed histological sections in a TMA are amenable to analysis in a range of appli-
cations using a variety of histological and immunohistochemical techniques23–32. Immunohistochemistry, while 
routine in diagnostic pathology, is being used increasingly in forensic science, such as in investigations of post 
mortem wounds33, forensic toxicology34 and post mortem medical imaging35.

The exhumed human bone sample chosen for the investigation consisted of 20 specimens of femoral diaphysis 
collected following interments for known periods of burial of between 6 and 15 years, intermediate between fresh 
or recently-interred bone of a kind that might be encountered in forensic investigations and material of older 
forensic, historical or archaeological age.

Sections of each specimen were fixed in formalin and decalcified, prior to embedding in paraffin blocks for 
TMA preparation. Bone is formed of organic and inorganic components and has a complex histological structure, 
which present methodological challenges in TMA preparation. In order to assess parameters for decalcification, 
two different agents were used—7% nitric acid and 0.5 M EDTA—and the resultant bone sections mounted in 
separate multiplex blocks in order to permit their relative utility to be compared.

The use of existing TMA protocols validated on fresh specimens permitted their application to post mortem 
bone to be evaluated. Both standard histochemical and immunohistochemical staining methods were applied 
in the analysis. Hematoxylin and eosin (H&E)—widely used for differentiation of basophilic and acidophilic 
components of various tissues—was used to score osteocyte and lacuna preservation and measure bone matrix 
loss. Periodic acid-Schiff (PAS) and Silver Methenamine (SM) were used for quantification of fungal spheroids 
and Picrosirius red was used for detection of collagen fibers I and III. Anti-CD31 and anti-CD34 were used in an 
immunohistochemical assessment of endothelial cell survival.

Modern post-operative femoral diaphysis from routine autopsy and post mortem soft tissue sections of liver 
were used to offer controls with which the results of decalcification and TMA assembly and analysis in the post 
mortem bone sample could be robustly compared.

The application of TMA to post mortem bone is demonstrated, as is its utility in the measurement of variables 
related to bone diagenesis. Descriptive statistics are presented and an assessment of bivariate correlations between 
specimen and procedural parameters offered. Methodological challenges, caveats, and potential for the use of 
TMA in the investigation of taphonomy in bone are discussed in relation to the findings. The implications for 
DNA survival and recovery are considered.

Results
Sample attributes. The period of burial (yr.), age at death (yr.), cortical surface color, medullary surface 
color, dimensions (cm.), weight (g.) and decalcification time (days) of each specimen are listed in Table 1a and b 
for the two decalcification agents, 7% nitric acid and 0.5 M EDTA, respectively.

The period of burial of the exhumed bones irrespective of decalcification method ranged from 6 to 15 yr. 
with a mean of 9.87 ±  1.79 yr., and the age at death—where known—ranged from 22 to 75 yr., with a mean of 
50.0 ±  14.70 yr. There was no significant difference in the mean period of burial between the groups decalcified 
using 7% nitric acid and 0.5 M EDTA (p >  0.05).

Means and standard deviations for the volumes of the exhumed and control bone specimens in the groups 
decalcified in 7% nitric acid and 0.5 M EDTA, respectively, are given in Table 2. There was no significant differ-
ence in the volume of exhumed (p =  0.136) or control (p =  0.277) bone specimens, whether decalcified with 7% 
nitric acid or 0.5 M EDTA. There was no significant difference in volume between exhumed and control bone 
specimens decalcified with 0.5 M EDTA (p =  0.987), but a significant difference in volume was detected between 
exhumed and control bone specimens decalcified with 7% nitric acid (p =  0.036).

Decalcification parameters. Means and standard deviations for the decalcification time of the exhumed 
and control bone specimens in the groups decalcified in 7% nitric acid or 0.5 M EDTA are given in Table 2. Mean 
decalcification time was significantly higher (p <  0.001) in specimens decalcified using EDTA (42.89 ±  10.18 
days) compared with 7% nitric acid (5.55 ±  2.38 days), but 6 of the 11 specimens were recorded as decalcified 
after 4 days, potentially skewing some comparisons.

Coefficients of correlation between decalcification time and specimen attributes for the two groups are given 
in Table 3. In the group decalcified with 7% nitric acid, low coefficients of correlation were detected between 
decalcification time and period of burial (R2 =  0.0884), age at death (R2 =  0.1497), volume (R2 =  0.1386), weight 
(R2 =  0.2593), density (R2 =  0.0473), length (R2 =  0.0229), area of largest side (R2 =  0.2010) and surface area 
(R2 =  0.1311). In the group decalcified with 0.5 M EDTA, low coefficients of correlation were also detected 
between decalcification and age at death (R2 =  0.1497), volume (R2 =  0.1292), weight (R2 =  0.0332) and surface 
area (R2 =  0.1940). Higher coefficients were detected between decalcification and period of burial (R2 =  0.5893), 
density (R2 =  0.3155), length (R2 =  0.4476) and area of largest side (R2 =  0.3921).

In preparation of the TMA blocks (see Fig. 1a), sample loss accrued at ~17 percent of cores subsampled.

Lacuna and osteocyte counts. An example of an H&E stained TMA subsample is given in Fig. 1b. The 
total number of lacunae and preserved osteocytes counted in six fields in each specimen are given in Table 1 
for each of the two decalcification agents. Means and standard deviations for osteocyte counts in exhumed and 
control samples decalcified using each agent are given in Table 2. There was no significant difference in the mean 
osteocyte count in the specimens decalcified with 7% nitric acid or 0.5 M EDTA, in either the exhumed bone 
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(p =  0.377) or post-operative bone control (p =  0.248) samples. The mean osteocyte count was significantly 
higher in the control than in the exhumed bone samples, whether decalcified with 7% nitric acid (p <  0.001) or 
0.5 M EDTA (p =  0.006).

High coefficients were detected between lacuna count and osteocyte count in both the 7% nitric acid 
(R2 =  0.8429) and 0.5 M EDTA (R2 =  0.4251) decalcified groups (see Fig. 2). Coefficients of correlation between 
period of burial and age at death, bone section length and osteocytes per lacuna are given in Table 4. Moderate 
coefficients were detected between the number of osteocytes per lacuna by age at death in both the 7% nitric acid 
(R2 =  0.3235) and 0.5 M EDTA (R2 =  0.3474) decalcified groups.

Specimen

Period 
of Burial 

(yr.)

Age at 
Death 
(yr.)

Cortical 
Surface 
Color

Medullary 
Surface 
Color

Length 
(cm.)

Width 
(cm.)

Height 
(cm.)

Weight 
(g.)

Decalcification 
Time (days)

Lacuna 
Count

Osteocyte 
Count

Bone 
Matrix 

Area Loss 
(%)

PAS 
Fungal 

Element 
Ratio

SM 
Fungal 

Element 
Ratio

Combined 
Fungal 

Element 
Ratio

(a)

Exhumed Bone

 004 15 — Light brown Red-brown 1.0 0.6 0.4 1.26 4 41 5 10.89 0.90 0.80 0.85

 005 12 36 Light brown Dark brown 1.0 0.5 0.4 0.17 4 78 10 4.30 0.45 0.40 0.43

 006 12 67 Black Dark brown 1.3 0.5 0.4 0.67 7 72 13 2.39 0.79 0.88 0.83

 008 10 75 Red-brown — 1.2 0.5 0.5 0.65 4 59 4 4.17 0.91 1.00 0.96

 009 10 49 Light brown Black 1.0 0.7 0.4 1.23 11 43 7 6.38 0.53 0.67 0.59

 010A 10 27 Dark brown — 0.9 0.4 0.3 0.19 4 111 22 4.15 1.00 1.00 1.00

 010B 10 27 Dark brown — 1.0 0.4 0.4 0.18 4 12 0 3.11 1.00 1.00 1.00

 011 9 49 Dark brown Black 0.8 0.4 0.3 0.48 4 19 1 11.74 1.00 1.00 1.00

 012 9 49 Red-brown Dark brown 0.7 0.5 0.4 0.47 4 37 5 7.38 1.00 — 1.00

 014 9 51 Light brown Dark brown 1.7 0.4 0.4 1.36 7 74 10 6.97 0.62 0.40 0.52

 015 6 69 Dark brown Black 0.6 0.5 0.4 0.41 8 81 9 2.87 0.78 0.73 0.75

 Mean 10.18 49.90 1.02 0.49 0.39 0.64 5.55 57.00 7.82 5.85 0.82 0.79 0.81

 SD 2.27 16.78 0.30 0.09 0.05 0.45 2.38 29.62 6.15 3.16 0.20 0.24 0.21

Control Bone

 16 1.0 0.5 0.5 13 90 25 0.31 0.00 0.00 0.00

 17 1.0 0.2 0.2 12 71 20 0.25 0.00 0.00 0.00

 18 1.0 0.3 0.3 13 116 27 0.80 0.00 0.00 0.00

 19 1.0 0.3 0.3 13 118 28 0.93 0.00 0.00 0.00

 21 1.3 0.2 0.1 12 149 36 0.89 0.00 0.00 0.00

 Mean 1.06 0.30 0.28 12.60 108.80 27.20 0.64

 SD 0.13 0.12 0.15 0.55 29.73 5.81 0.33

(b)

Exhumed Bone

 013 9 — Black Red-brown 1.0 0.4 0.4 0.78 31 73 5 1.17 1.00 1.00 1.00

 024 10.5 43 Red-brown Light brown 1.0 0.4 0.3 0.31 47 180 9 0.74 0.00 0.00 0.00

 025 10.4 60 Light brown Light brown 1.2 0.4 0.3 0.24 52 128 3 2.02 1.00 1.00 1.00

 026 10.2 61 Red-brown Light brown 1.0 0.4 0.3 0.51 46 91 11 6.07 1.00 1.00 1.00

 027 10.1 52 Light brown Light brown 1.3 0.4 0.4 0.50 53 135 1 0.95 0.71 1.00 0.85

 028 9.6 22 Light brown Light brown 1.6 0.4 0.4 0.74 54 227 9 1.15 0.25 0.50 0.39

 029 9.3 54 Light brown Light brown 1.0 0.4 0.4 0.48 40 123 7 16.25 1.00 1.00 1.00

 030 8.3 51 Black Red-brown 1.0 0.4 0.4 0.57 25 308 13 24.90 1.00 1.00 1.00

 031 8 58 Light brown Light brown 0.9 0.3 0.3 0.13 38 55 1 0.91 0.86 0.90 0.88

 Mean 9.49 50.13 1.11 0.39 0.36 0.47 42.59 146.67 6.56 6.02 0.76 0.82 0.79

 SD 0.91 12.76 0.22 0.03 0.05 0.22 10.18 80.29 4.33 0.44 0.38 0.35 0.36

Control Bone

 32 1.5 0.3 0.3 59 68 17 0.47 0.00 0.00 0.00

 33 1.4 0.4 0.4 57 88 13 0.49 0.00 0.00 0.00

 34 1.5 0.3 0.4 61 81 15 0.41 0.00 0.00 0.00

 35 0.7 0.3 0.4 55 81 36 0.41 0.00 0.00 0.00

 Mean 1.28 0.33 0.38 58.00 79.50 20.25 0.44

 SD 0.39 0.05 0.05 2.58 8.35 10.63 0.04

Table 1.  (a) Specimen attributes and quantitative results of histological analysis of 7% nitric acid decalcified 
group. (b) Specimen attributes and quantitative results of histological analysis of 0.5 M EDTA decalcified group.
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Percent bone matrix area loss. Measurement of bone matrix area loss using ImageJ is shown in Fig. 1c 
and d. Percent loss of bone matrix area in each specimen is given in Table 1 for each of the two decalcification 
agents. Means and standard deviations for the percent bone matrix area loss in the exhumed and control sam-
ples for the two agents are given in Table 2. No significant difference in mean percent bone loss was observed 
between specimens decalcified with 7% nitric acid or 0.5 MEDTA within either the exhumed bone (p =  0.955) or 
post-operative bone control (p =  0.258) samples. A significantly higher mean percent bone loss was detected in 
the 7% nitric acid decalcified group compared with the 0.5 M EDTA decalcified group within the exhumed bone 
sample (p <  0.001), but no significant difference was observed in the controls (p =  0.091).

Coefficients of correlation measured between period of burial and age at death, bone section length, osteo-
cytes per lacuna and percent bone area loss are given in Table 4. Coefficients of correlation with percent bone loss 
are generally low.

Fungal spheroid element ratios. Examples of PAS and SM stained histological sections used in measuring 
fungal spheroid element ratios are given in Fig. 1e and f. Fungal spheroid element ratios in each specimen are 
given in Table 1 for each of the two decalcification agents. Means and standard deviations for the fungal spheroid 
element ratios in the exhumed and control samples decalcified using each agent are given in Table 2.

Coefficients of correlation measured between fungal spheroid element ratios and percent bone loss, bone 
section length, lacuna count, osteocyte count, osteocytes per lacuna, period of burial and age at death are given 
in Table 4. The coefficients of correlation with fungal spheroid element ratio detected are generally low, with the 
exception of that with age at death in the group decalcified with 7% nitric acid (R2 =  0.4840).

Detection of preserved bone collagen fibres. Picro-sirius Red staining indicated both thick and thin 
collagen bundles were well preserved in all exhumed bone specimens included in the study (see Fig. 1g and h). 
Greater accuracy may be achieved by quantification of preserved collagen fibres and the application of other his-
tological stains such as Silver Reticulin and anti-Glycophorin by immunohistochemistry in order to assess for the 
presence of red blood cells and reticular fibers, respectively.

Detection of preserved endothelial cells. There was no expression of CD31 and CD34 markers on any 
of the exhumed bone samples. Expression of these markers in the post-operative bone and liver controls and were 
observed, however (see Fig. 1i and j).

Discussion
Two key obstacles to TMA analysis are sample loss in preparation of the multiplex and insufficiency of recogniza-
ble and representative features detectable in the microarrayed tissues. The results indicate an average sample loss 
of 17%, which corresponds with values of below 20% reported in the literature36–38. Cores from at least 25 histo-
logical bone sections were subsampled and successfully embedded in each TMA block. Osteocytes were observed 

Variable

7% Nitric Acid Decalcified Group 0.5 M EDTA Decalcified Group

Exhumed Bone 
n = 11

Control Bone 
n = 5

Exhumed Bone 
n = 9

Control Bone 
n = 4

Volume (cm3) 0.22 ±  0.09 0.10 ±  0.09 0.16 ±  0.05 0.17 ±  0.06

Decalcification Time (days) 5.55 ±  2.38 12.6 ±  0.55 42.9 ±  10.18 58 ±  2.58

Osteocyte count 7.82 ±  6.15 27.20 ±  5.81 7.25 ±  4.06 20.25 ±  10.63

Bone matrix area loss (%) 5.85 ±  3.17 0.64 ±  0.33 6.02 ±  8.69 0.44 ±  0.04

PAS Fungal Element Ratio 0.82 ±  0.20 0.00 0.76 ±  0.38 0.00

SM Fungal Element Ratio 0.79 ±  0.24 0.00 0.82 ±  0.35 0.00

Combined Fungal Element Ratio 0.81 ±  0.21 0.00 0.79 ±  0.36 0.00

Table 2.  Means of specimen attributes and histological variables by decalcification group.

Specimen Attribute

Coeffcient of Correlation (R2)

7% Nitric Acid 
Decalcified Group

0.5 M EDTA 
Decalcified Group

Period of Burial 0.0884 0.5893

Age at Death 0.1497 0.1497

Volume 0.1386 0.1292

Weight 0.2593 0.0332

Density 0.0473 0.3155

Length 0.0229 0.4476

Area of Largest Side 0.2010 0.3921

Surface Area 0.1311 0.1940

Table 3.  Coefficients of correlation (R2) of decalcification time with specimen attributes.
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Figure 1. (a) Upper: Tissue microarray TMA-NA containing eleven exhumed and five control bone 
subsamples in duplicate, with a positive control (liver) for immunohistochemical analysis. Lower: Tissue 
microarray TMA-EA containing nine exhumed and four control bone subsamples, with a positive control 
(liver) for immunohistochemical analysis; (b) specimen 012 in TMA-NA showing osteocyte hot-spot 
location, × 400; (c) specimen 030 in TMA-EA with (d) same field illustrating identification of bone matrix 
loss in ImageJ, × 100; (e) specimen 030 in TMA-EA stained with PAS, × 100; (f) specimen 030 in TMA-EA 
stained with SM, × 100; (g) specimen 005 in TMA-NA immunohistochemically stained with anti-CD31,  
× 100; (h) specimen 005 in TMA-NA immunohistochemically stained with anti-CD34, × 100; (i) specimen 005 
in TMA-NA stained with Picrosirius red, × 100; (j) control 019 in TMA-NA stained with Picrosirius red, × 100.
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preserved within lacunae in 95% of specimens and well preserved thick and thin collagen bundles were observed 
in all specimens. No endothelial cells could be detected using CD31 and CD34 immunohistochemistry, however.

Figure 2. Charts showing plots and coefficients of correlation (R2) for selected variables: (a) Osteoctye count v. 
lacuna count (TMA-NA), (b) osteocyte count v. lacuna count (TMA-EA), (c) period of burial v. decalcification 
time (TMA-EA), (d) length v. decalcification time (TMA-EA), (e) osteocytes per lacuna v. age at death 
(TMA-NA), (f) osteocytes per lacuna v. age at death (TMA-EA).
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Matrix loss—due to chemical or bioerosion—and fungal invasion are fundamental features of post mortem 
diagenesis in bone10–12, and both were observed in this study. The provenance of fungal spheroid elements was not 
clear, however, and may not reflect direct fungal attack on bone.

In preserved areas unaffected by bone matrix loss, osteocyte lacunae can normally be distinguished from voids 
attributable to diagenesis, even in decalcified sections. They are located in compact bone and their size and mor-
phology retains the appearance of osteocytes located in concentric lamellae surrounding the osteon (see Fig. 1b). 
Morphological comparison with post-operative bone controls offered a robust means of assisting in the correct 
identification of osteocyte lacunae by size, shape and location (see Fig. 1). High coefficients of correlation between 
lacuna count and osteocyte count in both 7% nitric acid (R2 =  0.8429) and 0.5 M EDTA (R2 =  0.4251) decalcified 
groups (see Fig. 2a and b) indicate the findings reflect the consistent detection of osteocytes within lacunae—not 
all of which would be expected to retain these cells as a consequence of degradation and fragmentation of nuclei.

The choice of decalcification agent appears to have a significant effect on the utility of the method (see 
Table 2). Decalcification using 7% nitric acid (5.55 ±  12.6 days) was substantially more rapid in comparison with 
0.5 M EDTA (42.9 ±  10.2 days) and mean percent bone matrix area loss was slightly, but significantly (p <  0.001) 
lower (5.85 ±  3.17, compared with 6.02 ±  0.44 in the 0.5 M EDTA decalcified group). Mean osteocyte count was 
greater in the 7% nitric acid decalcified group (7.82 ±  6.15 versus 7.25 ±  4.06), although this difference was not 
statistically significant.

While an exact distinction between fungal spores and red blood cells cannot be made by morphological anal-
ysis using PAS and SM, the presence of fungal spheroid elements in 100% of PAS and 95% of SM stained subsam-
ples and their absence from all controls offers consistent evidence of fungal intrusion.

High standard deviation values in lacuna and osteocyte counts, percent bone matrix area loss and fungal 
spheroid element ratios observed (Table 2) indicate histomorphological variation and post mortem diagenetic 
changes are not uniform even in a restricted area, and can be detected three-dimensionally using TMA analysis 
of serial sections with minimal sample loss in a large sample. Because of the inherent uniformity in TMA across 
subsamples, processing effects are discarded as an explanation for this variation, which is attributed to internal 
differences in the conditions of diagenesis between and within specimens. The potential for direct 3-D analysis of 
adjacent sections by different means is illustrated in Fig. 1c–f.

The cemetery latosoil is composed of iron oxide39, which can promote post mortem oxidation and degrada-
tion of the bone matrix and cellular structures in the burials, exacerbated by the acid soil, and warm and humid 
climate. Nevertheless, considerable variation in the range of preservation and degradation—as indicated by oste-
ocyte count, percent bone matrix area loss, and fungal spheroid element ratio measured irrespective of the decal-
cification method—reinforces the perception that, regardless of the general physico-chemical conditions of the 
latosoil and climate, variations within each burial site significantly influence diagenetic processes. Such macrovar-
iations, mesovariations or microvariations in the burial environment may be attributable to the incidence of sun-
light and shade—which affect subsurface soil moisture and ecology, the precise depth of the burial, the availability 
of water, and the immediate pH, mineralogy and organic content of the soil40 and may have affected the cortical 
and medullary surface colours recorded for each exhumed bone specimen. Bone diagenesis is understood to be 
affected significantly by early post mortem anthropogenic factors41–43, but is not known to be associated with the 
external appearance of the bone. Specimen 004—an internal comparative control from another burial location in 
São Paulo state—did not show any distinctiveness in the results, suggesting microenvironmental parameters may 
be shared. A micro-analysis of the environmental variables could assist in evaluating these hypotheses.

Specimens of the femoral diaphysis are typically chosen for DNA analysis of the skeleton as they possess a 
cortex within which osteocytes remain protected between concentric layers of collagen and hydroxyapatite. Bones 
with thin cortical layers and larger portions of trabecular tissue have a more open structure16, which promotes 
microbial degradation of cellular material. Understanding of post mortem DNA preservation and diagenesis is 
important in forensic and archaeological—or ‘ancient DNA’—analysis as it may allow sampling from precious 
specimens to be optimized, avoiding inconsistencies and reanalysis, and for extraction and purification methods 
to be tailored to target sites of DNA preservation and to accommodate variables in post mortem bone chemistry. 
Among a number of diagenetic studies16–21, Misner16 found that mitochondrial DNA (mtDNA) was more fre-
quently recovered from the femur and fibula (79.3%), ribs (63.6%) and pelvis (36%), and Campos et al.17 found 
there was a reduction in the amount of DNA in the first year after the death attributable to microbial attack 
regardless of environmental physical and chemical characteristics, and in subsequent years the amount stabi-
lizes. Mundorff et al.44, however, found that cancellous bones such as the phalanges, patellae and tarsals yielded 
16-locus forensic DNA profiles more successfully than the dense cortical bones commonly favoured. The teeth 

Variable

Coeffcient of Correlation (R2)

Period of 
Burial

Age at 
Death Length

Osteocytes per 
Lacuna

Percent Bone 
Area Loss

Fungal Spheriod 
Element Ratio

Period of Burial 0.0815 0.0000 0.0663 0.006

Age at Death 0.3235 0.0091 0.005

Length 0.1306 0.0081 0.1576

Osteocytes per Lacuna 0.0894 0.3474 0.0164 0.1082

Percent Bone Area Loss 0.1813 0.0307 0.0953 0.0254 0.0128

Fungal Spheriod Element Ratio 0.1472 0.4840 0.0931 0.0152 0.1512

Table 4.  Matrix of Coefficients of correlation (R2) between with specimen attributes and histological 
variables (7% nitric acid decalcified group is in bold text).
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and, most recently, the petrous portion of the temporal bone have been shown to be useful sources of DNA post 
mortem45,46.

EDTA is commonly used in decalcification as part of DNA extraction protocols. EDTA incorporates bone cal-
cium slowly as divalent bonds of oxygen enclose it in a heterocyclic chain. This reaction is called chelation and the 
resulting product calcium chelate. The chemical reaction continues until saturation of the chelating solution. Thus, 
EDTA decalcification is a self-limiting reaction requiring constant renovation47. Chelation of divalent cations is 
important in DNA extraction as these molecules may influence the polymerase chain reaction (PCR) used in down-
stream profiling. The relatively poor utility of EDTA evident in this study may be a reflection of its mode of action, 
however, which will be influenced by the hydroxyapatite matrix of the bone and its propensity to form new crystal 
structures that may impede decalcification48,49. A higher coefficient of correlation (R2 =  0.5893) detected between 
decalcification time and period of burial (Fig. 2c) may reflect the influence of soil chemistry on this process. The 
coefficient of correlation between period of burial and length was low (R2 =  0.1306) and the correlation (Fig. 2d) 
between decalcification time and bone section length (R2 =  0.4476) may indicate that decalcification is retarded if 
the specimen is sectioned to present larger surfaces in the predominant direction of the Haversian systems.

Understanding of patterns of bone matrix loss, survival and histological and molecular preservation may sup-
port greater understanding of mechanisms and localities of elevated DNA survival, which varies between skeletal 
elements. According to some authors, degradation of cellular components of the bone causes the release of DNA 
fragments of various sizes that could bind to collagen fibrils or enter into microscopic pores in the bone. These 
fragments would be available to mix within a saturated solution of calcium and phosphate ions, and be adsorbed 
by hydroxyapatite crystals that may be precipitated again in other parts of the bone tissue19. Prufer et al.50 reported 
DNA fragments from bones typically have a size of 60–150 base pairs—equivalent to a fragment size of 22–54 nm. 
This size is consistent with the size of hydroxyapatite crystals present in bone of 2–5 ×  15–55 ×  5–25 nm. It is 
therefore possible that DNA may adhere to the bone matrix during bone formation and remodeling, and fol-
lowing apoptosis or the actual death of the individual. Campos et al.17 investigated which of the components of 
the bone matrix—hydroxyapatite or collagen—yielded the greatest amount of DNA. The outcome of the study 
indicated that most of the DNA is recovered from the mineral portion of the matrix, corroborating the above 
propositions. Most recently, Dangaard et al.51 proposed an enzymatic pre-digestion step be incorporated in EDTA 
mediated decalcification targeted at DNA recovery from bones and teeth.

Osteocyte lacuna density52 has been reported to change in an age related pattern. No correlation between 
lacuna count and age at death was evident in the 7% nitric acid decalcified group (R2 =  0.0057), but a correlation 
(R2 =  0.3061) was evident in the 0.5 M EDTA decalcified group. A consistent correlation with the number of oste-
ocytes per lacuna was detected in both the 7% nitric acid (R2 =  0.3235) and 0.5 M EDTA (R2 =  0.3474) decalcified 
groups (see Fig. 2e and f), however. These findings are interesting in the context of the observation that osteocyte 
density may be related to microdamage anticipated to be more frequent in older individuals.

While the study demonstrates TMA can be applied to post mortem bone and to the measurement of parameters 
relevant to post mortem diagenesis, certain limitations and caveats must be taken into account. Decalcification of 
the bone inevitably affects the bone matrix and may interfere with the attribution of changes to post mortem pro-
cesses. Comparison with undecalcified controls may allow this issue to be resolved, but decalcification is implicit to 
TMA and may represent an inherent limitation to the method. Application of TMA to highly degraded bone may 
be unfeasible. Differences in the pattern of bone matrix loss ascribed to the decalcification methods used could 
reflect underlying systematic differences or bias between the two sets of samples. The effects of decalcification and 
TMA processing could be assessed via the post-operative bone fragment comparative controls (Tables 1a,b and 2), 
however. Only lacuna count is substantially elevated in the 0.5 M EDTA decalcified group and a higher correla-
tion (see Fig. 2a and b) between osteocyte and lacuna counts in the 7% nitric acid decalcified group may indicate 
identification of osteocytes within lacunae may be more reliable when is this agent is used. There is no apparent 
difference in the fungal spheroid element ratios detected using either decalcification method.

Using the approach adopted in this instance, it was not possible to distinguish between erosion arising from 
chemical, bacterial or fungal attack41,53–55, to assess transverse patterns—such as those affecting the periosteal and 
sub-periosteal or endosteal and sub-endosteal zones41,43,56, or to determine the mechanism of attack and detailed 
aetiology of bone matrix loss41,53,57–59. Bioerosive tunneling can be observed in TMA sections (see Fig. 1b), but 
decalcification would—for example—remove the hypermineralized barrier defining bacterial tunnels, impeding 
their identification. Bell et al.5 noted tunneling forming around osteocyte lacunae, from which diagenetic lesions 
may emanate60. Histological analysis of other sections in this sample undertaken using standard (non-TMA) 
methods demonstrated Type 2 Weld tunneling61. These may also be evident in TMA sections (see Fig. 1c, for 
example), but this is not clear. These questions could be explored further using TMA applied to different subsam-
ples using different histological techniques, however. Finally, the possibility that apparent correlations between 
variables are due to chance might be addressed via analysis of a larger set of subsamples, permitting multivariate 
analysis of correlations and their statistical significance.

Conclusion
The study demonstrates the application of TMA to post mortem bone specimens and the measurement of stand-
ardised immunohistochemical and histological parameters relevant to the investigation of taphonomic processes. 
Lacunar osteocyte counts, bone matrix loss and fungal spheroid element counts were measured in subsamples 
offering broad representation of the original tissue section and permitting direct quantification of bone matrix 
loss. The effect of decalcification on the bone matrix may interfere with attribution to post mortem processes, 
however, and this may represent an inherent challenge of TMA. The presence of thin and thick collagen fibre 
bundles was demonstrated in all specimens, but no endothelial cells could be detected by immunohistochemistry.

Initial findings indicate that decalcification using 7% nitric acid proceeded far more rapidly than with 0.5 M 
EDTA, and histological and cellular structure may be better preserved using the former. Although the subsamples 
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cannot be proven to be wholly representative, they do offer consistent analysis of a common bone section in a 
large sample arising from the same burial location, interred and exhumed of over a comparable time period. A 
wide range of variation in taphonomic parameters measured suggests that burial microenvironment may affect 
diagenesis substantially. Correlations observed between lacunae housing osteocytes and age at death may relate 
to proposed models for response to microdamage. The significance of apparent correlations may be verified by 
applying the TMA methods demonstrated to more extensive representative microarrays generated from larger 
suites of samples. Similarly, limitations related to discrimination between different forms of chemical and bioero-
sion using TMA may be addressed via further methodological development.

The study shows that TMA can be successfully applied to post mortem bone, efficiently permitting 3-D visu-
alization of histological sections, simultaneous study of large numbers of samples and representative subsamples, 
standardization of reactions and ready comparative interpretation of results. Further research applying TMA to 
the investigation of the microstructure of bioerosion57–62 and indices of bone integrity, as well direct DNA profil-
ing of the histological sections63 or cores may advance understanding of preservation and diagenesis in this and 
other samples.

Methods
Ethical approval. The remains were donated by the deceased’s families for anthropological research at the 
Medico-Legal Centre, Department of Pathology, Ribeirão Preto School of Medicine—University of São Paulo 
(FMRP-USP). The study was approved by the Ethics Committee of the Escola Paulista de Medicina of the Federal 
University of São Paulo (EPM/UNIFESP) under Plataforma Brasil number 534 593 -CAAE 27202814.0.3001.5440 
and is complaint with the Informed Consent and Agreement Committee (Resolution 196/96 of the National 
Health Council of Brazil) in that the human remains to be analyzed were in an ossuary of the cemetery. All sam-
ples were derived from male or female individuals over 18 years old. No personally identifiable information was 
used. The project also has the approval of the Economic Development Company of Ribeirão Preto (CODERP), 
the company that administers the cemetery from which the bones were exhumed.

Exhumed bone and control sample donor block preparation. Specimens of compact bone were col-
lected from the femoral mid-shaft of the skeletonized remains of 19 individuals exhumed during 2012 and 2013 
following redevelopment of part of a public cemetery in Ribeirão Preto SP, Brazil. The cemetery soil is character-
ized as slightly acid—pH 6.4—red latosoil composed mostly of clay, water, acric latosoil, carbon and iron39. The 
climate is tropical semi-humid, with a rainy season in the late autumn and a dry winter. Average temperatures 
are above 18 °C in all months of the year, with an annual average of 21.9 °C and rainfall of about 1500 mm per 
annum. The interments had taken place between 2000 and 2006, in wooden coffins buried at about 1.5 m. below 
the ground surface. A further exhumed specimen—004—from a location in São Paulo, SP, was included as an 
internal comparative control.

A modern control sample of specimens of femoral mid-shaft from a further 9 individuals were obtained from 
the Department of Pathology, Escola Paulista de Medicina—Federal University of São Paulo, Brazil, following 
routine amputations. The control specimens were cleaned with a scalpel until all tissue in the cortical and medul-
lary portions had been removed.

None of the bone specimens analysed arose from embalmed remains.
After washing in 0.9% saline solution, these specimens were placed in a 37 °C oven in sterile conditions for 

seven days prior to preparation of the donor blocks.
The specimens were sectioned and fixed in 14 ml 10% buffered formalin for 21 hours. After fixing, the sections 

were washed in water for 1 hour and decalcified using two different protocols. In protocol TMA-NA, 11 exhumed 
and 5 control bone sections were immersed in 15 ml 7% aqueous nitric acid. In protocol TMA-EA, 9 exhumed 
and 4 control bone sections were immersed in 15 ml 0.5 M EDTA solution in 0.5 M phosphate buffered saline. The 
decalcification agents were changed every two days until the samples were sufficiently decalcified for histological 
processing. The decalcified sections were washed in water for 10 min and inserted into plastic cassettes contain-
ing absolute alcohol prior to embedding in paraffin blocks. All bone specimens were sectioned transversely and 
embedded in blocks in the same orientation.

Sample attributes. Each bone section was photographed and the following information recorded: period 
of burial (yr.), age at death (yr.), weight (g.), cortical surface color, medullary surface color, section dimensions 
(cm.) and decalcification time (days).

Tissue microarray recipient block preparation. Two histological sections of 3 μ m from each of the 20 
exhumed and 9 control bone donor blocks were mounted on silanized slides and stained with hematoxylin and 
eosin (H&E) in order to permit selection of suitable areas from each block for subsampling. Cannulas with an 
oblique tip (Nipo Medical Ltda., Brazil) were used to subsample cores from each block. The length (50 mm) and 
larger inner diameter (1.74 mm) of these cannulas were found to be valuable attributes in subsampling cores from 
the compact femoral bone blocks. Two paraffin blocks, TMA-NA and TMA-EA, were used to receive cores sub-
sampled from the donor blocks produced following 7% nitric acid and 0.5 M EDTA decalcification, respectively.

Core subsampling was performed in duplicate, with two adjacent cores being collected from each donor block 
and inserted into the receiver block with the aid of a needle of larger caliber. Special care was taken to ensure a 
horizontal distance of 1.5 mm and a vertical distance of 4 mm between each core. In addition to the 58 exhumed 
and control compact femoral bone cores, 2 specimens of hepatic tissue were added as positive controls for immu-
nohistochemistry (see below). The two receiver blocks were placed in a 60 °C oven for 1 min. in order to ensure 
the inserted core had melted in to the receiver block. The receiver blocks were frozen for 25 min. immediately 
prior to histological sectioning and mounting onto silanized slides.
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Block TMA-NA received cores from 11 exhumed and 5 control bone sections decalcified in 7% nitric acid 
as well as 2 further control cores from hepatic tissue, and 25 histological sections at 4 μ m ×  76 mm ×  26 mm 
were obtained from this block. Block TMA-EA received cores from 9 exhumed and 4 control bone sections 
decalcified in 0.5 M EDTA as well as the 2 control cores from hepatic tissue, and 27 histological sections at  
4 μ m ×  76 mm ×  26 mm were obtained from this block.

H&E, periodic acid-Schiff (PAS), Silver Methenamine (SM) and immunohistochemical— anti CD31 and 
anti-CD34—staining was performed according to standard histopathology laboratory protocols (Department of 
Pathology, EPM-UNIFESP). Sample loss during TMA preparation was recorded as the percentage of subsample 
cores that could not be clearly observed in histological sections prepared from the multiplex.

Image acquisition and analysis. Image analyses were performed using digital microscopy. ImageJ 
(National Institutes of Health, USA) was used for preliminary differentiation of structures and simultaneous 
analysis of images in series, prior to subsequent detailed image analysis.

Statistical analysis. Statistica 12.5 (Dell Statistica, USA) was used in calculations of sample means and stand-
ard deviations applied to the exhumed bone and post-operative bone control samples, and the groups decalcified 
with 7% nitric acid and 0.5M EDTA, respectively. Comparisons of distributions were made for volumes, decalcifica-
tion times, osteocytes per lacuna, percent bone matrix area loss, and fungal spheroid element ratios. The significance 
level was set at 0.05. Coefficients of correlation (R2) between decalcification time and specimen attributes for groups 
calcified with 7% nitric acid and 0.5M EDTA, respectively. Coefficients of correlation were also calculated and higher 
values—arbitrarily above 0.3—were chosen in order to examine relationships between period of burial and age at 
death, and osteocytes per lacuna, percent bone matrix area loss and fungal spheroid element ratios.

Lacuna and osteocyte counts. The numbers of preserved lacunae and osteocytes were measured in 
images acquired from H&E stained slides at 400x magnification. The areas in each subsample with the highest 
numbers of osteocytes—‘hot-spots’ (see Fig. 1b)—were located and digitized in 3 consecutive fields per subsam-
ple in a zigzag pattern in both duplicates. Total lacuna and osteocyte counts in the 6 resultant fields were recorded 
using the Cell Counter Type I and Type II plugins in ImageJ.

Percent bone matrix area loss. Bone matrix area loss was estimated in images acquired from H&E stained 
slides at 100x magnification. At this magnification, each subsample in the TMA could be completely visual-
ized. The area of bone loss was highlighted using the Freehand Selections tool in ImageJ (see Fig. 1c and d) and 
deducted from the constant total area of each image in pixels to generate the percent bone matrix loss area per 
specimen in pixels. Ill-defined bone structures and artifacts were disregarded.

Fungal spheroid element ratios. Measurement of fungal spheroid elements was performed 
semi-quantitatively in images acquired from PAS and SM stained slides at 100x magnification (see Fig. 1e and f). 
Evaluation was carried out by scoring the number Haversian systems affected by fungal spheroid elements to generate 
a fungal spheroid element ratio for each staining method. The highest score assessed in both duplicates was recorded.

Detection of preserved endothelial cells. The presence of endothelial cells in the bone sam-
ples was qualitatively determined by analyzing slides stained by immunohistochemistry using the 
streptavidin-biotin-peroxidase standard technique64,65 with modifications, using anti-CD31 (DAKO, USA) and 
anti-CD34 (Dako, USA) antibodies considered to be present in samples with positive staining for anti-CD31 or 
anti-PECAM-1, and anti-CD34. Analyzes were performed at 200x magnification for the best representation (see 
Fig. 1g and h).

Detection of preserved bone collagen fibers. The analysis of preservation of bone collagen and its 
architecture was qualitatively performed in slides stained with Picro-sirius red at 100x magnification using polar-
ized light. Arrangements of thick and thin bundles of bone collagen were noted (see Fig. 1i and j), with regard to 
the known prevalence of type I collagen in cortical regions and type III collagen in medullary regions66.
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