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ABSTRACT
A series of 3H-1,2-benzoxathiepine 2,2-dioxides incorporating 7-acylamino moieties were obtained by an
original procedure starting from 5-nitrosalicylaldehyde, which was treated with propenylsulfonyl chloride
followed by Wittig reaction of the bis-olefin intermediate. The new derivatives, belonging to the homosul-
focoumarin chemotype, were assayed as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC
4.2.1.1). Four pharmacologically relevant human (h) isoforms were investigated, the cytosolic hCA I and II
and the transmembrane, tumour-associated hCA IX and XII. No relevant inhibition of hCA I and II was
observed, whereas some of the new derivatives were effective, low nanomolar hCA IX/XII inhibitors, mak-
ing them of interest for investigations in situations in which the activity of these isoforms is overex-
pressed, such as hypoxic tumours, arthritis or cerebral ischaemia.
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1. Introduction

Sulfocoumarins (1,2-benzoxathiine 2,2-dioxides) and homosulfo-
coumarins (3H-1,2-benzoxathiepine 2,2-dioxides)1–5 are among the
most investigated new classes of carbonic anhydrase (CA, EC
4.2.1.1) inhibitors, which have been designed considering the
structurally similar coumarins6–8 as lead molecules. Indeed, Cas are
widely spread enzymes in organisms of all types, from simple to
complex ones9–15, and are involved in crucial physiological proc-
esses, among which carbon fixation in diatoms and other marine
organisms in which several genetic families of such metalloen-
zymes were reported9. In protozoans, Cas are involved in biosyn-
thetic reactions9 whereas in bacteria, where at least three genetic
families were described (a-, b-, and c-Cas) these enzymes play cru-
cial roles related both to metabolism but also virulence and sur-
vival in various niches10. In vertebrates, including humans, a high
number of different CA isoforms belonging to the a-CA class were
described11,12, which by hydrating CO2 to a weak base (bicarbon-
ate) and a strong acid (hydronium ions), are involved in a multi-
tude of processes, starting with pH regulation and ending with
metabolism13,14. As thus, Cas are drug targets for decades, with
their inhibitors having pharmacological applications in a multitude
of fields11–16. The primary sulphonamides were discovered as CA
inhibitors (CAIs) in the ‘40 s, and most of the drugs that were
launched in the next decades as diuretics, antiepileptics, or anti-
glaucoma agents belonged to this class of compounds or to their
isosteres such as the sulfamates and sulfamides11. An important
drawback of such first generation CA inhibitors (CAIs) was their
lack of isoform selectivity, considering the fact that in humans at

least 12 catalytically active and three acatalytic isoforms are pre-
sent11,12. However, the new generation CAIs to which coumarins
and sulfocoumarins belong, show significant isoform-selective
inhibition profiles, as demonstrated in a considerable number of
studies1–8. This is principally due to the fact that these com-
pounds possess a distinct inhibition mechanism compared to the
sulphonamides, which coordinate to the zinc ion from the CA
active site as anions11,12. In fact, coumarins and sulfocoumarins
act as prodrug inhibitors, undergoing an active site mediated
hydrolysis, which leads to the formation of 2-hydroxy-cinnamic
acids in the case of the coumarins, and ethane-sulphonates in the
case of the sulfocoumarins, which subsequently bind in different
active site regions, different of those where the classical sulphona-
mide CAIs bind1–8. As shown by X-ray crystallography, the hydro-
lysed coumarins occlude the entrance of the CA active site
cavity6, whereas the sulfocoumarins bind deeper within the active
site, but still do not coordinate to the metal ion. Instead, the
formed sulphonates anchor to the zinc-coordinated water mol-
ecule, as shown again by means of X-ray crystallographic techni-
ques2. As these regions of the CA active site are the most variable
ones, a straightforward explanation of the isoform selectivity of
these new generation CAIs was furnished by using a combination
of crystallographic and kinetic studies, which also allowed the
development of compounds showing a higher degree of selectiv-
ity15,16. This allowed for the development of inhibitors useful for
new pharmacological applications such as antitumor/antimeta-
static compounds13, CAIs useful for the management of arthritis17,
neuropathic pain18, and cerebral ischaemia19.
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Considering our interest in designing non-sulphonamide CAIs
with various potential applications, we report here a new series of
homosulfocoumarins and their inhibitory profiles against the
major human (h) CA isoforms, hCA I, II, IX, and XII, involved in
many pathologies, including cancer.

2. Experimental part

2.1. Chemistry

Reagents, starting materials/intermediates 1–7 and solvents were
obtained from commercial sources (Sigma-Aldrich, St. Louis, MO)
and used as received. Anhydrous CH2Cl2 and toluene were
obtained by passing commercially available solvents through acti-
vated alumina columns. Thin-layer chromatography was per-
formed on silica gel, spots were visualised with UV light (254 and
365 nm). Melting points were determined on an OptiMelt auto-
mated melting point system. IR spectra were recorded on
Shimadzu FTIR IR Prestige-21 spectrometer. NMR spectra were
recorded on Bruker Avance Neo (400MHz) spectrometer with
chemical shifts values (d) in ppm relative to TMS using the
residual DMSO-d6 signal (1H 2.50; 13C 39.52) or CDCl3 signal (1H
7.26; 13C 77.16) as an internal standard. High-resolution mass
spectra (HRMS) were recorded on a mass spectrometer with a Q-
TOF micro mass analyser using the ESI technique.

General procedure for synthesis of acyl compound 8–17
To a solution of amino derivative 7 (1.0 eq.) in dry CH2Cl2 (20ml
per mmol of compound 7) at 0 �C appropriate acyl chloride (1.1
eq.) and Net3 (1.1 eq.) were added. The resulting mixture was
stirred at room temperature under an argon atmosphere for 2 h.
Water was added (20ml per mmol of compound 7). Layers were
separated, water layer was washed with EtOAc (2� 40ml).
Combined organic layers were washed with brine, dried over anh.
Na2SO4, filtered, evaporated. The crude solids were recrystallised
form EtOAc/petrol ether mixture to afford product.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)acetamide (8).

O SO2

H
N

O

Compound 8a was prepared according to
the general procedure from amino deriva-
tive 7 (150mg; 0.71mmol), acetyl chloride
(56mL; 0.78mmol) and Et3N (110 mL;

0.78mmol) as white solid (127mg; 70%). Mp 164–165 �C.
IR (film, cm�1) �max¼ 3276 (N–H), 1670 (C¼O), 1370 (S¼O),

1361 (S¼O), 1166 (S¼O), 1162 (S¼O);
1H NMR (400MHz, DMSO-d6) d¼ 2.06 (s, 3H), 4.37–4.41 (m, 2H),

5.96–5.6.04 (m, 1H), 6.89 (d, 1H, J¼ 11.3Hz), 7.28 (d, 1H,
J¼ 8.9 Hz), 7.58 (dd, 1H, J¼ 8.9, 2.5 Hz), 7.69 (d, 1H, J¼ 2.5 Hz),
10.16 (s, 1H) ppm.

13C NMR (100MHz, DMSO-d6) d¼ 24.0, 51.0, 120.6, 120.8, 122.7,
128.4, 131.5, 138.0, 142.2, 168.6 ppm.

HRMS (ESI) [MþH]þ: m/z calcd for (C11H12NO4S) 254.0487.
Found 254.0498.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)benzamide (9).

O
O SO2

H
N

Compound 9 was prepared according
to the general procedure from amino
derivative 7 (150mg; 0.71mmol), ben-
zoyl chloride (90 mL; 0.78mmol) and

Et3N (110 mL; 0.78mmol) as white solid (162mg; 72%).
Mp 174–175 �C.

IR (film, cm�1) �max¼ 3289 (N–H), 1652 (C¼O), 1370 (S¼O),
1363 (S¼O), 1163 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 4.43 (dd, 2H, J¼ 6.0, 0.9 Hz),
5.99–6.06 (m, 1H), 6.93 (d, 1H, J¼ 11.2Hz), 7.35 (d, 1H, J¼ 8.8 Hz),
7.52–7.58 (m, 2H), 7.59–7.64 (m, 1H), 7.82 (dd, 1H, J¼ 8.8, 2.5 Hz),
7.91 (d, 1H, J¼ 2.5 Hz), 7.94–7.99 (m, 2H), 10.46 (s, 1H) ppm.

13C NMR (100MHz, DMSO-d6) d¼ 51.1, 120.9, 122.0, 122.1,
122.6, 127.7, 128.3, 128.5, 131.4, 131.8, 134.6, 137.9,
142.7, 165.7 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C16H14NO4S) 316.0644.
Found 316.0654.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)-4-methy benzamide (10).

O SO2

H
N

O

Compound 10 was prepared
according to the general procedure
from amino derivative 7 (150mg;
0.71mmol), 4-methylbenzoyl chlor-

ide (103 mL; 0.78mmol) and Et3N (110 mL; 0.78mmol) as white crys-
tals (170mg; 73%). Mp 197–198 �C.

IR (film, cm�1) �max ¼ 3324 (N–H), 1646 (C¼O), 1378 (S¼O),
1363 (S¼O), 1177 (S¼O), 1169 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 2.39 (s, 3H), 4.41–4.45 (m, 2H),
5.99–6.06 (m, 1H), 6.92 (d, 1H, J¼ 11.2 Hz), 7.32–7.37 (m, 3H), 7.82
(dd, 1H, J¼ 8.9, 2.6 Hz), 7.86–7.92 (m, 3H), 10.37 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 21.0, 51.1, 120.8, 121.9, 122.1,
122.6, 127.7, 128.3, 129.0, 131.4, 131.6, 138.0, 141.9,
142.6, 165.5 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C17H16NO4S) 330.0800.
Found 330.0815.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)4-bromobenzamide (11).

O
O

Br

SO2

H
N

Compound 11 was prepared
according to the general proced-
ure from amino derivative 7
(150mg; 0.71mmol), 4-bromoben-

zoyl chloride (171mg; 0.78mmol) and Et3N (110 mL; 0.78mmol) as
white solid (166mg; 59%). Mp 185–186 �C.

IR (film, cm�1) �max¼ 3260 (N–H), 1653 (C¼O), 1375 (S¼O),
1363 (S¼O), 1167 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 4.42–4.46 (m, 2H), 5.99–6.06
(m, 1H), 6.92 (d, 1H, J¼ 11.3 Hz), 7.35 (d, 1H, J¼ 8.8 Hz), 7.74–7.83
(m, 3H), 7.88–7.94 (m, 3H), 10.52 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.2, 120.9, 122.0, 122.2,
122.7, 125.6, 128.3, 129.8, 131.4, 131.5, 133.6, 137.7,
142.8, 164.7 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C16H13BrNO4S) 393.9749.
Found 393.9736.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)-2-iodobenzamide (12).

O SO2

H
N

OI

Compound 12 was prepared
according to the general procedure
from amino derivative 7 (150mg;
0.71mmol), 2-iodobenzoyl chloride

(208mg; 0.78mmol) and Et3N (110 mL; 0.78mmol) as white solid
(276mg; 88%). Mp 188–189 �C.

IR (film, cm�1) �max¼ 3240 (N–H), 1641 (C¼O), 1374 (S¼O),
1362 (S¼O), 1156 (S¼O);
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1H NMR (400MHz, DMSO-d6) d¼ 4.41–4.45 (m, 2H), 6.00–6.08
(m, 1H), 6.94 (d, 1H, J¼ 11.2 Hz), 7.22–7.28 (m, 1H), 7.36 (d, 1H,
J¼ 8.8 Hz), 7.47–7.55 (m, 2H), 7.72 (dd, 1H, J¼ 8.8, 2.5 Hz), 7.87 (d,
1H, J¼ 2.5 Hz), 7.9–7.97 (m, 1H), 10.67 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.0, 93.6, 121.0, 121.2, 121.3,
122.9, 128.1, 128.2, 128.5, 131.2, 131.5, 137.7, 139.1, 142.7,
142.8, 167.7 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C16H13INO4S) 441.9610
Found 441.9609.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)-2-bromobenzamide (13).

O SO2

H
N

OBr

Compound 13 was prepared accord-
ing to the general procedure from
amino derivative 7 (150mg;
0.71mmol), 2-bromobenzoyl chloride

(102 mL; 0.78mmol) and Et3N (110 mL; 0.78mmol) as white solid
(230mg; 82%). Mp 177–178 �C.

IR (film, cm�1) �max¼ 3288 (N–H), 1653 (C¼O), 1371 (S¼O),
1176 (S¼O), 1156 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 4.43 (dd, 2H, J¼ 6.0, 0.9 Hz),
6.00–6.07 (m, 1H), 6.94 (d, 1H, J¼ 11.2 Hz), 7.36 (d, 1H, J¼ 8.9 Hz),
7.41–7.47 (m, 1H), 7.51 (dt, 1H, J¼ 7.4, 1.1 Hz), 7.55–7.59 (m, 1H),
7.69–7.76 (m, 2H), 7.87 (d, 1H, J¼ 2.6 Hz), 10.73 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.0, 118.9, 121.1, 121.2,
122.9, 127.8, 128.6, 128.9, 131.4, 131.5, 132.8, 137.6, 138.8,
142.8, 166.0 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C16H13BrNO4S) 393.9749
Found 393.9766.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)-2-fluorobenzamide (14).

O
O

SO2

H
N

F
Compound 14 was prepared accord-
ing to the general procedure from
amino derivative 7 (150mg;
0.71mmol), 2-fluorobenzoyl chloride

(93mL; 0.78mmol) and Et3N (110 mL; 0.78mmol) as white solid
(188mg; 79%). Mp 173–174 �C.

IR (film, cm�1) �max¼ 1671 (C¼O), 1371 (S¼O), 1365 (S¼O),
1164 (S¼O) 1156 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 4.41–4.45 (m, 2H), 6.00–6.07
(m, 1H), 6.93 (d, 1H, J¼ 11.2Hz), 7.32–7.40 (m, 3H), 7.56–7.63 (m,
1H), 7.65–7.71 (m, 1H), 7.74 (dd, 1H, J¼ 8.8, 2.5 Hz), 7.86 (d, 1H,
J¼ 2.5 Hz), 10.65 (s, 1H) ppm

1. 13C NMR (100MHz, DMSO-d6) d¼ 51.1, 116.2 (d, J¼ 21.7Hz),
121.0, 121.4, 121.5, 122.8, 124.6 (d, J¼ 5.5 Hz), 124.7 (d,
J¼ 6.3 Hz), 128.5, 129.9 (d, J¼ 2.6 Hz), 131.4, 132.8 (d,
J¼ 8.5 Hz), 137.5, 142.8, 159.9 (d, J¼ 249Hz), 163.0 ppm

2. HRMS (ESI) [MþH]þ: m/z calcd for (C16H13FNO4S) 334.0549
Found 334.0554.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)-2-(trifluoromethyl)ben-
zamide (15).

O SO2

H
N

OCF3

Compound 15 was prepared accord-
ing to the general procedure from
amino derivative 7 (150mg;
0.71mmol), 2-(trifluoromethyl)ben-
zoyl chloride (115 mL; 0.78mmol)

and Et3N (110 mL; 0.78mmol) as white solid (236mg; 87%).
Mp 192–193 �C.

IR (film, cm�1) �max¼ 3195 (N–H), 1666 (C¼O), 1377 (S¼O),
1316 (S¼O), 1164 (S¼O);

1H NMR (400MHz, DMSO-d6) d¼ 4.42–4.45 (m, 2H), 6.00–6.08
(m, 1H), 6.94 (d, 1H, J¼ 11.2 Hz), 7.36 (d, 1H, J¼ 8.8 Hz), 7.67–7.76
(m, 3H), 7.78–7.89 (m, 3H), 10.81 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.0, 121.1, 121.3, 122.9,
123.8 (q, J¼ 274Hz), 125.8 (q, J¼ 31.2 Hz), 126.4 (q, J¼ 4.6 Hz),
128.5, 128.6, 130.3, 131.4, 132.7, 135.8 (q, J¼ 2.3 Hz), 137.6,
142.8, 165.8 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C17H13NO4 F3S) 384.0517
Found 384.0519.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)thiophene-2-carboxa-
mide (16).

O SO2

H
N

O

S

Compound 16 was prepared accord-
ing to the general procedure from
amino derivative 7 (150mg;
0.71mmol), 2-thiophenecarbonyl
chloride (84mL; 0.78mmol) and Et3N

(110 mL; 0.78mmol) as white solid (185mg; 81%). Mp 162–163 �C.
IR (film, cm�1) �max¼ 3357 (N–H), 1648 (C¼O), 1372 (S¼O),

1356 (S¼O), 1178 (S¼O), 1165 (S¼O);
1H NMR (400MHz, DMSO-d6) d¼ 4.44 (dd, 2H, J¼ 6.0, 1.1 Hz),

5.99–6.06 (m, 1H), 6.92 (d, 1H, J¼ 11.2 Hz), 7.23–7.26 (m, 1H), 7.35
(d, 1H, J¼ 8.8 Hz), 7.78 (dd, 1H, J¼ 8.8, 2.6 Hz), 7.84 (d, 1H,
J¼ 2.6 Hz), 7.88 (dd, 1H, J¼ 5.0, 1.1 Hz), 8.04 (dd, 1H, J¼ 3.8,
1.1 Hz), 10.43 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.2, 120.9, 121.9, 122.1,
122.7, 128.2, 128.4, 129.5, 131.3, 132.3, 137.5, 139.5,
142.7, 160.0 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C14H12NO4S2) 322.0208
Found 322.0221.

N-(2,2-Dioxido-3H-1,2-benzoxathiepin-7-yl)furan-2-carboxamide (17).

O SO2

H
N

O

O

Compound 17 was prepared according
to the general procedure from amino
derivative 7 (150mg; 0.71mmol), 2-
furoyl chloride (84mL; 0.78mmol) and
Et3N (110 mL; 0.78mmol) as white solid

(185mg; 81%). Mp 162–163 �C.
IR (film, cm�1) �max¼ 3299 (N–H), 1663 (C¼O), 1367 (S¼O),

1363 (S¼O), 1165 (S¼O), 1158 (S¼O);
1H NMR (400MHz, DMSO-d6) d¼ 4.41–4.45 (m, 2H), 5.98–6.06

(m, 1H), 6.70–6.74 (m, 1H), 6.90 (d, 1H, J¼ 11.2 Hz), 7.32–7.38 (m,
2H), 7.80 (dd, 1H, J¼ 8.8, 2.6 Hz), 7.87 (d, 1H, J¼ 2.6 Hz), 7.95–7.97
(m, 1H), 10.41 (s, 1H) ppm

13C NMR (100MHz, DMSO-d6) d¼ 51.2, 112.3, 115.2, 120.9,
122.0, 122.2, 122.6, 128.3, 131.4, 137.3, 142.7, 146.0,
147.2, 156.3 ppm

HRMS (ESI) [MþH]þ: m/z calcd for (C14H12NO5S) 306.0436
Found 306.0463.

2.2. CA inhibitory assay

An applied photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity20. Phenol red
(at a concentration of 0.2mM) was used as indicator, working at
the absorbance maximum of 557 nm, with 20mM Hepes (pH 7.5)
as buffer and 20mM Na2SO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalysed CO2 hydra-
tion reaction for a period of 10� 100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters and inhibition constants. For each inhibitor, at least six
traces of the initial 5� 10% of the reaction have been used for
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determining the initial velocity. The uncatalysed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitor (0.1mM) were pre-
pared in distilled�deionised water, and dilutions up to 0.01 nM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 6 h at room temperature
prior to assay in order to allow for the formation of the E� I com-
plex. The inhibition constants were obtained by nonlinear least-
squares methods using PRISM 3 and the Cheng� Prusoff equa-
tion, as reported earlier21–23, and represent the mean from at least
three different determinations. All CA isoforms were recombinant
ones obtained in-house as reported earlier21,24.

3. Results and discussion

3.1. Chemistry

Starting from the benzaldehyde derivative 1, the synthesis of the
key intermediate 7 was reported earlier by our groups1. Briefly,
the synthesis of 7-amino-3H-1,2-benzoxathiepine 2,2-dioxide (7)
was started with a Wittig reaction in which 5-nitro-salicylic alde-
hyde 1 was converted to the corresponding mono-olefin 2 in 65%
yield (Scheme 1). Treatment of compound 2 with allyl sulphonyl
chloride (3) provided the bisolefin 4 in 65% yield. In the next
step, the olefin metathesis reaction with Ru-catalyst 5 was
employed, leading to the conversion of compound 4 to 7-nitro-
3H-1,2-benzoxathiepine 2,2-dioxide 6 in 96% yield. The nitro
derivative 6 was thereafter reduced with iron in acidic medium to

the corresponding amine 7 in nearly quantitative yield (98%). The
key intermediate 7 was subsequently reacted with a series of acyl
chlorides to afford the desired compounds 8–17 in good to

Table 1. Inhibition data of human CA isoforms CA I, II, IX and XII with 3H-1,2-
benzoxathiepines 2,2-dioxide 8–17 using acetazolamide (AAZ) as a standard
drug.

O S
O

O

8-17

H
NR

O

Cmpd R

KI (nM)
a,b

hCA I hCA II hCA IX hCA XII

8 CH3 >100 mM >100 mM 61.8 162.5
9 C6H5 >100 mM >100 mM 208.6 370.1
10 4-CH3-C6H4 >100 mM >100 mM 83.0 309.3
11 4-Br-C6H4 >100 mM >100 mM 353.3 140.7
12 2-I-C6H4 >100 mM >100 mM 45.4 643.7
13 2-Br-C6H4 >100 mM >100 mM 66.8 96.2
14 2-F-C6H4 >100 mM >100 mM 74.6 40.3
15 2-CF3-C6H4 >100 mM >100 mM 19.7 8.7
16 thien-2-yl >100 mM >100 mM 177.5 73.2
17 furan-2-yl >100 mM >100 mM 210.1 134.4
AAZ – 250 12 25 5.7
aMean from three different assays, by a stopped flow technique (errors were in
the range of ±5–10% of the reported values).
bIncubation time 6 h.

O SO2

O2N

O

OH

O2N

OH

O2N

O

O2N

S
O O

O SO2

H2N

1 2 4

67
O SO2

H
N

O

R

8-17

(i)

SO2Cl
3

5(iii)

(iv)

(ii)

R= Me ; ; ; ;

8 (70%) 9 (72%) 10 (73%) 11 (59%)

Me

; ; ; ;

12 (88%) 13 (82%) 14 (79%) 15 (87%)

Br

N N

Ru
Cl

Cl
PCy3

Ph

5

(v)

Br

I F F3C

; .
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excellent yields (see Experimental for details). The nature of moi-
eties R was chosen in such a way to assure chemical diversity.
Apart R¼Me in compound 8, the remaining derivatives 9–17
incorporated aromatic or heterocyclic moieties, such as phenyl, 2-
or 4-substituted phenyls, thienyl and furyl. We found out in previ-
ous papers1–3 that aryl or hetaryl moieties on the sulfocoumarin,
homosulfocoumarin or coumarin ring6 systems lead to com-
pounds with an effective inhibition profile against CA isoforms of
pharmacologic interest, such as the tumour-associated ones CA IX
and XII.

3.2. Carbonic anhydrase inhibition

The obtained homosulfocoumarins 8–17 were investigated for
their CA inhibitory properties by using a stopped-flow CO2

hydrase assay20 and four human CA isoforms (hCA I, II, IX, and XII)
known to be drug targets1 (Table 1).

As seen from data of Table 1, derivatives 8–17 did not signifi-
cantly inhibit the cytosolic isoforms hCA I and II, similar to other
homosulfocoumarins, sulfocouamrins or coumarins investigated
earlier1–8. On the other hand, the transmembrane, tumour-associ-
ated isoforms hCA IX and XII were inhibited by all these com-
pounds in the nanomolar range. For hCA IX the KIs were in the
range of 19.7–353.3 nM whereas for hCA XII in the range of
8.7–643.7 nM (Table 1). The nature of the R moiety on the carbox-
amide functionality greatly influenced the inhibitory power. For
hCA IX/XII the optimal substitution was that present in compound
15, 2-trifluoromethylphenyl, whereas the one leading to the least
effective inhibitor was the one with 4-bromophenylcarboxamide
moiety (compound 9) for hCA IX and 2-iodophenylcarboxamide
(compound 12) for hCA XII. Overall, all these new homosulfocou-
marins act as isoform IX/XII selective CAIs over hCA I and II, which
is highly desirable for these new chemotypes with enzyme inhibi-
tory properties.

4. Conclusions

A series of 3H-1,2-benzoxathiepine 2,2-dioxides incorporating 7-
acylamino moieties were obtained by an original procedure start-
ing from 5-nitrosalicylaldehyde which was treated with propenyl-
sulfonyl chloride followed by cyclisation through a Wittig reaction
of the bis-olefin intermediate. The new derivatives, belonging to
the homosulfocoumarin chemotype, were assayed as inhibitors of
the zinc metalloenzyme CA. Four pharmacologically relevant
human (h) isoforms were investigated, the cytosolic hCA I and II,
and the transmembrane, tumour-associated hCA IX and XII. No
relevant inhibition of hCA I and II was observed, whereas some of
the new derivatives were effective, low nanomolar hCA IX/XII
inhibitors, making them of interest for investigations in situations
in which the activity of these isoforms is overexpressed, such as
hypoxic tumours, arthritis or cerebral ischaemia.
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