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Abstract: We have experimentally investigated the impact of vertical and lateral scaling on low-
field electron mobility (µ) in InAlN/GaN high-electron-mobility transistors (HEMTs). It is found
that µ reduces as InAlN barrier (TB) and gate length (LG) scale down but increases with the scaled
source–drain distance (LSD). Polarization Coulomb Field (PCF) scattering is believed to account
for the scaling-dependent electron mobility characteristic. The polarization charge distribution is
modulated with the vertical and lateral scaling, resulting in the changes in µ limited by PCF scattering.
The mobility characteristic shows that PCF scattering should be considered when devices scale down,
which is significant for the device design and performance improvement for RF applications.
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1. Introduction

Due to the high breakdown voltage, high two-dimensional electron gas densities, and
high electron saturation velocity, gallium nitride (GaN) high-electron-mobility transistors
(HEMTs) have been ideal for high-frequency and high-power applications, such as radar
communications, electronic countermeasures, 5G applications, small base stations, new
communication microsatellites, power transmission and automotive electronics [1–5]. Yan
Tang et al. fabricated the AlN/GaN/AlGaN double heterojunction HEMTs with fully
passivation and n+-GaN ohmic contact regrowth technology, demonstrating a record high
current/power gain cutoff frequency f T/f max of 454/444 GHz on a 20 nm-gate-length
HEMT with gate–source and gate–drain spacings of 50 nm [6]. Jeong-Gil Kim et al. re-
ported an AlGaN/GaN HEMT structure on the high-quality undoped thick AlN buffer
layer with a high breakdown voltage of 2154 V and a very high figure of merit (FOM) of
~1.8 GV2·Ω−1·cm−2 [7]. Xiaoyu Xia et al. reported a new type of AlGaN/GaN HEMTs with
a microfield plate (FP) with a breakdown voltage increase from 870 V to 1278 V by adjusting
the distribution of the potential and channel electric field [8]. Maddaka Reddeppa et al.
demonstrated high photoresponse and the electrical transport properties of a pristine
GaN nanorod-based Schottky diode with an optimized Schottky barrier height [9]. Ked-
hareswara Sairam Pasupuleti et al. developed the integration of conductive polypyrrole
(Ppy) and GaN nanorods for high-performance self-powered UV-A photodetectors, exhibit-
ing superior photoresponse properties such as detectivity, responsivity, external quantum
efficiency, good stability and reproducibility [10].

To further improve device performance, device scaling in GaN HEMTs is necessary [6,11,12].
The effects of scaling on short-channel effects (SECs), leakage current, electron velocity,
frequency characteristics have been studied [13–18], providing insightful guidance for
device design and performance improvement. However, few studies about the impact
of scaling on electron mobility have been reported. In general, low-field mobility should
not change when devices scale down. However, due to the spontaneous and piezoelectric
polarization in GaN HEMTs, there are polarization charges in the barrier layer [19,20], which
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is different from conventional transistors (Si, GaAs, et al.). The change in the polarization
charge distribution is related to the device dimension and can result in scattering on the
channel electrons [21,22], which leads to a possible change in mobility with device scaling.
In this article, to demonstrate this influence, the InAlN/GaN HEMTs with various barrier
thicknesses, source–drain distances, and gate lengths are fabricated and the effect of scaling
on electron mobility is studied.

2. Experiment

The lattice-matched In0.17Al0.83N/GaN HEMT structure is grown by metal–organic
chemical vapor deposition on a Si substrate, as shown in Figure 1, consisting of a 2 nm
GaN cap, an InAlN barrier, a 1 nm AlN interlayer, a 15 nm GaN channel layer, a 4 nm
In0.12Ga0.88N back-barrier and a 2 µm undoped GaN buffer. Here, two different InAlN
layers with the thicknesses of 8 nm and 5 nm are grown. The device process started with
mesa isolation with Cl2-based inductively coupled plasma (ICP) etching. Then, Ohmic
contact was formed with Ti/Al/Ni/Au metal deposition and annealed at 850 ◦C for 40 s.
Ni/Au gate Schottky contact was deposited in the center of the source–drain region to
complete the process. For the large devices, the gate length (LG), gate–source distance
(LGS), and gate–drain distance (LGD) of the devices are all 2 µm. For the RF devices, two
types of devices are fabricated. For type I, LG of the devices is fixed at 50 nm and LSD is
2, 1, and 0.6 µm, respectively. For type II, LSD of the devices is fixed at 1 µm and LG is
50, 100, and 150 nm, respectively. Here, the gate of all the devices is located between the
source and drain regions, and the gate width is 2 × 20 µm. The current–voltage (I–V) and
capacitance–voltage (C–V) measurements were carried out by using an Agilent B1500A
semiconductor parameter analyzer (Agilent Technologies, Santa Clara, CA, USA).
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Figure 1. Schematic cross-section of the fabricated InAlN/GaN HEMT with two different InAlN
barrier thickness (8 nm and 5 nm, respectively).

3. Results and Discussion

Figure 2a,b show the measured capacitances (C) of the InAlN/GaN circle diodes with
both InAlN barrier thicknesses (TB). Here, six devices are measured and a good consistency
is presented. An improved C and a subthreshold voltage (VT) shift are observed due
to the reduced InAlN barrier thickness (C = ε/TB, ε is the dielectric constant of InAlN
barrier). Through integrating C-V curves, electron density (n2D) is extracted as shown
in Figure 2c,d. It shows that the InAlN/GaN heterostructure with 8 nm InAlN barrier
presents higher electron density. Figure 3 shows the simulated band structure and 2DEG
electron density as a function of the distance from the material surface of the InAlN/GaN
heterostructure, which is calculated by self-consistently solving Schrodinger’s and Poisson’s
equations [23,24]. Compared with the 5 nm InAlN barrier, the InAlN/GaN heterostructure
with an 8 nm InAlN barrier also shows a higher electron density peak. In GaN HEMTs,
the surface states are identified as the source of channel electrons. Due to the spontaneous
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polarization filed, the increase in InAlN barrier thickness can increase the energy of the
surface states, resulting in higher electron density [25,26].
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Figure 2. Gate capacitance (CG) of the InAlN/GaN diode with (a) 8 nm InAlN and (b) 5 nm InAlN,
respectively. Two-dimensional electron gas electron density (n2D) of the InAlN/GaN diode with (c)
8 nm InAlN and (d) 5 nm InAlN, respectively.
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Figure 3. Simulated band structure and 2DEG electron density as a function of the distance
from the material surface of the InAlN/GaN heterostructure with (a) 8 nm InAlN and (b) 5 nm
InAlN, respectively.
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Figure 4 shows the output characteristics of the InAlN/GaN HEMTs with different
InAlN thickness. The LG, LGS, and LGD of the devices are all 2 µm. To extract low-field
mobility, the drain current (ID) at VDS = 0.1 V in the output characteristics are used. At
VGS = 0 V, the total source–drain resistance (RSD) can be written as

RSD =
VDS
IDS

= 2RC +
LG + LGS + LGD

n2D0qµ0
(1)

where RC is the ohmic contact resistance, q is the electron charge, and µ0 and n2D0 are
the electron mobility and electron density under the gate region with VGS = 0 V. Here,
only µ0 and RC are unknown. Electron mobility in GaN HEMTs is limited by polar
optical phonon (µPOP), polarization Coulomb field (µPCF), acoustic phonon (µAP), interface
roughness (µIFR), and dislocation (µDIS) scatterings [22,27,28]. PCF scattering is related to
the nonuniformity of polarization charge distribution [21,22]. At VGS = 0 V, the polarization
charge distribution is uniform, and the PCF can be neglected. Based on the two-dimensional
(2D) scattering theory and the obtained n2D0 [27], µ0 can be calculated with 1/µ0 = 1/µPOP
+ 1/µAP + 1/µIFR + 1/µDIS, and then RC can be determined with (1). Based on the obtained
n2D0 and µ0, the electron mobility µ under the gate region under different VGS can be
extracted from

VDS
IDS

= 2RC +
LG

n2Dqµ
+

LGS + LGD
n2D0qµ0

(2)
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Figure 5 depicts the extracted µ versus VGS for both samples. At VGS = 0 V, µ of
the devices with 8 nm InAlN and 5 nm InAlN is 1221 and 1651 cm2/V·s, respectively.
The improved electron mobility with a thinner barrier is also confirmed with the Hall
measurement (1242 cm2/V·s for 8 nm InAlN and 1663 cm2/V·s for 5 nm InAlN) and the
electron mobility of Fat-FETs (with LG of 96 µm and LSD of 100 µm, 1101 cm2/V·s for 8 nm
InAlN and 1670 cm2/V·s for 5 nm InAlN) [29].
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As shown in Figure 5, µ presents a different trend versus VGS for the devices with
different InAlN thickness. As VGS increases, µ of the device with 8 nm InAlN deceases, but
that of the device with 5 nm InAlN increases. Figure 6a,b show the calculated µ limited
by different scatterings for both devices [21,30,31]. The calculated µ (µCAL, lines in the
figures) by using 2D scattering theory shows good agreement with the extracted µ (scatters
in the figures), which proves the accuracy of the calculation. As VGS increases, µPOP and
µIFR decrease, µDIS and µPCF increase, and µAP presents a slight change. µPOP and µPCF
play more significant roles among all the scatterings. Figure 7 compares µPOP and µPCF
for both devices. When the InAlN barrier decreases from 8 nm to 5 nm, µPOP increases
while µPCF decreases. The reduced n2D with a 5 nm InAlN barrier decreases the collision
probability between channel electrons and polar optical phonons (POPs), resulting in the
improved µPOP [27,28]. Due to the spontaneous polarization, there are polarization charges
(ρ0) in the InAlN barrier near the InAlN/GaN interface. When VGS is applied on the gate
terminal, the polarization charges (ρG) under the gate region are changed due to the inverse
piezoelectric effect [32], as shown in Figure 8. The polarization charge distribution is not
uniform, and the potential periodicity is broken, resulting in polarization Coulomb field
(PCF) scattering. The PCF scattering potential is from the additional polarization charges
(σ = ρ0 − ρG) and is written as [21,22]

V(x, y, z) = − q
4πε

∫ LG
2

−LGS−
LG
2

dx′
∫ WG

0
σ√
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dy′

− q
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σ√

(x−x′)2+(y−y′)2+z2
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where ε is the dielectric constant of GaN and WG is the gate width. Based on inverse
piezoelectric effect, σ can be calculated by using σ = ρ0 − ρG = −ne33

2VGS/(C33d) [32]. n
is the fitting parameter, and e33 and C33 are the piezoelectric coefficient and the elastic
stiffness tensor of InAlN, respectively. d is the gate-to-channel distance, which is the sum of
the thicknesses of the GaN cap layer (2 nm), InAlN barrier (8 or 5 nm), and AlN interlayer
(1 nm). Figure 9 depicts the calculated σ versus VGS with an 8 and 5 nm InAlN barrier. σ
increases with the decreased TB and VGS, resulting in the enhanced PCF scattering as the
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InAlN barrier thickness and VGS decrease. Therefore, µPCF increases with VGS. Because the
device with a 5 nm InAlN barrier shows an enhanced PCF scattering, µ increases with VGS.
This fact is more pronounced, especially in the more negative VGS region. For the device
with an 8 nm InAlN barrier, the PCF scattering became weaker and the POP scattering
dominates µ, leading to a slight decrease in µ when VGS increases.
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From the above discussions, the vertical scale will increase σ and thus enhance PCF
scattering, leading to a reduced µ. The lateral scaling is also experimentally investigated on
the devices by varying LSD and LG using the same electron mobility extraction methodology.
As the device laterally scales, n2D is not changed, so POP, AP, IFR, and DIS scatterings are
not affected. Only PCF scattering can be changed due to the modulation of the polarization
change distribution. Figure 10a,b present µ versus VGS at VDS = 0.1 V for the devices with
LG of 50 nm and LSD of 2, 1, 0.6 µm with 8 nm and 5 nm InAlN. µ presents an increase with
the decrease in LSD. The corresponding µPCF is also calculated and plotted in Figure 10c,d.
As shown in Figure 11a,b, as LSD scales down, the number of σ is reduced and the effect of
σ on the electron under the gate region is weakened, resulting in the increased µPCF and µ.
Because PCF scattering in the device with 8 nm InAlN is weaker, the increase in µ due to
the downscaling of LSD is more significant. Here, µ of the devices with LG of 2 µm is also
plotted for comparison, and a significant decrease in µ in the device with an LG of 50 nm is
observed. Although the number of σ is the same under the same VGS, the effect of σ on the
50 nm gate is stronger and thus PCF scattering is enhanced, leading to a decreased µ.

Figure 12a,b present the µ versus VGS for the devices with LSD of 1 µm and LG of
50, 100, 150 nm with 8 nm and 5 nm InAlN. The electron mobility of all devices presents
an increase with VGS. This means PCF scattering plays a dominant role in the electron
mobility. As VGS increases from a negative value to 0 V, the electric field under the gate
region decreases, resulting in the increase in µPCF and µ. For the devices with different
gate lengths, µ presents an increase as LG increases. This means the increase in gate length
can increase the electron mobility. To explain this phenomenon, the corresponding µPCF is
calculated and plotted in Figure 12c,d. It shows that the increase in LG can weaken PCF
scattering and increase µPCF. Because LSD is fixed, as shown in Figure 13, the decreased
LG means the increased LGS and LGD, resulting in the enhanced effect of σ on the electrons
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under the gate region. Thus, PCF scattering becomes stronger and µ reduces with the
downscaled LG.
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Figure 10. µ versus VGS for the devices with LG of 50 nm and LSD of 2, 1, 0.6 µm with (a) 8 nm and
(b) 5 nm InAlN. The device with LG/LSD of 2/6 µm is also plotted for comparison. Calculated µPCF

versus VGS of the same devices with (c) 8 nm and (d) 5 nm InAlN. The device with LG/LSD of 2/6 µm
is also plotted for comparison.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 10. µ versus VGS for the devices with LG of 50 nm and LSD of 2, 1, 0.6 μm with (a) 8 nm and (b) 
5 nm InAlN. The device with LG/LSD of 2/6 μm is also plotted for comparison. Calculated µPCF versus 
VGS of the same devices with (c) 8 nm and (d) 5 nm InAlN. The device with LG/LSD of 2/6 μm is also 
plotted for comparison. 

 
Figure 11. Schematic of the additional polarization charge (σ) distribution in InAlN barrier with (a) 
large and (b) small source–drain spacing LSD. The gate length is fixed. 

Figure 12a,b present the µ versus VGS for the devices with LSD of 1 μm and LG of 50, 
100, 150 nm with 8 nm and 5 nm InAlN. The electron mobility of all devices presents an 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
0

500

1000

1500

2000

-2.0 -1.5 -1.0 -0.5 0.0
0

500

1000

1500

2000

-2.5 -2.0 -1.5 -1.0 -0.5 0.0101

102

103

104

105

106

-2.0 -1.5 -1.0 -0.5 0.0101

102

103

104

105

106

 LSD = 2 µm
 LSD = 1 µm
 LSD = 0.6 µm

µ  
(c

m
2 /V

⋅s
)

VGS (V)

8 nm InAlN(a)

LG/LSD = 2/6 µm

 LG = 50 nm

µ  
(c

m
2 /V

⋅s
)

VGS (V)

5 nm InAlN(b) LG/LSD = 2/6 µm

 LSD = 2 µm
 LSD = 1 µm
 LSD = 0.6 µm LG = 50 nm

µ P
C

F 
(c

m
2 /V

⋅s
)

VGS (V)

(c) 8 nm InAlN

LG/LSD = 2/6 µm

 LSD = 2 µm
 LSD = 1 µm
 LSD = 0.6 µm

LG = 50 nm µ P
C

F 
(c

m
2 /V

⋅s
)

VGS (V)

(c)

 LSD = 2 µm
 LSD = 1 µm
 LSD = 0.6 µm

LG = 50 nm

LG/LSD = 2/6 µm

5 nm InAlN(d)

Figure 11. Schematic of the additional polarization charge (σ) distribution in InAlN barrier with
(a) large and (b) small source–drain spacing LSD. The gate length is fixed.
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Figure 13. Schematic of the additional polarization charge (σ) distribution in InAlN barrier with
(a) large and (b) small gate length LG. The source–drain spacing LSD is fixed.

4. Conclusions

In summary, the effect of down-scaling on electron mobility is experimentally demon-
strated. It shows that the downscaling of barrier thickness and LG results in a decrease in
µ, but downscaled LSD leads to an increase in µ. This is because the polarization charge
distribution is modulated with the vertical and lateral scale, resulting in a change in PCF
scattering. When GaN HEMTs scale down, the effect of PCF scattering should be consid-
ered, providing an insightful guidance for the device geometry design and performance
improvement for RF application.



Nanomaterials 2022, 12, 1718 10 of 11

Author Contributions: P.C. and Y.Z. contributed to the research design, experiment measurements,
data analysis, and manuscript preparation. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by the NASA International Space Station under Grant
80NSSC20M0142, and in part by Air Force Office of Scientific Research under Grant FA9550-19-1-0297,
Grant FA9550-21-1-0076 and Grant FA9550-22-1-0126.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hamza, K.H.; Nirmal, D. A review of GaN HEMT broadband power amplifiers. AEU—Int. J. Electron. Commun. 2020, 116, 153040.

[CrossRef]
2. Ma, C.-T.; Gu, Z.-H. Review of GaN HEMT applications in power converters over 500 W. Electronics 2019, 8, 1401. [CrossRef]
3. Keshmiri, N.; Wang, D.; Agrawal, B.; Hou, R.; Emadi, A. Current status and future trends of GaN HEMTs in electrified

transportation. IEEE Access 2020, 8, 70553–70571. [CrossRef]
4. Li, L.; Nomoto, K.; Pan, M.; Li, W.; Hickman, A.; Miller, J.; Lee, K.; Hu, Z.; Bader, S.J.; Lee, S.M. GaN HEMTs on Si with regrown

contacts and cutoff/maximum oscillation frequencies of 250/204 GHz. IEEE Electron Device Lett. 2020, 41, 689–692. [CrossRef]
5. Cui, P.; Mercante, A.; Lin, G.; Zhang, J.; Yao, P.; Prather, D.W.; Zeng, Y. High-performance InAlN/GaN HEMTs on silicon substrate

with high fT× Lg. Appl. Phys. Express 2019, 12, 104001. [CrossRef]
6. Tang, Y.; Shinohara, K.; Regan, D.; Corrion, A.; Brown, D.; Wong, J.; Schmitz, A.; Fung, H.; Kim, S.; Micovic, M. Ultrahigh-Speed

GaN High-Electron-Mobility Transistors With f T/f max of 454/444 GHz. IEEE Electron Device Lett. 2015, 36, 549–551. [CrossRef]
7. Kim, J.-G.; Cho, C.; Kim, E.; Hwang, J.S.; Park, K.-H.; Lee, J.-H. High breakdown voltage and low-current dispersion in

AlGaN/GaN HEMTs with high-quality AlN buffer layer. IEEE Trans. Electron Devices 2021, 68, 1513–1517. [CrossRef]
8. Xia, X.; Guo, Z.; Sun, H. Study of Normally-Off AlGaN/GaN HEMT with Microfield Plate for Improvement of Breakdown

Voltage. Micromachines 2021, 12, 1318. [CrossRef]
9. Reddeppa, M.; Park, B.-G.; Pasupuleti, K.S.; Nam, D.-J.; Kim, S.-G.; Oh, J.-E.; Kim, M.-D. Current–voltage characteristics and

deep-level study of GaN nanorod Schottky-diode-based photodetector. Semicond. Sci. Technol. 2021, 36, 035010. [CrossRef]
10. Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Efficient Charge Separation in Polypyrrole/GaN-

Nanorod-Based Hybrid Heterojunctions for High-Performance Self-Powered UV Photodetection. Phys. Status Solidi (RRL)—Rapid
Res. Lett. 2021, 15, 2000518. [CrossRef]

11. Schuette, M.L.; Ketterson, A.; Song, B.; Beam, E.; Chou, T.-M.; Pilla, M.; Tserng, H.-Q.; Gao, X.; Guo, S.; Fay, P.J. Gate-recessed
integrated E/D GaN HEMT technology with f T/f max > 300 GHz. IEEE Electron Device Lett. 2013, 34, 741–743. [CrossRef]

12. Downey, B.P.; Meyer, D.J.; Katzer, D.S.; Roussos, J.A.; Pan, M.; Gao, X. SiNx/InAlN/AlN/GaN MIS-HEMTs With 10.8 THz·V
Johnson Figure of Merit. IEEE Electron Device Lett. 2014, 35, 527–529. [CrossRef]

13. Jessen, G.H.; Fitch, R.C.; Gillespie, J.K.; Via, G.; Crespo, A.; Langley, D.; Denninghoff, D.J.; Trejo, M.; Heller, E.R. Short-channel
effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate devices. IEEE Trans. Electron Devices 2007, 54,
2589–2597. [CrossRef]

14. Shinohara, K.; Regan, D.C.; Tang, Y.; Corrion, A.L.; Brown, D.F.; Wong, J.C.; Robinson, J.F.; Fung, H.H.; Schmitz, A.; Oh, T.C.
Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Devices 2013, 60,
2982–2996. [CrossRef]

15. Shinohara, K.; Regan, D.; Milosavljevic, I.; Corrion, A.; Brown, D.; Willadsen, P.; Butler, C.; Schmitz, A.; Kim, S.; Lee, V. Electron
velocity enhancement in laterally scaled GaN DH-HEMTs with f T of 260 GHz. IEEE Electron Device Lett. 2011, 32, 1074–1076.
[CrossRef]

16. Shinohara, K.; Regan, D.; Corrion, A.; Brown, D.; Burnham, S.; Willadsen, P.; Alvarado-Rodriguez, I.; Cunningham, M.; Butler,
C.; Schmitz, A. Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency. In Proceedings of the 2011
International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 11–14.

17. Medjdoub, F.; Alomari, M.; Carlin, J.-F.; Gonschorek, M.; Feltin, E.; Py, M.; Grandjean, N.; Kohn, E. Barrier-layer scaling of
InAlN/GaN HEMTs. IEEE Electron Device Lett. 2008, 29, 422–425. [CrossRef]

18. Lee, D.S.; Lu, B.; Azize, M.; Gao, X.; Guo, S.; Kopp, D.; Fay, P.; Palacios, T. Impact of GaN channel scaling in InAlN/GaN HEMTs.
In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 11–14.

19. Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.; Weimann, N.; Chu, K.; Murphy, M.; Sierakowski, A.; Schaff, W.; Eastman, L.
Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN
heterostructures. J. Appl. Phys. 2000, 87, 334–344. [CrossRef]

http://doi.org/10.1016/j.aeue.2019.153040
http://doi.org/10.3390/electronics8121401
http://doi.org/10.1109/ACCESS.2020.2986972
http://doi.org/10.1109/LED.2020.2984727
http://doi.org/10.7567/1882-0786/ab3e29
http://doi.org/10.1109/LED.2015.2421311
http://doi.org/10.1109/TED.2021.3057000
http://doi.org/10.3390/mi12111318
http://doi.org/10.1088/1361-6641/abda62
http://doi.org/10.1002/pssr.202000518
http://doi.org/10.1109/LED.2013.2257657
http://doi.org/10.1109/LED.2014.2313023
http://doi.org/10.1109/TED.2007.904476
http://doi.org/10.1109/TED.2013.2268160
http://doi.org/10.1109/LED.2011.2158386
http://doi.org/10.1109/LED.2008.919377
http://doi.org/10.1063/1.371866


Nanomaterials 2022, 12, 1718 11 of 11

20. Yu, E.; Sullivan, G.; Asbeck, P.; Wang, C.; Qiao, D.; Lau, S. Measurement of piezoelectrically induced charge in GaN/AlGaN
heterostructure field-effect transistors. Appl. Phys. Lett. 1997, 71, 2794–2796. [CrossRef]

21. Luan, C.; Lin, Z.; Lv, Y.; Zhao, J.; Wang, Y.; Chen, H.; Wang, Z. Theoretical model of the polarization Coulomb field scattering in
strained AlGaN/AlN/GaN heterostructure field-effect transistors. J. Appl. Phys. 2014, 116, 044507. [CrossRef]

22. Cui, P.; Mo, J.; Fu, C.; Lv, Y.; Liu, H.; Cheng, A.; Luan, C.; Zhou, Y.; Dai, G.; Lin, Z. Effect of Different Gate Lengths on Polarization
Coulomb Field Scattering Potential in AlGaN/GaN Heterostructure Field-Effect Transistors. Sci. Rep. 2018, 8, 9036. [CrossRef]

23. Lin, Z.; Zhao, J.; Corrigan, T.D.; Wang, Z.; You, Z.; Wang, Z.; Lu, W. The influence of Schottky contact metals on the strain of
AlGaN barrier layers. J. Appl. Phys. 2008, 103, 044503. [CrossRef]

24. Guo, L.; Wang, X.; Wang, C.; Xiao, H.; Ran, J.; Luo, W.; Wang, X.; Wang, B.; Fang, C.; Hu, G. The influence of 1 nm AlN interlayer
on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure. Microelectron. J. 2008, 39, 777–781. [CrossRef]

25. Ibbetson, J.P.; Fini, P.; Ness, K.; DenBaars, S.; Speck, J.; Mishra, U. Polarization effects, surface states, and the source of electrons in
AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 2000, 77, 250–252. [CrossRef]

26. Goyal, N.; Fjeldly, T.A. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor
states. Appl. Phys. Lett. 2014, 105, 023508. [CrossRef]

27. Gurusinghe, M.; Davidsson, S.; Andersson, T. Two-dimensional electron mobility limitation mechanisms in AlxGa1−xN/GaN
heterostructures. Phys. Rev. B 2005, 72, 045316. [CrossRef]

28. Fang, T.; Wang, R.; Xing, H.; Rajan, S.; Jena, D. Effect of optical phonon scattering on the performance of GaN transistors. IEEE
Electron Device Lett. 2012, 33, 709–711. [CrossRef]
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