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We propose a method for generating an electrocardiogram (ECG) signal for one cardiac

cycle using a variational autoencoder. Our goal was to encode the original ECG signal

using as few features as possible. Using this method we extracted a vector of new 25

features, which in many cases can be interpreted. The generated ECG has quite natural

appearance. The low value of the Maximum Mean Discrepancy metric, 3.83 × 10−3,

indicates good quality of ECG generation too. The extracted new features will help to

improve the quality of automatic diagnostics of cardiovascular diseases. Generating new

synthetic ECGs will allow us to solve the issue of the lack of labeled ECG for using them

in supervised learning.
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1. INTRODUCTION

All the experience gained by themachine learning community shows that the quality of the decision
rule largely depends on what features of samples are used. The better the feature description, the
more accurately the problem can be solved. The features are used to require their interpretability,
since it means the adequacy of the features to the real-world problem.

The traditional way to build a good feature description was to use an expert knowledge.
Specialists in a particular subject area offer various methods for constructing the feature
descriptions, which are then tested in solving practical problems. Another approach
for constructing a good feature description is automatic feature extraction (also called
dimensionality reduction).

There is a lot of methods for automatic feature extraction, such as principal component analysis,
independent component analysis, principal graphs and manifolds, kernel methods, autoencoders,
embeddings, etc. Among the most powerful and perspective approaches, we mention principal
graphs andmanifolds (Gorban et al., 2008; Albergante et al., 2020) andmethods using deep learning
(LeCun et al., 2015; Goodfellow et al., 2016).

Variational autoencoders (VAE) are neural networks which allow you to encode the source
information and later, on the basis of the encoded information, to obtain a specific object, and
further to generate similar objects but from a random set of coded characteristics (Kingma and
Welling, 2013; Rezende et al., 2014; Doersch, 2016). Here we examine this method for the problem
of automatic electrocardiogram (ECG) generation.

The electrocardiogram is a record of the electrical activity of the heart, obtained with the help of
electrodes placed on the human body. Electrocardiography is one of the most important methods
in cardiology. Schematic representation of the main part of ECG is shown in Figure 1. One cardiac
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cycle (the performance of the heart from the beginning of one
heartbeat to the beginning of the next) contains P, T, U waves
and QRS complex, consisting of Q, R, and S peaks. The size,
shape, location of these parts give great diagnostic information
about the work of the heart and about the presence/absence of
certain diseases.

Recently, machine learning (especially deep learning)
methods have been widely used for automatic ECG analysis;
see the recent review by Hong et al. (2020). The application
tasks include ECG segmentation, disease detection, sleep
staging, biometric human identification, denoising, and the
others (Hong et al., 2020). A variety of classical and new

FIGURE 1 | Schematic representation of main parts of the ECG signal for one

cardiac cycle: P, T, U waves and QRS complex, consisting of Q, R, and

S peaks.

FIGURE 2 | Encoder architecture.

methods are used. Among them there are discriminant analysis,
decision trees, support vector machine, fully-connected and
convolutional neural networks, recurrent neural networks,
generative adversarial networks, autoencoders, etc. (Schläpfer
and Wellens, 2017; Hong et al., 2020).

The most interesting and fruitful directions in applying deep
learning methods to ECG analysis are generating synthetic ECGs
and automatic extracting new interpretable features. Delaney
et al. (2019), Golany and Radinsky (2019), and Zhu et al. (2019)
study the problem of ECG generation. The authors of those
papers used different variants of generative adversarial networks
(GANs) (Goodfellow et al., 2014). The best results concerning
the ECG generation were obtained by Delaney et al. (2019).
The authors report on the MaximumMean Discrepancy (MMD)
metric equals to 1.05× 10−3.

Our approach in generating ECG is based on VAE. We
propose a neural network architectures for an encoder and
a decoder for generating synthetic ECGs and extracting new
features. The generated synthetic ECGs look quite natural. MMD
equals to 3.83× 10−3, which is worse than the value obtained by
Delaney et al. (2019) using GAN, but we note that the comparison
of these two metric values is not absolutely correct, since the
values were obtained on different training sets and for solving
similar, but different problems. Qualitatively, the results obtained
by the VAE differ from the GAN, but our model is lighter and
simpler, and the difference is not colossal. On the other hand, we
use VAE, not a regular autoencoder, because VAE will generate
signals from a random dataset, which will expand the training
sample due to artificially generated ECGs.
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The main advantage of our work is the proposal of the
method for extracting new features. The goal is to encode data
on the signal with the smallest possible number of features. Our
experiments show that these features are quite interpretable. This
fact allows us to hope that using these features will help to
improve the quality of automatic diagnostics of cardiovascular
diseases. Generating new synthetic ECGs will allow us to
fix the issue of the lack of labeled ECG for using them in
supervised learning.

We note that the RR interval is an extremely important
parameter of the ECG. Nevertheless, the aim of the
study was to generate one cardiac cycle. On the other
hand, our approach allows one to generate an ECG and
extract features for one cardiac cycle of any duration.
Our model is not as large as for the whole signal, and
it is convenient to use it in various subtasks related to
ECG diagnostics.

Besides VAE, other autoencoders are also used for ECG
analysis. In particular, Gyawali et al. (2019) uses f-SAE to capture
relevant features from the 12-lead ECG for the downstream task
of VT localization. The subject of the work is very different from
ours. In our work, we want to use specifically VAE, which can be
used for many tasks related to ECG analysis, including for solving
our problem.

2. ALGORITHM

2.1. Pre-processing
Our original ECG is a 10-s 12-lead signal with a frequency of 500
Hz. Using the segmentation algorithms described byMoskalenko
et al. (2019), we determine beginnings and endings of all P and
T waves and all the picks R. Then, we do the step forward
and backward from the R pick at an equal distance. Thus, we
obtain the set of cardiac cycles, each of which of vectors length
is 400 (800 ms).

2.2. Neural Network Architecture: Encoder
A variational autoencoder (Kingma and Welling, 2013; Doersch,
2016) consists of an encoder and a decoder. We propose the
following architecture for them. The encoder consists of a
convolutional and a fully connected blocks. The architecture of
the encoder is presented in Figure 2. The input vector of length
400 is fed to the input of the encoder. The next step is branching
into a fully connected and convolutional chains. This branching
occurs immediately in order to simultaneously highlight small
local features and features based on the entire signal. Otherwise,
using only fully connected blocks, we would get smooth ideal
signals, and using only convolutional ones—signals close to a
simple set of numbers.

FIGURE 3 | Decoder architecture.
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FIGURE 4 | Examples of real cardiac cycles obtained from ECG signals and used in the training of VAE.

The convolutional chain (at the top of the circuit in Figure 2)
consists of four series-connected blocks, each of which consists
of a convolution layer, a batch normalization layer, a ReLU
activation function and a MaxPooling layer. In addition, we have
another convolution layer. At the output of this block we get
25 neurons.

The fully connected chain of the encoder (at the bottom of
the circuit in Figure 2) consists of three fully connected (dense)
layers, interconnected by a batch normalization and ReLU
activation functions. At the output of the last fully connected
layer we have 25 neurons.

The outputs of the convolutional and fully connected chains
are concatenated, which gives us a vector of length 50. Using two
fully connected layers we get two 25-dimensional vectors which
are interpreted as a vector of means and a vector of logarithms of
variances for 25 normal distributions (or for one 25-dimensional
normal distribution with a diagonal covariance matrix). The
output of the encoder is a vector of length 25 in which each
component is sampled from those normal distributions with
specified means and variance.

We will interpret this 25-dimensional vector as a vector of new
features sufficient to describe and restore with small error the

one cardiac cycle. Note that with fewer features, the results were
noticeably worse (the MMDmetric was significantly higher). On
the other hand, this number of features was enough to restore the
signal with sufficient quality.

As the loss function, the Kullback–Leibler distance

DKL(P ‖ Q) =

∫
X
p log

p

q
dµ (1)

is used. Due to this fact those 25 new features are of normal
distribution. In (1) µ is any measure on X for which there exists

a function absolutely continuous with respect to µ: p = dP
dµ

and

q =
dQ
dµ

, P is the initial distribution, Q is the new distribution we

have obtained.

2.3. Neural Network Architecture: Decoder
The architecture of the decoder is presented in Figure 3. As an
input, the decoder accepts the 25-dimensional vector of features.
Then, similarly to the encoder, branching into convolutional and
fully connected chains occurs.

The fully connected chain (at the bottom of the circuit in
Figure 3) consists of four blocks, each of which contains a fully
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FIGURE 5 | Examples of generated normal distribution features for obtaining a cardio cycle based on them.

connected (dense) layer, batch normalization layer and the ReLU
activation function.

The convolutional chain (at the top of the circuit in Figure 3)
performs a deconvolution. It consists of four blocks which
include a convolutional layer, a batch normalization layer, and
ReLU activation function, followed by an upsampling layer.

As a result of the convolutional and the fully connected chains,
we get 400 neurons from each. Then, we concatenate two results,
obtaining 800 neurons. Using a dense layer we get 400 neurons
which represent the restored ECG.

As a loss function for the output of the decoder, we use the
mean squared error.

The models for the encoder and the decoder can be
downloaded from https://github.com/VlaKuz/ecg_cycle_VAE.

3. EXPERIMENTAL RESULTS

In our experiment, we use 2, 033 10-s ECG signals of frequency
500 Hz (Kalyakulina et al., 2019, 2020a,b). We process them
according to the principles as described above (see section 2.1)
and train our network on the obtained 252, 636 cardiac cycles.
Examples of those real human cardiac cycles derived from ECG
signals are presented in Figure 4.

To train the model we used 720 epochs of Adaptive Moment
Estimation (Adam) algorithm proposed by Kingma and Ba
(2014) and implemented in TensorFlow Framework (Abadi et al.,
2016). No data augmentation was not performed.

The trained network produce 25 features describing the
cardiac cycle. The examples are shown in Figure 5.

After having trained the network we may test the decoder by
supplying random (generated according to the standard normal
distribution) numbers to its input. The examples of the produced
results are given in Figure 6. These synthetic generated ECG
looks quite natural.

To evaluate our results we calculated the Maximum Mean
Discrepancy (MMD) metric (Delaney et al., 2019) on the set of
3,000 generated ECG. The value of MMD is equal to 3.83× 10−3.
Keep it in mind that the best value of MMD obtained by Delaney
et al. (2019) by GAN is 1.05 × 10−3. The value obtained by
us is slightly less than the value from Delaney et al. (2019).
However, it shouldn’t be argued that this metric is a reference.
There are no illustrations in Delaney et al. (2019) confirming the
correctness of the result. We note that the comparison of these
two metric values is not absolutely correct, since these values
were obtained on different training sets and for solving similar,
but different problems. Unfortunately, the papers (Golany and
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FIGURE 6 | Examples of generated heart cycles based on 25 features.

Radinsky, 2019; Zhu et al., 2019) don’t contain (applicable to our
problem) values of similar metrics.

Interesting results were obtained when generating ECG with
a varying feature. Some generated ECG signals are presented
in Figure 7. Twenty-four features were fixed for each test when
the remaining feature was changing. It was possible to find a
parameter responsible, for example, for the height of the wave
T, the depression of the ST wave, etc. Thus, in some cases, the
extracted features may be interpreted, which also confirms the
high quality of the constructed feature description. So, from the
figures it can be seen that when fixing the 6th sign of changes in
the behavior of the QRS complex.When the 14th feature changes,
the amplitude of the P wave changes, and when the 24th feature
changes, the behavior of the T wave changes. Other signs have a
similar effect. In all cases, it can be seen that with an increase in
the value of the feature, the peak rises up, and with a decrease, it
goes down.

The variational autoencoder models for each lead were also
trained. Examples of the results of trainedmodels in the Figure 8.
The figure shows the leads I, II, III.

4. CONCLUSIONS AND FURTHER
RESEARCH

In this paper, we proposed a neural network (variational
autoencoder) architecture that is used to generate an ECG
corresponding to a single cardiac cycle. Our method generates
synthetic ECGs using rather small number (25) of features,
with completely natural appearance, which can be used to
augment the training sets in supervised learning problems
involving ECG. Our method allowed us to extract new
features that accurately characterize the ECG. Experiments
show that the extracted features are usually amenable to
good interpretation.

Our approach has both advantages and disadvantages.
The advantages include relative simplicity, lightness

and small size of the system, which makes it very
mobile and convenient; the information content of the
extracted features by the encoder; the ability to obtain
signals from a random distribution of a relatively small
number of features; the ability to generate individual
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FIGURE 7 | Examples of ECG generated when a parameter is varying. Each

column correspond to the set of fixed 24 features and varying other feature (6,

14, and 24 feature, respectively).

FIGURE 8 | Examples of ECGs generated by a VAE that has been trained in

only one lead (I, II, III).

signals from a random distribution, as well as generating
pathological signals.

The main of the disadvantages is inability to generate a whole
ECG signal.
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We plan to use our approach to generate the entire
ECG, not just one cardiac cycle and, separately, for normal
and pathological ECGs cases. We will also use the extracted
features to improve the quality of automatic diagnosis of
cardiovascular diseases.
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