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scRNA-seq is used widely to dissect cellular states, types and tra-
jectories1. Common to many single-cell technologies are count-
ing strategies to mitigate the overcounting of amplicons derived 

from each RNA or DNA molecule. Typically, a random sequence, 
or UMI, is added via adapter oligos before DNA amplification 
and sequencing2, and this strategy has become standard for RNA 
counting in single cells3–6. Despite the widespread use of UMIs, no 
experimental strategies exist that can be used to systematically qual-
ity control (QC) counting accuracy in new single-cell methods or 
variations in chemistries used. Furthermore, errors within the bar-
codes during amplification and sequencing necessitate subsequent 
ad hoc computational correction strategies. Several approaches 
for UMI error corrections to estimate RNA molecule counts have 
been proposed7–9, but so far there are no experimental ground-truth 
datasets enabling standardized benchmarking. Here, we developed 
mRNA spike-ins that carry a high diversity random sequence (an 
internal UMI), which we use to assess the RNA counting accuracy 
of popular scRNA-seq methods and computational correction strat-
egies. These spikes can be used to count RNAs correctly even in the 
absence of UMIs or when UMI-based counting had been inflated 
experimentally, and to estimate the mRNA amounts in cells.

Results
Establishing molecular spikes. Randomized synthetic DNA 
sequences with minimal overlap to the human and mouse genomes 
were cloned into pUC19, together with a T7 promoter and a poly-A 
tail consisting of 30 adenine nucleotides (Fig. 1a). Oligonucleotide 
libraries carrying 18 random nucleotides were inserted either 
into the 5′ or 3′ region of the synthetic sequence to construct the 
spike-UMI (spUMI) of the 5′ and 3′ molecular spike, respectively 
(Fig. 1b). The resulting plasmid libraries were then used for in vitro 
transcription to produce molecular spike RNA pools (Fig. 1a). To 
test the produced spikes, we added the 5′ molecular spike to single 
HEK293FT cells and prepared Smart-seq3 libraries6. The spUMIs 
from the molecular spike sequences were extracted from aligned 
reads, and we similarly extracted the standard UMI sequence 

introduced on the Smart-seq3 template-switching oligo. We veri-
fied that the 18 nucleotide (nt) spUMI was indeed predominantly 
random (Extended Data Fig. 1a). To counteract PCR and sequenc-
ing errors within the spUMIs on the molecular spikes, we investi-
gated the appropriate error-correction strategy. To this end, for each 
molecular spike spUMI, we calculated the minimum edit distance 
(hamming distance) to the closest sequence within the cell and to 
1,000 randomly sampled molecular spike spUMIs from other cells. 
This analysis demonstrated that the 18 nt spUMIs often showed 
an enrichment of spUMIs with one or two base errors within cells 
(Extended Data Fig. 1b). Moreover, random sampling of sequences 
of 18 nt in length is unlikely to yield collisions in sequence space 
(~68.7 billion sequences) at a hamming distance of 2 nt. Therefore, 
we used a hamming distance of 2 nt to infer the exact number of 
molecular spike spUMIs present in each cell for the remainder of 
the experiments in this study, and we further excluded spUMIs that 
were over-represented across cells (Methods) to remove potential 
biases (Extended Data Fig. 1c). We estimated the complexity of the 
total 5′ molecular spikes to 3.2 million by fitting an asymptotic non-
linear model to the number of observed spUMIs sequences across 
cells (Fig. 1c).

Investigating counting performance in scRNA-seq methods. 
Having validated the randomness and complexity of the spUMI, 
we investigated the RNA counting accuracy of single-cell methods, 
starting with Smart-seq3 (ref. 6). Since the copy numbers of added 5′ 
molecular spikes were very high, we sampled spike molecules from 
the range of expression levels typically found in HEK293FT cells 
(Extended Data Fig. 2a–c). The observed error-corrected Smart-seq3 
counts closely followed (r2 = 0.99) the molecular spike ground-truth 
(error-corrected spUMIs) (Fig. 1d), demonstrating the accuracy in 
RNA counting in single cells with Smart-seq3.

Next, we exemplified how the molecular spikes can properly 
diagnose inaccuracies in scRNA-seq library protocols by investigat-
ing altered Smart-seq3 conditions in which a residual RNA-based 
template-switching oligo (TSO) is allowed to prime during PCR 
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preamplification to cause artificially inflated RNA counts (Extended 
Data Fig. 2d). Whereas the TSO can be removed efficiently by 
bead cleanups before PCR, it can also be outcompeted effectively 
by increasing concentrations of forward PCR primers ("FWD"; 
Fig. 1e). However, the combination of remaining TSO with lower 
amounts of forward PCR primer results in notable TSO priming 

and inflation in RNA counting, at approximately 150% of the cor-
rect expression levels (Fig. 1e and Extended Data Fig. 3). We note 
that a minor count inflation (approximately 110%) is detectable 
even at 0.5 µM forward primer (at 100 RNA copies per cell and over 
ten sequencing reads per molecule), and that an increase to 1.0 µM 
in Smart-seq3 effectively removes this remaining inflation.
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Fig. 1 | Direct assessment of single-cell RNA counting using molecular spikes. a, Schematic of cloning strategy of molecular spikes, where an 
oligonucleotide library is inserted into a molecular spike entry vector, and the vector pool is linearized and in vitro transcribed to generate a pool of 
molecular RNA spike-ins. b, Coordinates of molecular spikes in basepairs (bp), with inbuilt UMI in the 5′ or 3′ end. c, 5′ molecular spike complexity 
estimated by fitting a nonlinear asymptotic model (dotted line) to unique spUMI sequences observed as a function of the number of spUMIs sequenced 
across cells (blue line). d, Scatter plot showing error-corrected (hamming distance (HD) 1) Smart-seq3 RNA counts (y axis) against the number of spiked 
molecules (x axis) ranging from 1 to 100 spiked molecules per cell. Data from HEK293FT cells (n = 48 cells). e, Scatter plot showing number of spiked 
molecules (x axis) against error-corrected RNA counts (hamming distance 1) for data generated with variations to the Smart-seq3 protocol, that utilize 
cDNA cleanup before amplification (0.1 µM FWD) or without cleanup and therefore remaining TSO with different concentrations of FWD primer. Data 
from 39 cells or more are shown per condition. f, Scatter plot showing number of spiked molecules (x axis) against error-corrected RNA counts (hamming 
distance 1) for 10x Genomics (v.2) data (n = 955 cells). g, Scatter plot showing number of spiked molecules (x axis) against error-corrected RNA counts 
(hamming distance 1) for data generated with variations to the SCRB-seq and tSCRB-seq protocols. Standard SCRB-seq (green, 53 cells), excluding 
exonuclease I treatment (red, 77 cells) and direct PCR (tSCRB-seq) (blue, 90 cells). h, Percent counting error (observed/true) for in RNA counts generated 
with variations to the SCRB-seq and tSCRB-seq protocols. Solid line denotes the mean over cells per condition with the shaded area representing the 
standard deviation colored by experimental conditions. Direct PCR (tSCRB-seq) (90 cells), No exonuclease I (77 cells) and standard protocol (53 cells). 
The dotted line represents the expected overcounting if every sequenced read corresponds to a new UMI observation.
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Most scRNA-seq protocols rely on 3′-tagging mRNA instead 
of producing full-length coverage of transcripts, and we therefore 
engineered a 3′-molecular spike carrying the 18 nt spUMI close to 
the poly-A tail (Fig. 1b). After similar QC and filtering of 3′ spUMIs 
(Extended Data Fig. 4), we first applied these molecular spikes to 
the droplet-generation process in a 10x Genomics Gene Expression 
Assay (v.2 chemistry; Methods). The inferred molecule counts from 
this experiment were in good agreement with the molecular spikes 
(Fig. 1f), as expected since the 10x Genomics protocol purifies the 
complementary DNA extensively before PCR amplification. Next, 
we applied the molecular spikes to the single-cell RNA barcoding 
and sequencing (SCRB-seq) protocol10—a plate-based 3′-tagging 
method that includes cDNA cleanup before cDNA amplification. 
The RNA counting in SCRB-seq was accurate (Fig. 1g). Recently, 
T-cell SCRB-seq (tSCRB-seq)11 was introduced and reported to 
have greatly increased sensitivity compared with SCRB-seq. In 
tSCRB-seq, the PCR reagents are added directly to the individual 
reactions without cDNA cleanup (Extended Data Fig. 2e). To assess 
how RNA counting was impacted in tSCRB-seq, we first gener-
ated a SCRB-seq library where we omitted the exonuclease I digest 
after reverse transcription, which is a safeguard against remain-
ing oligo-dT primer potentially producing faulty amplicons in the 
subsequent PCR reaction, which resulted in minimal (105%) UMI 
counting inflation (Fig. 1g). Following tSCRB-seq, we added PCR 
master mix directly into the individual wells of cDNA product and 
this ‘direct PCR’ condition resulted in substantial UMI overcount-
ing (Fig. 1g). In fact, the direct PCR implementation in tSCRB-seq 
introduced new UMIs in nearly every new sequenced read, result-
ing in overcounting that linearly follows sequencing depth irre-
spective of expression level (Fig. 1h). Clearly, the UMI-containing 
oligo-dT primer seems to be preferentially priming in the pre-
amplification PCR reaction, introducing false new UMIs in every 
cycle. The cleanup after pooling RT products, even in the absence 
of the exonuclease I digest, seemed to be very efficient at removing 
the oligo-dT primer. Thus, the reported improvement in sensitivity 
in tSCRB-seq11 is completely artificial since the reported increased 
UMI counts do not correspond to RNA molecules.

Evaluating computational UMI correction using molecular 
spikes. Having demonstrated the important role of the molecular 
spikes in assessing the RNA counting abilities of scRNA-seq meth-
ods, we next systematically investigated UMI error-correction proce-
dures and compared their inference with the ground-truth number 
of spiked-in molecules. We based this analysis on the experiment 
with 10x Genomics using 3′-molecular spikes, and we sampled 
molecular spikes and their associated sequence reads (one to ten 
reads each) matching 60 equally spaced expression levels between 1 
and 1,000 molecules (Extended Data Fig. 5a). Moreover, we directly 
investigated the effect of the UMI length on error-correction by 
performing these analyses in parallel on in silico trimmed versions 
of the observed 10 nt 10x Genomics UMI. Basing the RNA counts 
on uncorrected UMI observations inflated the counts with increas-
ing inflation in longer UMIs (Fig. 2a,b) reflecting the fact that lon-
ger UMI sequences have a higher risks of being affected by PCR 
and sequencing errors. As expected, the inflated counts increased 

also with increasing read coverage and expression levels (Extended 
Data Fig. 5b). Reassuringly, applying UMI error corrections that 
collapse UMI observations within a hamming distance of 1 nt (as 
implemented in the zUMIs pipeline8) removed a large proportion 
of counting errors for the longer UMI lengths (Fig. 2c,d) and fully 
removed the dependency on coverage (Extended Data Fig. 5c). In 
contrast to a previous report12, we observe that UMIs of a length 
of 6 nt or lower had elevated collision rates leading to undercount-
ing even before applying UMI error corrections that led to further 
reductions in counts (Fig. 2a,b). While empirical Bayes correction 
algorithms have been proposed to account for the lower coding 
capacity, their run time is prohibitive for larger datasets9. Moreover, 
only UMI lengths of 8 nt or higher counted RNAs accurately over 
the full spectrum of assessed expression levels (Fig. 2c,d).

Many common scRNA-seq pipelines have implemented UMI 
error corrections at an edit distance of 1 nt, and we next compared 
the RNA counting accuracy by collapsing the same data using edit 
distances of 1 and 2 nt and compared the counts to the ground-truth 
based on the spiked-in molecules. While a hamming distance of 1 nt 
was clearly more suitable for UMIs of length 8 nt, allowing up to two 
mismatches in 10 nt UMIs improved RNA counting throughout the 
full range of expression levels (Fig. 2e,f). Finally, we compared sev-
eral computational strategies that collapse UMIs based on their edit 
distances and frequencies of observations7 (Extended Data Fig. 6) 
and compared their inferred counts to the ground-truth spiked-in 
molecules. Differences among the collapsing strategies were appar-
ent only for UMIs of 8 nt in length (Fig. 2g,h), where the aggressive 
collapsing strategies (‘cluster’ and ‘adjancency’) underestimate RNA 
counts due to the collapsing of several molecules at higher expres-
sion levels, likely due to coding space exhaustion. In line with previ-
ous findings7, the ‘directional-adjacency’ method seems to provide 
a good compromise for UMIs of at least 8 nt.

Complex set of molecular spikes. RNA spike-in pools (for exam-
ple, ERCCs13, SIRVs14 and Sequins15) have been used to correlate 
estimated spike-in molarities to observed counts and to normalize 
endogenous RNA counts16. The ability to count molecular spikes 
experimentally (via the internal spUMIs) allows for more accurate 
experiments and introduces the ability to detect both computational 
and experimental problems. To this end, we designed a highly com-
plex set of 264 molecular spikes, based on 11 unique spike sequences 
spanning different lengths (570–3,070 nt) and GC contents (40–60%) 
(Fig. 3a and Table 1). To precisely evaluate quantification over differ-
ent expression levels, transcript lengths and GC contents, we cloned 
7-nt barcodes (BCs) in twofold abundance steps into each spike 
sequence (12 steps in duplicates; 24 barcodes per sequence) creating 
a standard curve for each spike sequence (Fig. 3a and Extended Data 
Fig. 8). To determine the molecular abundance of each of the 264 
molecular spike-ins (the ‘ground truth’), we performed an exhaustive 
sequencing across the spike barcode and spUMIs (here, 14N) and 
determined the total complexity in the pool to be 76 million unique 
molecules (Extended Data Fig. 7a,b).

Next, we added the set of molecular spikes to individual 
HEK293FT cells generated with Smart-seq3xpress protocol17. 
Individual HEK cells were dispensed using an F.SIGHT OMICS 

Fig. 2 | Evaluation of computational RNA counting strategies using molecular spikes. a–d, Counting difference between number of unique spike identifiers 
and quantified 10x Genomics UMIs at varying mean expression levels. Colored lines indicate the mean (n = 100 in silico cells) counting difference per UMI 
length shaded by the standard deviation. Counting difference is expressed in absolute numbers (a,c) or as a percentage of the mean spUMI count (b,d), 
and UMI counts were computed without error-correction (a,b) or corrected in adjacency mode (hamming distance 1) (c,d). e,f, Comparison of edit distance 
(hamming distance) for adjacency error correction of UMIs of length 8 or 10 nt. Lines indicate the mean (n = 100 in silico cells) difference in quantification 
between spUMIs and UMIs shaded by the standard deviation in absolute scale (e) or relative to the mean (f). g,h, Evaluation of computational UMI collapse 
methods adjacency, adjacency-singleton, adjacency-direction and cluster at edit distance 1 and UMI lengths of 8 or 10 nt. Lines indicate the mean (n = 100 
in silico cells) difference in quantification between spUMIs and UMIs shaded by the standard deviation in absolute scale (g) or as a percentage relative to 
the mean (h).
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(Cytena) into individual wells while recording cell diameters. 
Libraries from control wells lacking cells (therefore containing 
essentially only molecular spikes; Extended Data Fig. 7d) were  
used to quantify the numbers of spike-in molecules dispensed per 
well (on average 33,378; Fig. 3b). Contrasting the mean-variance 

relationship for endogenous genes and the 264 spike-ins con-
firmed that the set of molecular spikes spanned relevant endoge-
nous expression levels and that they accurately modeled technical 
variation in the homogenous HEK cell population (Fig. 3c). We 
inferred the spike-in detection sensitivity of Smart-seq3xpress to 
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68% (Methods) based on observing, in each well, 33,378 of the 
expected 49,125 spike-in molecules (corresponding to 0.0321 pg of 
spike-ins), and abundances were highly correlated to spUMI counts 
(Extended Data Fig. 7c; Spearman’s r = 0.99).

We then investigated to what extent the total detected RNAs per 
cell followed the cell diameter, which showed only modest corre-
lation (Fig. 3d; Spearman’s r = 0.34), whereas total RNAs detected 
per cell strongly correlated with the number of sequenced reads 
(Extended Data Fig. 7e). The relative number of sequenced reads 
originating from spike-ins and endogenous mRNAs was clearly 
anticorrelated (Spearman’s r = −0.83) with cell diameter (Fig. 3e and 
Extended Data Fig. 7f). This indicates that the mRNA content of 
cells scales with cell diameters which is masked by varying numbers 
of reads per cell and thus differing levels of sequencing saturation. 
Using the quantified ratio of spike-in molecules to endogenous mol-
ecules, with the absolute number of captured spike-in molecules per 
well, we inferred total mRNA content per HEK cell that correlated 
well with cell diameter (Fig. 3f; Spearman’s r = 0.83), and ranged 
between ~250,000 and ~400,000 poly-A+ mRNAs, for smaller and 
larger HEK293FT cells, respectively (Fig. 3g).

We next explored whether the set of molecular spike-ins could 
be used to infer gene-level RNA counts in experiments with inflated 
UMI-based counts or even in experiments lacking UMI-based 
counting altogether. Recently, a quantile normalization procedure 
was shown to effectively transform read-count data to molecule 
counts18. That approach, however, requires a shape parameter of the 
target RNA count distribution to be provided from already existing 
data of the same cell type. We realized that the RNA counts obtained 

from the internal spUMIs could be used to overcome this limita-
tion, and we provided those to the maximum-likelihood estimate of 
the Poisson-lognormal shape parameter for every cell. Knowing the 
ratio of reads aligning to spike-in and endogenous RNAs, we then 
computed total cellular RNA amounts, which we used to fine-tune 
the shape parameters so that the sum of inferred molecules (called 
quasi-UMIs) per cell differs minimally from this estimate.

We applied this correction strategy to the experiment on 
HEK293FT cells and the raw read counts that we used as an exam-
ple of ‘inflated’ RNA counts. The method-inferred quasi-UMIs 
could then be compared with the RNA counts obtained with the 
Smart-seq3-based UMI (as the true RNA counts). Visualizing the 
count distribution of reads, inferred quasi-UMIs and the true UMIs 
for 20 representative cells (Fig. 3h) revealed that the quasi-UMIs are 
indeed close to the true UMIs. As expected, the total cellular counts 
of quasi-UMIs approached the observed UMIs per cell (Fig. 3i) and, 
importantly, their expression levels correlated strongly over genes 
(Fig. 3j; Spearman’s r = 0.93). We conclude that the set of molecular 
spike-ins correct RNA counts in experiments with inflated count-
ing, even in experiments completely lacking UMIs (for example, 
relevant for Smart-seq2 (ref. 19)).

Discussion
Here, we developed molecular spikes, that is, a set of RNA 
spike-ins that contain an inbuilt UMI (Fig. 1a,b), to detect, 
quantify and correct artifactual RNA counting. The ability to 
quantitatively monitor the exact spike-in molecules sequenced  
from each cell is thus not dependent on the level of accuracy when 

Table 1 | Summary statistics of the complex 5′ molecular spikes set

Name Barcodes Length (nt) GC content (%) Total complexity 
(molecules)

Range (molecules per BC)

Molecular spike 1 24 2,070 58.5 1,746,869 205–405,467

Molecular spike 2 1,070 58.7 4,628,714 789–1,058,215

Molecular spike 3 570 54.7 8,735,160 2,726–1,815,444

Molecular spike 4 2,070 48.2 9,203,773 2,823–1,812,543

Molecular spike 5 1,070 49.3 12,828,533 3,649–4,337,579

Molecular spike 6 570 44.2 9,079,194 4,941–1,465,458

Molecular spike 7 3,070 39.3 4,399,937 1,047–1,029,909

Molecular spike 8 2,070 38.8 7,130,428 3,146–1,416,569

Molecular spike 9 1,067 39.4 5,790,596 1,771–1,169,341

Molecular spike 10 568 40.0 8,121,606 5,032–1,395,030

Molecular spike 11 1,096 49.1 4,946,866 666–1,033,909

Fig. 3 | Single-cell RNA counting using the complex set of molecular spike-ins. a, Illustration of the design of the complex set of molecular spike-ins. The 
set consists of 264 unique spike-ins based on 11 distinct spike sequences of different lengths and GC levels, as shown. Each of these 11 sequences further 
contains 24 different barcodes that were introduced in titration to obtain a standard curve per spike-in sequence (using 2 barcodes per expression level, 
covering 12 different expression levels). b, Boxplot showing the number of spike-in molecules detected per well as a function of sequence depth, only using 
the wells lacking cells (n = 942). c, Scatter plot showing the mean molecules detected per cell (x axis) against the squared CV (y axis) over HEK293FT cells 
(n = 151). The 264 molecular spikes are colored in blue, while endogenous genes (n = 32,738) are colored gray. d, Scatter plot showing the observed 
number of RNA counts of cellular genes (UMIs) against cell diameter, which was recorded while dispensing each cell into wells. Linear regression shown 
with line and 95% confidence interval (gray shaded area). e, Scatter plot of percent reads aligning to spike-ins per cell against the recorded cell diameter. 
Linear regression shown as line and 95% confidence interval (gray shaded area). f, Scatter plot showing inferred cellular RNA counts against recorded cell 
diameter, with linear regression shown as line and 95% confidence interval (gray shaded area). g, Boxplots showing observed (left) and inferred (right) 
cellular RNAs for large (>25 µm) and small (<25 µm) HEK cells (n = 84 and 67, respectively). h, Distributions of nonzero reads, inferred quasi-UMIs and 
observed Smart-seq3 UMIs across genes, shown for 20 representative HEK cells. i, Boxplots showing the total number of reads, inferred quasi-UMIs and 
observed Smart-seq3 UMIs per cell (n = 151). j, Scatter plot of observed Smart-seq3 UMIs against inferred quasi-UMIs across all genes (n = 17,054) for a 
representative cell. The boxplots shown in g and i show the median, first and third quartiles as a box, and the whiskers indicate the most extreme datapoint 
within 1.5 lengths of the box.
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distributing spike-ins across cells, since the molecular spikes har-
bor an internal high-capacity spUMI. The quantitative compari-
son of spiked molecules to the counted RNA revealed both gross 
(for example, 400%; Fig. 1g) and smaller (5–10%) counting errors 
(Fig. 1e,g), both relating to procedures that did not sufficiently 
remove UMI-containing oligonucleotides from contributing 
during PCR. We therefore suggest that molecular spikes should 
be applied widely to scRNA-seq method developments to allow 
accurate reporting of method performances.

Moreover, we demonstrate how molecular spike-ins can be used 
to rescue faulty experiments, or even enable counting in experi-
ments lacking UMIs. Another benefit from routine use of molec-
ular spike-ins lies in the ability to infer total mRNA amounts per 
cells within and across cell types (Fig. 3g). Therefore, widespread 
inclusion of molecular spike-ins in cell atlas projects would reveal 
cell-type variation in transcriptome complexity and can reveal 
how mRNA amounts relate to other cellular properties, exempli-
fied here by cell diameter (Fig. 3f). To this end, we are making the 
molecular spikes available to academic users along with an R pack-
age for molecular spike data processing, quality control, rescue in 
RNA counting and visualization (https://github.com/sandberg-lab/
molecularSpikes).

The generation of ground-truth molecular counts across cells 
with molecular spikes enables systematic benchmarking of UMI 
error-correction strategies as one can quantitatively compare esti-
mated RNA counts with the numbers of spiked molecules per cell. 
We show direct experimental evidence that RNA counting based 
on uncorrected UMIs overestimates RNA expression, at a level that 
follows the chance of PCR and sequencing errors in the UMIs (UMI 
lengths, sequence depth and sequencing technology used). In con-
trast to recent recommendations based on computational model-
ing20, our direct experimental comparison shows that scRNA-seq 
data processing should include UMI error-correction to avoid sys-
tematically overestimating RNA expression levels. The literature 
provides conflicting recommendations regarding UMI lengths12,20, 
and finding the optimal compromise for scRNA-seq applications is 
not straightforward as longer UMIs can interfere with method sensi-
tivity by decreasing reaction efficiencies (for example, reverse tran-
scription21,22) and shorter UMIs have limited coding capacity. We 
demonstrate that only UMIs of 8 nt or longer have sufficient coding 
capacity to robustly detect expression levels, even in high RNA con-
tent, cultured cells (here, HEK293FT cells), and the use of shorter 
UMIs should be avoided except in shallow scRNA-seq experiments. 
Interestingly, none of the correction strategies typically used were 
fully robust across expression levels and it should be possible to use 
the quantitative data from the molecular spikes to inform future 
improved strategies with increasing RNA counting reliability and 
accuracy. It should be noted that molecular spikes are most helpful 
in methods where addition of the UMI occurs early in the protocol 
(for example, during reverse transcription). It will also be interest-
ing to use the molecular spikes beyond the validation of aggregated 
RNA counts per cell, and to investigate the within-molecule consis-
tency of molecular spike identity and UMIs assigned to each mol-
ecule. In particular, an exact one-to-one mapping between sequence 
reads and original molecules (after UMI error-correction) is impor-
tant for in silico RNA reconstruction6 to ensure the correct collaps-
ing of sequences for each individual RNA molecule present in cells. 
Since the set of molecular spike-ins (Fig. 3a and Table 1) span differ-
ent lengths and GC levels, they enable further indepth characteriza-
tion of method counting and performance.
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Methods
Molecular spike-in design. Molecular spike sequences were designed as random 
sequences and we confirmed them to have minimal overlap to mouse or human 
genomes using BLAST. Two 500-bp sequences were selected, and entry vectors 
were created as described below. To minimize levels of in vitro transcription from 
the 5′ synthetic spike empty vector, we decided to complete the T7 promoter 
sequence with the random-base containing oligonucleotide. A similar strategy was 
not possible for the 3′ synthetic spike.

5′ and 3′ spike entry vector and library cloning. Geneblocks encoding synthetic 
RNA sequences and a synthetic poly-A stretch were introduced into the pUC19 
backbone as previously described6. The resulting molecular spike insert vectors 
were linearized by digestion with XhoI or EcoRI for the 5′ and 3′ spike encoding 
plasmids, respectively. A single-stranded oligonucleotide library (IDT), containing 
a stretch of 18 random bases, was cloned into the linearized backbone using 
Gibson Assembly (NEB). The resulting reaction was then electroporated into 
Lucigen Endura Electrocompetent cells, according to the manufacturer’s protocol, 
and streaked out on large LB-agar plates (LB-lennox recipe). The resulting cultures 
were recovered from the LB-agar plates and purified using NucleoBond Xtra Maxi 
Plus columns (Macherey-Nagel).

Design of the complex set of molecular spike-ins. Molecular spike sequences 
were generated by randomly sampling 1 million random sequences of each desired 
length (500; 1,000; 2,000; 3,000 nt) and GC content (40%, 50%, 60%). The resulting 
sequences were then filtered by discarding any that had nucleotide stretches of 
identical bases for longer than four consecutive bases. We further evaluated the 
sampled GC content and required it to be within 1% of the desired value. Next, we 
generated synthetic sequencing reads of 50 bp at 100× coverage for each candidate 
sequence using the polyester package23. Simulated reads were mapped against 
the human genome (hg38) using STAR24. Only candidate sequences without any 
mapping reads were considered further. Next, we analyzed GC content in a sliding 
window and ranked remaining candidate sequences by the least local variation in 
GC content. For the 7-ntide expression-level barcodes, we generated a candidate 
barcode sequence set with minimal hamming distance of 3 nt to each other 
barcode using the DNABarcodes R package25. Self-complimentary sequences and 
homonucleotides of more than three consecutive bases were discarded. We then 
ranked the candidate barcodes by their deviation from 50% GC content to choose 
the final set of barcodes.

Cloning of the complex set of molecular spike-ins. Plasmids containing the 
sequences of the selected molecular spike sequences were ordered from Genscript, 
with an incomplete T7 promoter sequence upstream and a hardcoded poly-A 
inserted downstream in the pUC19 backbone. The plasmids were linearized by 
digestion with XhoI overnight and gel purified. Individual oligos encoding cloning 
overlaps, T7 promoter-completing sequence, a 9-base spacing sequence, 7-base 
barcodes, and a 14N UMI sequence were ordered from IDT DNA and pooled at 
the appropriate relative concentrations using the Agilent Bravo liquid-handling 
platform. Oligonucleotide sequences are listed in Supplementary Table 1. 
Gibson assembly (NEB) reactions were performed as per the manufacturer’s 
instructions, and the resulting reactions were desalinated before electroporation 
using 0.025 μm pore size Millipore filters (catalog no. VSWP01300) to avoid 
arcing. The entire Gibson assembly mixture was then transformed into Lucigen 
Endura Electrocompetent bacteria (four aliquots per Gibson reaction) as per the 
manufacturer’s instructions and pooled and grown in 250 ml LB with ampicillin. 
The resulting bacteria cultures were then purified individually using the 
NucleoBond Xtra Maxi Plus kit from Macherey-Nagel.

In vitro transcription reactions. The plasmid libraries were linearized by 
digesting with HindIII or NsiI for the initial and complex set of molecular 
spikes, respectively. In vitro transcription was performed using the MaxiScript 
kit (Invitrogen) according to the manufacturer’s guidelines. Resulting libraries 
of synthetic RNA spikes were cleaned up using RNeasy spin columns (Qiagen). 
Synthetic RNA integrity was confirmed by RNA Nano 6000 chip on the Agilent 
Bioanalyzer. For the complex set of molecular spikes, the in vitro transcription 
proved repeatedly inefficient for two (of the three) 3,070 base transcripts, with 
relatively high-abundance of transcripts of shorter lengths. These were therefore 
left out of the final set of molecular spikes.

Exhaustive sequencing of true abundances of the set molecular spike-ins.  
A total of 384 replicates of 10 ng spike-in RNAs were each reverse transcribed 
using the Smart-seq3 protocol at 1:10 and preamplified for eight cycles of PCR. 
The resulting cDNA was pooled and cleaned using 0.8 × 22% PEG beads. Next, 
we amplified short 100–150 bp amplicons around the transcription start site 
using the TSO-specific Smart-seq3 FWD primer containing the Nextera Read 
1 overhang and a sequence-specific reverse primer for each of the 11 distinct 
spike-in sequences with a TruSeq Read 2 overhang. Short amplicons were 
cleaned with 1.8× ratio of 22% PEG beads and single-indexed for eight cycles 
using a 2× Phusion HF MasterMix (Thermo Fisher). The libraries were then 
converted to circular ssDNA using the Universal Library Conversion Kit App-A 

(MGI). We used 60 fmol of ssDNA for DNA nanoball generation and subsequent 
sequencing on two FCL flow-cells of the DNBSEQ G400RS platform (MGI; 
v.1.1.0.108) generating single-end 100 bp reads to a depth of approximately 
3,800 million raw reads.

Cell culture. HEK293FT cells (Thermo Fisher) were grown in complete 
DMEM medium supplemented with 4.5 g l–1 glucose, 6 mM l-glutamine, 
0.1 mM MEM nonessential amino acids, 1 mM sodium pyruvate, 100 µg ml–1 
penicillin-streptomycin and 10% fetal bovine serum (FBS). Before scRNA-seq 
experiments, cells were dissociated using TrypLE. HEK293FT cells were not 
recently authenticated.

10x Genomics library preparation. We added 1 μl of 3′ molecular spike pool 
(1 ng µl–1) to the single-cell HEK293FT suspension immediately before loading on 
the 10x Genomics 3′ V2 chip. To avoid obtaining too many cells, and to remove 
the possibility of many ‘empty’ droplets that reverse transcribed only the molecular 
spike molecules, we opted to remove GEMs from the reaction before recovery of 
the cDNA. Before adding recovery agent, 10 µl of GEM-RT mix was transferred 
and the remainder of the GEM-RT mix was discarded. PCR amplification was 
performed according to the manufacturer’s protocol. After PCR amplification, we 
performed cleanup with SPRIselect beads at a ratio of 0.8:1 beads:sample instead 
of the 0.6:1 ratio specified in the protocol. The subsequent fragmentation step 
was extended to 10 min. The double-sided bead-cleanup after the fragmentation 
was changed to a ratio of 0.6:1 and 1:1, respectively. Similarly, the postligation 
cleanup (step 3.4) was increased to 1:1 ratio instead of 0.8:1. The double-sided 
postindexing PCR cleanup was performed at 0.6:1 and 1:1 ratios, respectively. The 
library was converted to circular ssDNA using the Universal Library Conversion 
Kit App-A (MGI). We used 60 fmol of ssDNA for DNA nanoball generation and 
subsequent sequencing on a FCL flow-cell of the DNBSEQ G400RS platform 
(MGI; v.1.1.0.108) generating 26 × 150 bp reads.

Smart-seq3 library preparation. Single HEK293FT cells were sorted in 384-well 
plates containing 3 µl Smart-seq3 lysis buffer on a BD FACSMelody sorter with 
100 µm nozzle (BD FACSChorus Software v.1.3). After sorting, plates were quickly 
spun down before storage at −80 °C. We prepared a Smart-seq3 library according 
to a published protocol6 with the following modifications. The 3 µl Smart-seq3 lysis 
buffer per well contained 0.025 pg 5′ molecular spikes. After reverse transcription, 
each well containing 4 µl of cDNA was cleaned up with 3 µl home-made 22% PEG 
beads and eluted in 5 µl Tris-HCl pH 8. PCR mix was added as 5 µl to each well, 
either with or without the addition of TSO. The reaction concentrations for the 
PCR in 10 µl were as follows: 1× KAPA HiFi Hot-Start PCR mix, 0.3 mM of each 
dNTP, 0.5 mM MgCl2, 0 µM, 0.1 µM, 0.5 µM or 1.0 µM forward primer and 0.1 µM 
reverse primer. In the samples where TSO was added back into the PCR mix, it was 
done so at 0.8 µM.

SCRB-seq library preparation. Single cells were sorted into 96 wells 
containing 5 µl of lysis buffer (1:500 dilution of 5× Phusion HF Buffer) 
containing 0.025 pg of 3′ molecular spike pool using a BD FACSMelody sorter 
with 100 µm nozzle, and frozen at −80 °C. After thawing, lysis was aided by 
Proteinase K digestion (1 µl of 1:20 diluted Proteinase K (Ambion)) for 15 min 
at 50 °C. Proteinase K was denatured, and RNA was desiccated by incubation 
at 95 °C for 10 min after unsealing the plate. Reverse transcription was 
performed in a volume of 2 µl per well (1 µM barcoded oligo-dT E3V6NEXT 
Biotin-ACACTCTTTCCCTACACGACGCTCTTCCGATCT[BC6][UMI10]
[T30]VN, 1× Maxima RT Buffer, 0.1 mM dNTPs, 1 µM TSO E5V6NEXT 
ACACTCTTTCCCTACACGACGCrGrGrG and 25 U Maxima H Minus reverse 
transcriptase) for 90 min at 42 °C. cDNA was pooled and cleaned using SPRI 
beads and excess primers were digested by incubation with exonuclease I (NEB; 
30 min at 37 °C, inactivation 20 min at 80 °C). PCR amplification was performed 
in 50 µl (0.5 µM SINGV6 primer Biotin-ACACTCTTTCCCTACACGACGC, 
1× KAPA HiFi ReadyMix). PCR was cycled as follows: 3 min at 98 °C, 21 
cycles of 15 s at 98 °C, 30 s at 67 °C, 6 min at 72 °C and final elongation 
for 10 min at 72 °C. For the direct PCR condition, we added 3 µl of PCR 
master mix directly to each well RT product well containing 2 µl of cDNA. 
Amplified, pooled cDNA was cleaned and quantified. We used 800 pg of 
cDNA for tagmentation using the Nextera XT kit (Illumina) according to the 
manufacturer’s protocol. The final indexing PCR was performed using a i7 primer 
and P5NEXTPT5 (AATGATACGGCGACCACCGAGATCTACACTCTTT 
CCCTACACGACGCTCTTCCG*A*T*C*T*; IDT) to select for correct 3′ 
fragments. The libraries were pooled and converted to circular ssDNA using the 
Universal Library Conversion Kit App-A (MGI). We used 60 fmol of ssDNA for 
DNA nanoball generation and subsequent sequencing on a FCL flow-cell of the 
DNBSEQ G400RS platform (MGI; v.1.1.0.108) generating 16 × 150 bp reads.

Smart-seq3xpress library preparation. Single HEK293FT cells were sorted in 
384-well plates containing 0.3 µl Smart-seq3 lysis buffer on a F.SIGHT OMICS cell 
dispenser (Cytena) while excluding dead cells (NucGreen 488, Thermo Fisher) and 
recording the cell diameter for each dispensed cell. After the dispense, plates were 
quickly spun down before storage in −80 °C. We prepared the Smart-seq3xpress 
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library according to the published protocol17 with the following modification: lysis 
buffer per well contained 0.0321 pg 5′ molecular spike v.2 pool.

HEK293FT expression levels. UMI count tables from HEK293FT cells generated 
using the Smart-seq3 protocol were obtained from ArrayExpression accession 
E-MTAB-8735. After additional filtering of the cells (minimum number of genes 
expressed was 7,500, and minimum number of UMIs detected was 50,000),  
we calculated the mean UMI count for all genes (n = 10,198) detected in at least 
50% of cells.

Sequencing data processing. All sequencing data was processed using zUMIs 
(v.2.9.5)8. Reads with more than three bases below Phred 20 base call scores in 
the UMI sequence were discarded. Remaining reads were mapped to the human 
genome hg38 and spike-in references using STAR (v.2.7.3a)24 and mapped reads 
were quantified according to Ensembl gene models (Grch38.95) taking into 
consideration the strand information of the libraries. Error correction of the 
internal spUMI was applied within each cell barcode using the adjacency algorithm 
allowing edit distances of 2 nt (hamming distance).

Computational analysis of individual molecular spike-ins. All downstream 
analyses were performed in R (v.4.0.4). Reads aligning to the molecular spike 
reference sequence were loaded along with the library UMI and barcode 
information from zUMIs output bam files using Rsamtools26 and further processed 
by matching the known sequence upstream and downstream of the internal UMI. 
Only valid reads that had an 18 nt long internal UMI were considered further.

To investigate the distances of uncorrected, hamming distance 1 nt and 
hamming distance 2 nt corrected spUMI sequences, we used 5′ molecular spike 
data generated by the Smart-seq3 protocol and 3′ molecular spike data from the 10x 
Genomics experiment. For each cell, we calculated all pairwise hamming distances 
of spUMI sequences in that cell, as well as all pairwise distances to 1,000 randomly 
sampled spUMI sequences across the whole dataset, using the stringdist package27.

To estimate the complexity of the molecular spike pool, we counted the number 
of unique error-corrected spUMI sequences over molecules seen in all cells and 
fitted a nonlinear asymptotic regression model using the NLSstAsymptotic function, 
and extracted the asymptote (total complexity) from the coefficients of the model.

Over-represented spike-ins were discarded if they were detected in more than 
four or eight cells (5′- and 3′-spUMIs, respectively) or with more than 100 raw 
sequencing reads.

Functions used in the analysis of this manuscript are made available via the 
UMIcountR package.

Analysis of counting performance in protocol variations. For every cell barcode, 
spUMIs were drawn randomly from all molecular spike molecules in that barcode 
for 20 expression levels from 1 to 100 molecules. At each expression level and for 
each cell, we determined the exact number of molecules by drawing from a normal 
distribution with the given mean and added Poisson noise (s.d. = square root of the 
mean). All observed sequencing reads associated with each of the drawn molecules 
were stored and adjacency error correction (hamming distance 1 nt) was applied to 
the observed UMI sequences derived from the library preparation (for example the 
UMI in the Smart-seq3 TSO or the UMI in 10x Genomics oligo-dT).

Evaluation of UMI length and UMI collapse algorithms. We first selected a 
pool of eligible spike-in molecules from all cells in the 10x Genomics dataset that 
fulfilled the following criteria: (1) observed in only one cell barcode and (2) covered 
with 10–20 sequencing reads. From this pool of 26,815, we sampled molecules 
at 60 expression levels spaced evenly in log-space from 1 to 1,000 molecules. At 
each expression level, we sampled the number of spike molecules used for 100 ‘in 
silico’ cells by drawing from a normal distribution with the given mean and added 
Poisson noise (s.d. = square root of the mean). All associated sequencing reads 
were stored, and we shortened the UMI sequence in 1 base increments (3′ to 5′ 
direction) from ten to four nucleotides. We then applied our R implementations of 
the following UMI error corrections at each expression level and in silico cell: (1) 
adjacency: the network of closely related UMI sequences is resolved by collapsing 
all sequences within the given edit distance (ran with hamming distance 1 and 2 nt 
in our case) to the most abundant sequence; (2) adjacency-directional: same as 
adjacency, but the minor nodes can be collapsed only if they have less than 0.5× the 
reads of the most abundant sequence; (3) adjacency-singleton: same as adjacency, 
but the minor nodes can be collapsed only if they are observed by exactly one read; 
(4) cluster: the network of closely related UMI sequences is resolved by collapsing 
all sequences within the given edit distance to the node with the highest number 
of read counts. Nodes that were related at the same distance to one of the collapsed 
sequences and equally or less abundant are then also collapsed to the main node, 
even if their edit distance is higher than the initial parameter.

Computational analysis of the set of molecular spike-ins. All analyses were 
performed in R (v.4.1.2). Reads aligned to the 11 distinct molecular spikes 
sequences after processing with zUMIs were loaded and filtered by the following 
criteria: (1) match to 1 of the 24 expected 7 nt barcode per distinct sequence (with 
1 nt edit distance); (2) presence of 14 nt internal spUMI and (3) matching 25 nt 

constant sequence downstream of the spUMI (with up to 3 nt edit distance). For 
the determination of the complexity of the spike-in pool, we used the ground-truth 
sequencing and computed the unique hamming distance 2 nt corrected spUMI 
numbers in each of the 264 barcodes. After downsampling to decreasing read 
depths, we also fit a nonlinear asymptotic model to confirm that all expected 
spike-in molecules were indeed seen by the ground-truth sequencing.

Estimation of molecular spike-in amounts per well. All empty wells, containing 
spike-ins in the lysis buffer but received no cell (endogenous reads <20% and 
spike-in mapped reads >80%), were used to infer the captured amount of spUMI 
molecule counts. For each well, we sampled coverages from 10,000 to 150,000 reads 
and quantified the number of unique spUMIs over all 264 spike-in transcripts. 
We then fit a nonlinear asymptotic model to the depth-molecule relationship 
and derived the asymptote, that is, captured molecules at saturation from the 
coefficients of the model fit. We compared this estimate of captured molecules to 
the expectation of molecules added to each well via the lysis buffer. We diluted 
spike-in RNA from a starting concentration of 10.7 ng μl–1 (determined from three 
independent Qubit RNA HS measurements, s.d. 6.5%) to an estimated 0.0321 pg μl–

1 on average per well. Using the relative molecular abundances of the 11 distinct 
sequences in the molecular spike transcript mix derived from the ground-truth 
sequencing experiment, we calculate the exact molecular weight accounting for 
their distinct lengths and GC contents. Thus, the number of added RNA molecules 
is, on average, 49,125 with variations expected from Qubit quantification, pipetting 
accuracy during dilution and dispensing of lysis buffer.

Quasi-UMI correction procedure. To account for well-to-well variation in the 
present amount of molecular spike RNA, we first check the relationship of the 
observed spike read depth and number of molecules for each given cell. We 
use the empty-well-derived spike-in detection model to predict whether more 
or less molecules than expected on average are being detected and correct the 
expected total amount of spike-in molecules present in the well accordingly. In 
addition, we can use the model to predict the level of sequencing saturation in 
the present well. To estimate the cellular RNA content of each cell, we compute 
the percentage of spike-in reads among mRNA-aligned reads (nReadsspike per 
nReadsendogenous + nReadsspike) and derive the total RNA complexity of the cells from 
the percentage of spike-in and absolute number of spike-in molecules estimated. 
Next, we use the count table of spUMI counts per each of the 264 barcodes per 
cell as input into the maximum-likelihood estimation of the Poisson-lognormal 
distribution parameters as implemented in the quminorm R package (https://
github.com/willtownes/quminorm) v.0.1.0 using the poilog_mle function. We 
then use the quminorm function to perform the quantile normalization using the 
determined shape parameters and in parallel also with small step variations of up 
to ± 10% of the estimated parameter. After the parallel quantile-normalizations, we 
empirically choose for each cell the output of the shape parameter where the total 
counts resemble the calculated expectation most closely.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw data files for scRNA-seq experiments and molecular spikes ground-truth 
sequencing have been deposited in Array Express at European Bioinformatics 
Institute under accession numbers E-MTAB-10372, E-MTAB-11433 and 
E-MTAB-11448. Human genome build hg38 fasta files and gene annotation in GTF 
format (Grch38.95) were obtained from Ensembl.

Code availability
We are making the code for processing, filtering, quality control and visualization 
of molecular spikes publicly available as a R package (https://github.com/
cziegenhain/UMIcountR).
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Extended Data Fig. 1 | Quality control of 5ˈ molecular spike-in. (a) Sequence logo of the 18 random spUMI bases derived from all reads in the Smart-seq3 
dataset. At each position, the frequency of all 4 bases is visualized by the size of the DNA letter. (b) Minimal distance of uncorrected spUMIs to the 
closest spUMI sequence for all pairwise within-cell comparisons and pairwise comparisons of spUMIs to 1000 randomly samples spUMI sequences 
across cells (total 2,233,878 comparisons). (c) Cumulative number of molecular spikes (n = 885,925) sorted by their occurrence over cells (n = 340). 
Dashed line indicates the chosen QC cutoff at 4 cells.
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Extended Data Fig. 2 | Expression levels in HEK293FT cells. (a,b) Quality of Smart-seq3 libraries (n = 111 cells) after filtering. Shown are the number 
of detected (a) genes and (b) molecules per HEK293FT cell. Boxplots show the median, first and third quartiles as a box, and the whiskers indicate the 
most extreme datapoint within 1.5 lengths of the box. (c) Histogram showing the mean UMI count per cell for all genes expressed in at least 50% of cells 
(n = 10,198 genes). (d) Schematic overview of the counting-critical steps in the Smart-seq3 protocol. (e) Schematic overview of the evaluated protocol 
variations for the SCRB-seq library preparation.
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Extended Data Fig. 3 | Counting difference in Smart-seq3 protocol variations. (a,b) For variations of the Smart-seq3 protocol, molecular spikes were 
sampled at varying mean expression levels. Colored lines indicate the mean counting difference in (a) absolute numbers or (b) relative to the mean and 
shaded by the standard deviation for library preparation conditions 0.1 µM FWD (n = 48 cells), TSO + 0.1 µM FWD (n = 48 cells), TSO + 0.5 µM FWD 
(n = 39 cells) and TSO + 1.0 µM FWD (n = 45 cells).
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Extended Data Fig. 4 | Quality control of 3ˈ molecular spike-in. (a) Sequence logo of the 18 random spUMI bases derived from all reads in the 10x 
Genomics dataset. At each position, the frequency of all 4 bases is visualized by the size of the DNA letter. (b) Minimal distance of uncorrected spUMIs to 
the closest spUMI sequence for all pairwise within-cell comparisons and pairwise comparisons of spUMIs to 1000 randomly samples spUMI sequences 
across cells (total 19,773,932 comparisons). (c) Cumulative number of molecular spikes (n = 1,938,392) sorted by their occurrence over cells (n = 1,359). 
Dashed line indicates the chosen QC cutoff at 4 cells.
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Extended Data Fig. 5 | Strategy for sub-sampling molecular spikes to assess counting reliability across expression levels. (a) Strategy for computational 
analysis of 10x Genomics spUMI data. Molecular spike-ins observed in only one cell barcode and covered by 10–20 sequencing reads are selected along 
with their associated 10x UMI sequence. spUMIs were sampled at 60 expression levels ranging from 1 to 1000 molecules for 100 in silico cells. For each 
‘cell’ at each expression level, molecules were analyzed at depth of 1 to 10 reads and UMI error correction was applied. Created with Biorender.com (b,c) 
We quantified the spUMIs and 10x UMIs and display the mean counting difference over the 100 replicates as a contour plot depending on expression 
level and read coverage in absolute numbers and normalized to the mean copy number, where (b) shows uncorrected 10x UMI counts and (c) shows UMI 
counts after applying an error correction at hamming distance 1. In each of the contour plots, the left panel is colored by the deviation from ground truth 
counting on a log10 scale with a pseudocount of 1 added and the right side denotes the deviation from ground truth relative to the mean expression level.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Computational algorithms for UMI collapsing. (a) Scenario of a network of UMI sequences where each UMI sequence is visualized 
along with the number of reads it was observed by. Mismatches to the center UMI sequence are shown in red and the edit distance (hamming distance 
HD) is indicated in blue. (b) Unique: Every unique sequence is counted as a molecule (naive counting, e.g. Kallisto). UMI count in the network = 6. (c) 
Cluster: The network is resolved by collapsing all sequences within HD1 to the UMI with the highest number of read counts. UMIs that were related at HD1 
to one of the collapsed sequences and equally or less abundant are then also collapsed to the main UMI sequence, even if their edit distance is higher than 
1. UMI count in the network = 1. (d) Adjacency: The network is resolved by collapsing all sequences within HD1 to the UMI with the highest number of 
read counts. UMI count in the network = 2. (e) Directional Adjacency: The network is resolved by collapsing all sequences within HD1 to the UMI with the 
highest number of read counts, unless they are observed with more than 50% of read support compared to the main UMI. UMI count in the network = 3. 
(f) Singleton Adjacency: The network is resolved by collapsing all sequences within HD1 and observed with only 1 read to the UMI with the highest number 
of read counts. UMI count in the network = 5.
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Extended Data Fig. 7 | Complex set of molecular spike-ins. (a,b) Number of unique spike-in molecules determined in the ground-truth complexity 
sequencing experiment as a function of sequencing depth for (a) each of the distinct spike-in sequences or (b) overall. (c) Scatter plot showing the 
Smart-seq3 molecule counts (y-axis) versus spUMI molecule counts (x-axis) in a randomly drawn HEK293FT cell. Dots are colored by spike-in transcript 
sequence. Spearman rank correlation r = 0.99. (d) Read mapping statistics for wells with HEK293FT cells and spike-ins only. Left panel: percentage of 
reads mapping to human exons (x-axis) against percentage of reads mapping to molecular spikes. Middle panel: Percentage of reads mapping to human 
exons (y-axis) against sequenced reads per well. Right panel: Percentage of reads mapping to molecular spikes (y-axis) against sequenced reads per well. 
(e) Scatter plot showing observed cellular RNA counts (y-axis) against the number of sequenced reads (x-axis), per cell, with linear regression shown as 
line and 95% confidence interval as gray shaded area. (d) The percent of reads aligning to molecular spike-ins as a function of sequence depth, with each 
colored line showing a unique cell.
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Extended Data Fig. 8 | Molecular spike internal barcode-based expression standard curves. For each of the 11 distinct spike-in sequences, we show 
the total number of unique spike-in molecules per barcode (y-axis; log2 transformed axis) when sequenced to saturation. On the x-axis, we denote the 
expected expression rank of each barcode. Linear regression shown as line and 95% confidence interval as gray shaded area.
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