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Abstract: The relationship between synthetic factors and the resulting structures is critical 

for rational synthesis of zeolites and related microporous materials. In this paper, we develop 

a new feature selection method for synthetic factor analysis of (6,12)-ring-containing 

microporous aluminophosphates (AlPOs). The proposed method is based on a maximum 

weight and minimum redundancy criterion. With the proposed method, we can select the 

feature subset in which the features are most relevant to the synthetic structure while the 

redundancy among these selected features is minimal. Based on the database of AlPO 

synthesis, we use (6,12)-ring-containing AlPOs as the target class and incorporate 21 synthetic 

factors including gel composition, solvent and organic template to predict the formation of 

(6,12)-ring-containing microporous aluminophosphates (AlPOs). From these 21 features,  

12 selected features are deemed as the optimized features to distinguish (6,12)-ring-containing 

AlPOs from other AlPOs without such rings. The prediction model achieves a classification 

accuracy rate of 91.12% using the optimal feature subset. Comprehensive experiments 

demonstrate the effectiveness of the proposed algorithm, and deep analysis is given for the 

synthetic factors selected by the proposed method. 
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1. Introduction  

As an important class of crystalline materials, zeolites and related microporous materials have been 

widely used in the petroleum industry for catalysis, separation and ion-exchange [1,2]. Following the 

discovery of the aluminophosphate molecular sieves AlPO4-n (n denotes the structure type) in 1982, a 

large variety of open-framework aluminophosphates with different structure types have been synthesized 

and open-framework aluminophosphate materials has become an important member of the porous 

crystal material family. Recently, the rational synthesis of microporous inorganic materials has attracted 

extensive attention [3–10]. However, since the synthesis of such materials is typically carried out  

in a gel medium under hydrothermal/solvothermal conditions by using alkali metal ions or organic 

amines/ammoniums as the templates or structure-directing agents (SDAs) [11], it is very complicated 

and influenced by many factors. Therefore, in order to provide guidance to rational synthesis of 

microporous inorganic materials, the researchers of State Key Laboratory of Inorganic Synthesis and 

Preparative Chemistry of Jilin University established an international ALPO synthesis database [12] 

based on a large number of synthesis experiments and collections from the papers. 

With the rapid development of computer technology and artificial intelligence, data mining plays an 

increasingly important role in more and more research areas. The goal of data mining is to find the 

implied knowledge from the given data. The applications of data mining techniques in chemical 

science have shown their feasibility for numeric calculation, simulation and data analysis. Nowadays, 

one of the most widely used data mining techniques in chemical science is feature selection. Feature 

selection is usually used as a preprocessing step in machine learning that can select the most important 

features for particular tasks by seeking the potential information hidden in the data. Recently, several 

feature selection methods were successfully applied in chemical data analysis. Pichler [13] developed 

an interactive feature selection method based on KNN (K Nearest Neighbor) to classify doublet/singlet 

patterns from the same Stationary Electrode Polarography (SEP) data. Liu evaluated the performance 

of the methods as Information Gain, Mutual Information, χ2-Test (CHI), Odds Ratio (OR) and GSS 

Coefficient (GSS) for finding the optimal feature subset in drug discovery; the features were firstly 

ranked according to the scores obtained by different feature selection methods and then the top-ranking 

features were used for classification task [14]. Teramoto and Fukunishi proposed a supervised 

consensus scoring (SCS) method for docking and virtual. In SCS, a series of scoring functions 

including PLP, F-Score, LigScore, DrugScore, LUDI, X-Score, AutoDock, PMF, G-Score, ChemScore 

and D-Score were integrated to form a complementary scoring function, which could compensate for 

the deficiencies of each scoring method [15]. In addition, a Mutual Information Gain algorithm was 

utilized to generate a feature subset which excluded features having weak correlation with the target 

variable, and then the selected features were input into a Genetic Programming model to analyze 

QSAR (Quantitative Structure Activity Relationship) data [16]. In a further study, 649 bitter and 

13,530 randomly selected molecules from the MDL Drug Data Repository (MDDR) were analyzed by 

Information Gain, and the selected features were then classified by Naive Bayes classifier to identify 
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the bitterness of small molecules [17]. Feature selection methods also have been applied to AlPOs 

database analysis. Li et al. evaluated the classification performance produced by different 

combinations of synthetic features (11 features in total) using Support Vector Machines (SVM), and 

then checked which individual or combined features effected most for distinguishing the two classes of 

AlPOs. They found that suitable template parameters were of vital importance to the classification 

performance [18]. Huo et al. [19], measured the importance of the various synthetic features  

(26 features in total) of AlPOs by F-Score [20], and sorted the features in descending order according 

to their importance degree. The features were then added into Decision Tree (DT) model orderly to test 

their discriminative abilities. They regarded the feature subset that could reach the best classification 

performance as the optimal subset. Through their experiments, they found that T1_Distance2 (the 

second longest distance of organic template) was the determinant factor to distinguish AlPO4-5 from 

other types of aluminophosphate molecular sieves. Although the pioneering works in [18] and [19] 

have shown that the feature selection techniques can be applied for AlPOs database analysis 

effectively, there were also some limitations in them. Firstly, the feature subset evaluated in [18] was 

generated using an exhaustive searching strategy, which made it hard to be scaled to high-dimensional 

AlPOs data. Secondly, the optimal feature subsets in both [18] and [19] were evaluated by a specific 

classifier (DT in [19] and SVM in [18]). Thus, the classifiers need to be trained and tested many times 

in the feature selection procedure, which made them very time-consuming. Finally, the correlation among 

the selected features was neglected in both [18] and [19]. Some researchers [21] have pointed out that a 

good feature subset should be the one that contains features highly correlated with the class, while 

uncorrelated with each other. Therefore, ignoring the correlation among the selected features might 

cause the problem of “information redundancy”, which hinders optimal results from the selected features.  

In order to overcome the limitations of the previous works, a new feature selection algorithm based 

on maximum weight and minimum correlation criterion is proposed in this paper. The proposed 

method not only considers the importance of the feature, but also takes the correlation among the 

selected features into account. Thus, through the proposed method, we can select the optimal feature 

subset in which the features are maximally relevant to the synthetic structure while the redundancy 

among these selected features is minimal. In the experiments, three feature evaluation algorithms 

(Fisher score, ReliefF score and Gini score) are combined with redundancy measurement method 

(Pearson correlation coefficient) to test the performance of our method. Compared with other feature 

selection methods [18,19] for AlPOs database analysis, our method possesses the following 

advantages. (1) The optimal feature subset generated by our method does not depend on any classifier. 

Thus, the feature selection procedure does not need to train any classifier, which makes our algorithm 

more efficient; (2) The feature selection procedure of our algorithm is a pair-wise updating 

optimization process, so it can be easily scaled to high-dimensional AlPOs data; (3) The proposed 

method takes the correlation among features into consideration. Thus, it can obtain better results than 

other state of the art feature selection methods. 

2. Results and Discussions 

In this section, we first compare the performance of the proposed algorithm with other classical 

scoring feature selection methods that neglect the correlation among features during the feature 
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selection process. Then, the feature selection results obtained by the proposed algorithm are analyzed 

and compared with the previous works [18,19]. At last, we also compare the proposed algorithm with 

several state of the art feature selection approaches, such as Constraint score [22], MRMR [23,24] and 

FCBF [25]. 

In the experiments, the Nearest Neighbor and Naive Bayes classifiers are employed as prediction 

models for their advantage of simplicity. In order to validate the effectiveness of the algorithm 

comprehensively, we use 10-fold cross validation in the experiments. 

2.1. Performance Measures 

The synthetic records used in the experiments contain 398 (6,12)-ring-containing AlPOs and  

852 AlPOs without such rings. For the purpose of distinguishing the (6,12)-ring-containing AlPOs 

from others, we deem the former as positive samples and the latter as negative samples respectively.  

It is obvious that the numbers of positive and negative samples are imbalanced in this study. So 

besides the classification accuracy rate, we also utilize the F-measure to evaluate the performances of 

the proposed algorithm. 

Suppose n+ and n− are the numbers of positive samples and negative samples. With reference to the 

confusion matrix [26] in Table 1, the classification accuracy rate (Acc_Rate) and F-measure can be 

denoted as:  

classification accuracy rate
TP TN

n n 





 (1)

and  

2(1 β )recall precision
-measure

β recall precision
F

 


 
 (2)

where recall TP
TP FN  , precision TP

TP FP  , and β is a parameter to adjust the relative 

importance degree between recall and precision. In this work, we set β as 1. The value of F-measure 

lies between 0 and 1, with value closer to 1 indicating better performance for imbalanced problems. 

Table 1. Confusion matrix. 

Hypothesis Actual positive Actual negative 

Hypothesise positive True positive (TP) False positive (FP) 
Hypothesise negative False negative (FN) True negative (TN) 

2.2. Effectiveness of the Proposed Method 

We will firstly verify the effectiveness of the proposed method by comparing it with some classical 

scoring feature selection methods without considering the correlation among features. In this 

experiment, Fisher score [27], ReliefF score [28] and Gini score [29] are applied to measure the 

importance of the feature, while Pearson Correlation Coefficient (PCC) is applied to measure the 

correlation among features. The classification accuracy rate of different methods under various feature 

dimensions can be seen in Figure 1. In this figure, FI (Fisher improve) denotes the proposed method 
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that utilizes the Fisher score and Pearson Correlation Coefficient to estimate the importance and 

correlation of features. RI (ReliefF improve) denotes the proposed method that utilizes the ReliefF 

score and Pearson Correlation Coefficient to estimate the importance and correlation of features. And 

GI (Gini improve) denotes the proposed method that utilizes the Gini score and Pearson Correlation 

Coefficient to estimate the importance and correlation of features. F, R and G denote original Fisher 

score, ReliefF score and Gini score respectively. The best classification accuracy rates obtained by 

these methods are listed in Table 2. 

Figure 1. Comparison of the original and proposed feature selection methods. (a) Using 

Nearest Neighbor as classifier; (b) Using Naive Bayes as classifier. 

 

 

(a) (b) 

Table 2. Highest classification accuracy rates reached by the original and the proposed 

feature selection methods. 

 Nearest Neighbor Naive Bayes 

Method Highest Acc_Rate  Dimension Highest Acc_Rate Dimension 

F 0.9080 20 0.8736 3 
FI 0.9112 12 0.8767 5 
R 0.9088 17 0.8608 21 
RI 0.9096 17 0.8608 3 
G 0.9080 21 0.8624 19 
GI 0.9096 13 0.8648 13 

From Figure 1 and Table 2, it can be seen that through taking the correlation among the selected 

features into consideration, the proposed algorithm can outperform the classical scoring feature 

selection methods. When the Nearest Neighbor classifier is utilized, the best classification accuracy 

rates obtained by FI, RI and GI are 91.12%, 90.96% and 90.96% respectively. When the Naive Bayes 

classifier is employed, the best classification accuracy rates obtained by FI, RI and GI are 87.67%, 

86.08% and 86.48%. Moreover, it also should be noted that the dimensions of the optimal feature subset 

obtained by the proposed algorithm are less than the classical scoring feature selection algorithms in 

most cases. 

In this paper, the numbers of the positive samples and negative samples are imbalanced, so we take 

the F-measure to evaluate the performance of proposed method. As shown in Table 3, the proposed 
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algorithm is superior to the classical scoring feature selection methods for the class imbalance problem 

especially when the Fisher score is utilized to evaluate the importance of feature. 

Table 3. Highest F-measure reached by the original and the improved feature selection methods. 

Method Highest F-measure (Nearest Neighbor) Highest F-measure (Naive Bayes) 

F 0.8144 0.7817 
FI 0.8586 0.8071 
R 0.8585 0.7851 
RI 0.8599 0.7851 
G 0.8518 0.7640 
GI 0.8579 0.8003 

From above experimental results, we can find that the performance of Fisher score combined with 

PCC in the proposed algorithm is superior to ReliefF score and Gini score combined with PCC, since 

the optimal feature subset generated by FI is in a lower dimension and wins the highest classification 

accuracy rate as well. So in the next experiment, we will focus on analyzing the features selected by FI. 

2.3. Analysis of the Feature Selection Results  

In this part, we make some analysis about the feature selection result obtained by the proposed 

method (Fisher score combined with PCC) and compare our feature selection result with the previous 

works [18,19].  

Here, let’s reconsider the performances of the proposed method (FI-NN) and the original Fisher 

score (F-NN) in Figure 1a. Firstly, we can find that the classification performances of the proposed 

method are superior to the original Fisher score under most dimensions. This means that by reducing 

the redundancy from selected features, the proposed method can select more optimal feature subsets 

for distinguishing the (6,12)-ring-containing AlPOs. Secondly, it can be observed that when the 

dimension of the selected features increases from 1 to 12, the classification performance of the FI 

shows a dramatic upward trend, and reaches its peak point at dimension 12. However when the dimensions 

of the selected features are larger than 12, the classification performance presents a tiny downward 

trend. This suggests that the features selected in the previous 12 dimensions may take significant 

information for separating the (6,12)-ring-containing AlPOs from others. Thirdly, classification 

accuracy rate sharply increases from about 75.5% to 86.2% when F12 (the second longest distance of 

organic template) is added to the optimal feature subset at dimension 3. This phenomenon indicates 

that the second longest distance of organic template is a very crucial factor for the rational synthesis of 

(6,12)-ring-containing AlPOs. 

Figure 2 shows the feature selection results obtained by Fisher score and the proposed method (FI). 

In this figure, in order to distinguish different types of features more clearly, we assign different colors 

to different categories of features (as shown in Figure 2a). The features marked with green color 

belong to gel composition, the features marked with blue color and purple color belong to solvent and 

organic template. Figure 2b,c illustrate feature subsets selected by the original Fisher score and the 

proposed algorithm (FI). In Figure 2b, the features are sorted in descending order according to their 

Fisher scores. Since the features with higher Fisher scores are more important, if we want to obtain a 
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feature subset that contains k features, we just need to select the first k features in the descending 

sequence mentioned above. Figure 2c demonstrates the features selected by the proposed algorithm 

(FI) under every dimension (the selected features are sorted in ascending order according to their ID). 

The features selected by FI under dimension 12 which could lead to the highest classification accuracy 

rate are F1 (the molar amount of Al2O3), F3 (the molar amount of solvent), F4 (the molar amount of 

template in the gel composition), F6 (the melting point), F9 (the dipole moment), F12 (the second 

longest distance of organic template), F15 (the dipole moment), F16 (the ratio of C/N), F17 (the  

ratio of N/(C + N)), F18 (the ratio of N/Van der Waals volume) and F21 (the maximal number of 

protonated H atoms). 

Figure 2. The features selected by Fisher and Fisher combined with PCC. (a) Different 

category synthesis factors are represented as different color; (b) features selected by Fisher 

score; (c) features selected by Fisher score combined with PCC in our algorithm. 

 
(a) 

 
(b) 

 
(c) 

There is a remarkable phenomenon in Figure 2b that the first 8 features selected by Fisher score are 

all marked with purple color, which means they all belong to organic template. Although the organic 

template factors are significant for AlPOs synthesis, these factors are not sufficient to distinguish 

AlPOs with different structures effectively. From Figure 1a, we can find that when the first two 

features F16 (ratio of C/N) and F12 (second longest distance of organic template) are selected, the 

classification accuracy rate of the classifier could reach about 71%. However, after the other  

6 template features with higher Fisher score (F18 (the ratio of N/Van der Waals volume), F17 (the ratio 

of N/(C + N)), F19 (the Sanderson electronegativity), F14 (the Van der Waals volume), F21 (the 

maximal number of protonated H atoms), F13 (the shortest distance of organic template)) are added 

into the selected feature subset gradually, the classification accuracy rate of the classifier is almost 

unchanged. Failure of the feature selection described above is caused by information redundancy, or 

the correlation among the selected features. Since the first 8 features in Figure 2b come from the same 

category (organic template), they are far from orthogonal and cannot improve the performance of the 

classification task. In other words, although the first 8 template features in Figure 2b have higher 
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Fisher score values, selecting them all into the feature subset does not enable the addition of new 

information into the selected feature subset. This clarifies the importance of accounting for redundancy 

during the feature selection process. 

Li et al. found the optimal feature subset was consisted of 8 features that obtained the highest 

classification accuracy rate of 82.44% by SVM classifier [18]. However, their feature selection process 

was an exhaustive searching strategy, so the entire process was extraordinarily time consuming. In 

their study, the correlation among the selected features was not at all mentioned. Thus, the correlations 

between some of the selected features were very high, for example: the correlation between F7 (boiling 

point) and F8 (dielectric constant) was 0.8370; the correlation between F7 (boiling point) and F9 

(dipole moment) was 0.8306; the correlation between F8 (dielectric constant) and F9 (dipole moment) 

was 0.9512. Huo et al. worked out that a feature subset consisting of 19 features was the best 

combination for predicting AlPOs, with the highest AUC of 90% and the highest classification 

accuracy rate of 88.18% [19]. Nevertheless, since the correlation among features was also neglected in 

their study, there were some highly correlated features in their optimal feature set too. For example, the 

correlation between F8 (dielectric constant) and F10 (polarity) was 0.9849, while the correlation 

between F14 (Van der Waals volume) and F20 (number of free rotated single bond) was 0.9073.  

In the proposed method, we take into account the correlation among the selected features in the 

feature selection process. So, as shown in Figure 1a the classification accuracy rate curve of FI 

presents a distinctive uptrend before getting to the peak point, and when features belonging to a new 

category are added to the selected feature set at dimension 2 and 6, the curve appears obviously 

ascending. In the optimal feature set produced by this study, the molar amount of Al2O3, solvent and 

template are gel composition features; melting point and dipole moment are solvent features; the second 

longest distance of organic template, the dipole moment, the ratio of C/N, the ratio of N/(C + N), the ratio 

of N/Van der Waals volume and the maximal number of protonated H atoms are organic template 

features. Since the selected features by the proposed algorithm are comprehensive, we obtain the 

highest classification accuracy rate as 91.12% using Nearest Neighbor classifier, which is much 

simpler than the classifiers employed in [18] and [19]. Xu et al. pointed out that synthesis of 

microporous aluminophosphate was carried out in a gel medium under hydrothermal/solvo-thermal 

conditions by using the templates as structure-directing agents [11]. Gel composition is the material 

basis for producing chemical reaction, solvent provides the reaction environment, and template plays a 

role of structure-directing. Among the optimal features, F12 (second longest distance of organic 

template) is the most important feature. In the rational synthesis of microporous materials, the 

geometric factor of the organic template plays a vital role to affect the shape and the pore size of an 

AlPO structure. For open-framework AlPOs with (6,12)-rings, the organic templates are usually 

located in the one-dimensional 12-ring channels, thus their longest direction is extended along the 

channels. Therefore, the second longest distance of the organic templates is determinative to the 

window size of the channels [18]. From Figure 2, we can see that the optimal feature subset selected by 

our method contains 12 features belonging to three categories. However, the original Fisher score only 

selected features from two categories at dimension 12. Moreover, we can find that the second longest 

distance of the organic templates (F12) is selected by our method. These observations indicate that the 

proposed method is more consistent with the prior knowledge of synthetic chemists. 
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Compared with the methods in previous works [18,19], the proposed method has the following 

advantages. Firstly, it is independent of any classifier. Thus, as can be seen from the experimental 

results, the performances of our method are superior to other classical feature selection algorithms 

under both Nearest Neighbor and Naive Bayes classifiers. Secondly, the proposed method takes the 

correlations among the selected features into consideration. Therefore, it can remove the redundant 

information from the selected feature subset. However, we should point out that there also exists an 

inconvenient point in the proposed method. Since various feature scoring and correlation measurement 

algorithms can be incorporated into our method, there may be a need to conduct experiments to verify 

which combination of feature scoring and correlation measuring algorithms can obtain the best feature 

selection result. 

2.4. Comparisons with Other Feature Selection Methods 

In this subsection, we compare the performance of the proposed method with some other state of 

the art feature selection methods including T-test [30], Constraint score [22], MRMR [23,24] and 

FCBF [25]. Among these methods, T-test and Constraint score are univariate feature selection methods 

that select features by the weights or importance degrees of features, while both FCBF and MRMR are 

multivariable feature selection methods that take the correlation among the selected features into 

consideration. We compare their performances under various dimensions on the AlPOs dataset  

(Figure 3). Here, it should be noted that since the number of selected features cannot be predefined in 

FCBF, we are unable to test its performance under every dimension. Thus, only the average 

classification accuracy rate of 10-fold cross validation of FCBF is shown in Figure 3. The best 

classification accuracy rates obtained by these methods are listed in Table 4. 

Figure 3. Performance comparison of the proposed algorithm and some popular feature 

selection methods. (a) Using nearest neighbor as classifier; (b) Using Naive Bayes as classifier. 

(a) (b) 
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Table 4. Highest classification accuracy rates reached by different feature  

selection methods. 

 Nearest Neighbor Naive Bayes 

Method Highest Acc_Rate Dimension Highest Acc_Rate Dimension

Constraint Score 0.908 21 0.8639 19 
Ttest 0.9096 19 0.8728 2 
FCBF 0.8072 / 0.8584 / 

MRMR 0.908 21 0.868 1 
Our algorithm (FI) 0.9112 12 0.8767 5 

From Figure 3 and Table 4, we can find that the proposed algorithm outperforms other feature 

selection methods since it could get higher classification accuracy rate under relatively lower 

dimension, especially when the Nearest Neighbor is utilized for classification. However, it also can be 

observed that the proposed algorithm does not win over other algorithms by a very large margin in 

some cases. Therefore, like the experiments in Section 2.2, the F-measure is also employed here to 

evaluate the performances of different algorithms. From the F-measure values obtained by different 

algorithms in Table 5, we can see that the performance of the proposed algorithm is much better than 

other algorithms. These experimental results are consistent with Section 2.2. 

Table 5. Optimal F-measure values reached by different feature selection methods. 

Method F-measure (Nearest Neighbor) F-measure (Naive Bayes) 

Constraint Score 0.8388 0.7588 
Ttest 0.8046 0.7825 
FCBF 0.5416 0.7730 

MRMR 0.7723 0.7721 
Our algorithm (FI) 0.8586 0.8071 

3. Materials and Method 

3.1. Data Sets 

The microporous aluminophosphate dataset used in this paper comes from the database of AlPOs 

synthesis established by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of 

Jilin University (http://zeobank.jlu.edu.cn/). This database contains 1600 synthetic records in all. After 

removing the records that contain missing values (about 29% of the total), we use the remainder  

1250 records in our experiment. In these records, 398 (6,12)-ring-containing AlPOs are deemed as 

positive samples, while 852 non-(6,12)-ring-containing AlPOs are deemed as negative samples. In this 

study, 21 synthetic features (or factors) belonging to three categories (Gel composition, Solvent and 

Organic template) are concerned (shown in Table 6). For more details about the definitions and 

meanings of the synthetic factors in Table 6, see [31].  
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Table 6. Description of the input synthetic factors. 

Category ID Description 

Gel F1 The molar amount of Al2O3 in the gel composition 
composition F2 The molar amount of P2O5 in the gel composition 

 F3 The molar amount of solvent in the gel composition 
 F4 The molar amount of template in the gel composition 

Solvent F5 The density 
 F6 The melting point 
 F7 The boiling point 
 F8 The dielectric constant 
 F9 The dipole moment 
 F10 The polarity 

Organic template F11 The longest distance of organic template 
 F12 The second longest distance of organic template 
 F13 The shortest distance of organic template 
 F14 The Van der Waals volume 
 F15 The dipole moment 
 F16 The ratio of C/N 
 F17 The ratio of N/(C + N) 
 F18 The ratio of N/Van der Waals volume 
 F19 The Sanderson electronegativity 
 F20 The number of free rotated single bond 
 F21 The maximal number of protonated H atoms 

3.2. The Proposed Algorithm 

Formally, suppose nm
n RdddD  ],...,,[ 21  is the input dataset that contains n samples in m 

dimensional space (For the microporous aluminophosphate dataset utilized in this study, the values of 

m and n in D are 21 and 1250, respectively). We can denote each row vector of D by Pi  

(i = 1, …, m), which is corresponding to a feature. The aim of the proposed feature selection algorithm 

is to select k (k < m) features from the original feature set to form a feature subset U in which the 

importance of the features are maximizing and the correlations among the features are minimizing. 

Let 1
21 ],...,,[  mT

m RsssS be the positive weight of each feature which reflects its importance, 

where si is the weight of the ith feature (i = 1, …, m). In this study, the weights of features can be 

obtained by any classical feature evaluation method (such as Fisher score, ReliefF score and Gini 

score), and the features with larger weights are more important. Let mmRC   be the correlation matrix, 
where )(0 jiCij   indicates the correlation between the ith and jth features. Since the self-correlation 

of the synthetic factor is meaningless, we assign the diagonal elements Cii (i = 1, 2, …, m ) to be 0. 
T

mffff ],...,,[ 21  is an indicator vector, where fi = 1 means that the ith feature is selected into the 

subset U, and fi = 0 means the ith feature is not selected. The objective function of the proposed feature 

selection algorithm can be defined as: 
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In Equation (3), 
k

Sf T

 stands for the average weight of the selected features, 
)1( kk

Cff T

 stands for the 

average correlation among the selected features, and the constraints are used for restricting the number 

of selected features in the U to be k. Thus, maximizing Equation (3) can ensure that the selected 

features in U are most important and least redundant. However, Equation (3) is a quadratic integral 

programming problem and it is hard to be solved [32]. Therefore, in our study, we relax the constraint 
of  1,0if  to ]1,0[if , and convert the objective function in Equation (3) to: 
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3.3. Solution 

In this section, a pair-wise updating algorithm similar to that found in [32] is introduced to solve the 

maximization problem in Equation (4).  

The Lagrangian function of Equation (4) can be derived as:  
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Where λ, μi and βi are Lagrangian multipliers. Based on the Karush-Kuhn-Tucker (KKT) conditions [33], 

the solution that maximizes the Equation (4) must satisfy the first-order necessary conditions as: 
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2  could reflect the relationship between the feature’s weight and its average 

correlation with other features in U, we call it the reward of ith feature, and denote it by ri(f). According 

to the value of 
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2 , we can partition the feature set into three subsets, U1= {Pi | fi=0},  

U2= {Pi |  1,0if } and U3= {Pi | fi=1}. From the constraints of f in Equation (4), it can be found that if 

a feature is in subset U1 or U2, the value of its corresponding element in f can be increased. On the 

contrary, if a feature is in subset U2 or U3, the value of its corresponding element in f can be decreased. 

The pair-wise updating strategy to solve Equation (4) is defined as: 
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That is, only the values of two elements in f (fi and fj, ji  ) are updated in each iteration of our 

algorithm. After updating fi and fj, the change of Equation (4) is: 
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where ei is a row vector with only the ith element equal to 1, and 0 otherwise. So, Equation (9) can be 

further converted as: 
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With the aim of maximizing Δ, according to Equation (10) and the constraints of f, α can be 

computed as:  
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Note that in the updating algorithm above, only the situation that ri(f) ≥ rj(f) is considered.  

If ri(f) < rj(f), exchange i and j to implement the algorithm. 

By iteratively updating the values of pair-wise elements in f and computing αusing Equations (8) 

and (11), the objective function in Equation (4) can be increased and reach its maximum [32]. The 

implementation details of the proposed feature selection method are summarized in Algorithm 1. 

Algorithm 1. The feature selection process of the proposed method. 

Input: The original data sample D. 

Output: The indicator vector f. 

1. Compute scores of features S and correlation matrix C. 

2. Initialize f; 

3. Do 
4. Select 21 UUPi  which has the largest reward ri(f); 

5. Select 32 UUPj  which has the smallest reward rj(f); 

6. if ri(f) > rj(f) 

Compute α using Equation (11), and then update fi and fj according to Equation (8); 

7. else if ri(f) = rj(f) 

8. if 2Cij − Cii − Cjj > 0 

Compute α using Equation (11), and then update fi and fj according to Equation (8);  

9. else if 2Cij − Cii − Cjj = 0 
Check whether there exist a 210 UUP  and a 32 UUPx   such that 

2Cox − Coo − Cxx > 0 and ro(f) = rx(f). If the pair (Po, Px) can be found, Compute α using 

Equation (11), and then update fo and fx according to Equation (8); Otherwise, f is a 

solution of Equation (4); 

10. end if 

11. end if 

12. until f is a solution of Equation (4). 

As can be seen in Algorithm 1, a heuristic strategy is adopted in each iteration of the pair-wise 

updating algorithm to increase the objective function maximally. In this strategy, a pair of elements in f 

whose values should be updated is selected according to the rewards of their corresponding features. In 

other words, the element whose value should be increased in each iteration is selected as the one 

whose corresponding feature has the largest reword in subset U1 or U2, and the element whose value 

should be decreased in each iteration is selected as the one whose corresponding feature has the 

smallest reword in subset U2 or U3. From Equation (10), we can find that the increase of the objective 

function in Equation (4) can be maximized by this method. The solution of proposed algorithm is 

obtained when the value of Equation (4) cannot be further increased. 

4. Conclusions 

In this study, a novel feature selection method based on maximum weight and minimum redundancy 

criterion is proposed. Comprehensive experiments and deep analysis based on the microporous 
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aluminophosphates (AlPOs) database demonstrate the effectiveness of the proposed algorithm. This 

work also demonstrates the feasibility of feature selection techniques in chemical data analysis. By 

taking advantage of the proposed algorithm, we investigate the relationship between synthetic factors 

and rational synthesis of microporus materials. The classification result with a classification accuracy 

rate of 91.12% shows that a number of synthetic factors including the molar amount of Al2O3, the 

molar amount of solvent, the molar amount of template in the gel composition, the melting point, the 

dipole moment, the second longest distance of organic template, the dipole moment, the ratio of C/N, 

the ratio of N/(C + N), the ratio of N/Van der Waals volume and the maximal number of protonated H 

atoms play vital roles for rational synthesis of (6,12)-ring-containing AlPOs. Among these optimal 

synthetic factors, the second longest distance of organic template, which is the geometric size of the 

organic template, plays the most important role in the prediction. This work provides a priori knowledge 

and a useful guidance for rational synthesis experiments of such materials. 

In future studies, we will gradually add more synthetic features (or factors) into the database to 

investigate their influences for the synthesis of AlPOs. 
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