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Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality. Reperfusion strategies are the current standard
therapy for AMI. However, they may result in paradoxical cardiomyocyte dysfunction, known as ischemic reperfusion injury (IRI).
Different forms of IRI are recognized, of which only the first two are reversible: reperfusion-induced arrhythmias, myocardial
stunning, microvascular obstruction, and lethal myocardial reperfusion injury. Sudden death is the most common pattern for
ischemia-induced lethal ventricular arrhythmias during AMI. The exact mechanisms of IRI are not fully known. Molecular, cellular,
and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidative stress are considered to be of
paramount importance in IRI. However, comprehension of the exact pathophysiological mechanisms remains a challenge for
clinicians. Furthermore, myocardial IRI is a critical issue also for forensic pathologists since sudden death may occur despite
timely reperfusion following AMI, that is one of the most frequently litigated areas of cardiology practice. In this paper we
explore the literature regarding the pathophysiology of myocardial IRI, focusing on the possible role of the calpain system,
oxidative-nitrosative stress, and matrix metalloproteinases and aiming to foster knowledge of IRI pathophysiology also in terms of
medicolegal understanding of sudden deaths following AMI.

1. Introduction

Acute myocardial infarction (AMI) is a leading cause of mor-
bidity and mortality in the world [1]. Reperfusion strategies
are the current standard therapy for AMI [2, 3]. They may,
however, result in paradoxical cardiomyocyte dysfunction
and worsen tissue damage, in a process known as “reperfu-
sion injury” [4-9]. Ischemic reperfusion injury (IRI) typi-
cally arises in patients presenting with an acute ST-segment
elevation myocardial infarction (STEMI), in whom the
most effective therapeutic intervention is timely and effec-
tive myocardial reperfusion [7, 10-14]. Reperfusion itself
is known as a “double-edged sword” [4, 15] due to the
spectrum of reperfusion-associated pathologies. Outcomes
subsequent to IRI accrue in a time-dependent fashion [16],

beginning with oxidative stress, inflammation, intracellular
Ca** overload, and rapidly proceeding to irreversible cell
death by apoptosis and necrosis [13, 16]. Different forms of
myocardial IRI are recognized, of which only the first two
are reversible: reperfusion-induced arrhythmias, myocardial
stunning, microvascular obstruction, and lethal myocardial
reperfusion injury [13].

In particular, sudden death is the most common pattern
for ischemia-induced lethal ventricular arrhythmias (VAs)
during the acute phase of myocardial infarction [17], and it is
well known that reperfusion itself can lead to life-threatening
VAs [17] and, ultimately, induce sudden mortality.

The exact mechanisms of IRI are not fully known [18].
Molecular, cellular, and tissue alterations such as cell death,
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inflammation, neurohumoral activation, and oxidative stress
are considered to be of paramount importance for IRI
development [10, 19]. However, comprehension of the exact
pathophysiological mechanisms of IRI [20, 21] remains a
challenge for clinicians [22, 23], and the existence of reper-
fusion injury is still a matter of debate in the scientific com-
munity, essentially due to a lack of a definitive clinical doc-
umentation. Many gaps still exist between experimental ani-
mal models and human clinical experience, with subsequent
difficulties in translating experimental results on cardio-
protection to clinical practice [22-24]. Despite the difficulties
that still exist in fully comprehending myocardial IRI, early
and aggressive reperfusion strategies remain the most impor-
tant intervention and are strongly advocated. The develop-
ment of ischemic conditioning strategies to limit the extent
of infarcted tissue caused by ischemia/reperfusion injury
markedly enhances the ability of the heart to withstand an
ischemic insult [25].

Finally, myocardial IRI is a critical issue also for forensic
pathologists since sudden death may occur despite timely
reperfusion following AMI, that is one of the most frequently
litigated areas of cardiology practice [26, 27].

In this paper we explore the literature regarding the
pathophysiology of myocardial IRI, focusing on the possible
role of the calpain system, oxidative-nitrosative stress, and
matrix metalloproteinases. We discuss these mechanisms
within the broad scenario of IR], also discussing the medi-
colegal issues related to sudden deaths occurring during
the acute phase of myocardial infarct following reperfusion
interventions.

2. The Calpain System

The process of IRI is not yet completely understood in its
underlying pathophysiological mechanisms. Several path-
ways have been proposed, including cytosolic and mitochon-
drial Ca** overload, release of reactive oxygen species (ROS),
acute inflammatory response, and impaired metabolism [20,
21]. These alterations may collaboratively act and produce
irreversible damage to ischemic reperfused cardiomyocytes.

The possibility that the calpain system could play a
role in generating myocardial IRI has been experimentally
investigated in the literature [28-32], and several studies have
focused on the effects of calpain inhibitors in improving
myocardial dysfunction in different animal models [33-37].
Calpains are a family of Ca®"-dependent nonlysosomal cys-
tein proteinase localized in the cytosol in their inactive form
[38]. Calpain activation, which may occur under several con-
ditions, is thought to be a key mechanism in activating a
number of substrates such as growth factor receptors, cyto-
skeletal proteins, microtubules associated proteins, and mito-
chondria, so playing a crucial role in cell cycle, apoptosis, and
differentiation [38-40].

The calpain superfamily is complex, and more than 25
calpains or calpain-like molecules have been discovered.
Calpains 1 and 2 are biologically activated when they arrange
as dimer with a 30 kDa subunit. Both biologically active
calpains are usually called p-calpain (calpain 1 + 30 kDa sub-
unit) and m-calpain (calpain 2 + 30-kDa subunit). The
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terms p-calpain and m-calpain indicate, respectively, the
micromolar and millimolar Ca** concentrations required for
their activation [19]. Calpains may appear in the form of both
“ubiquitous” isoenzymes that are present in almost all cells
(such as p-calpain, m-calpain, and calpains 5, 7, 10, 13, and 15)
and “tissue specific” calpains expressed only in special tissues
and cells, such as calpains 3 and 6 and others [31].

In brief, it has been hypothesized that, under physio-
logical conditions, inactive calpains are stored in cellular
cytosol and bound in a substrate competitive manner to their
endogenous inhibitor calpastatin. The elevation of intracel-
lular calcium levels is the key to the calpain activation process.
Calpain conformational changes permit its translocation into
cellular membrane, where phospholipids reduce the Ca**
threshold for calpain activation or close the Ca®" channels
leading up to protein activation [41]. Several pathological
cardiac events are associated with an imbalance of calcium
homeostasis related to myocardial ischemia/reperfusion
injury [29-31]. Experimental studies on isolated perfused
mammalian hearts demonstrated an increase in intracellular
Ca®" concentrations in response to ischemia/reperfusion [31,
41]. Myocardial ischemia favours intracellular ion accumula-
tion (sodium, calcium) till dropping in pH and tissue acido-
sis. Reperfusion evokes rapid alterations in ion flux and inter-
acts with ischemia in altering the physiology of ion exchange
[42]. Among others, a final result of the dangerous inter-
play between ischemia and reperfusion is intracellular cal-
cium overload.

The kinetics of calpain activation are not completely
understood, and whether or not translocation to the sar-
colemma is needed for calpain activation during IRI remains
undetermined [43]. In their elegant experiment, Hernando et
al. [37] suggested that calpain translocation to the cardiomy-
ocytes membranes during ischemia is independent of its acti-
vation since intracellular acidosis occurring during ischemia
is likely to inhibit calpain activation. As intracellular pH nor-
malizes following reperfusion, calpain activation occurs. Des-
pite translocation, calpain seems to remain inactive even after
60 minutes of ischemia and only on reperfusion is it activated
[37].

Activated calpain has a number of substrates such as
growth factor receptors, cytoskeletal proteins, microtubules
associated proteins, and mitochondria, thus playing a crucial
role in the processes of cell cycle, apoptosis, and difterentia-
tion, negatively affecting cardiomyocyte function.

Firstly, the calpain system is part of the integrated prote-
olytic system which is crucial to the maintenance of the struc-
ture and function of the cardiac sarcomere. An imbalance of
this system is the key to the sarcomeric dysfunction linked
to several cardiovascular diseases, including hypoxia, IRI,
myocardial infarction, and end-stage heart failure. Protein
degradation (proteolysis) within cardiac sarcomere is regu-
lated mainly by three systems: the ubiquitin proteasome sys-
tem (UPS); autophagy/lysosomal degradation; and the cal-
pain system [44]. Degradation of myofibrillar proteins
involved in the contractile process is an effect of calpain acti-
vation. The degradation process following IRI involves either
structural or regulatory proteins of contractile apparatus.
In vitro study [45] showed that many of these proteins are
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FIGURE 1: Schematic representation of calpain activation during myocardial IRI. Ca** overload and pH recovery in reperfusion phase are
crucial in the activation of the calpain system. Increased sarcolemmal fragility may lead to membrane rupture and cell death. In addition, both
the death-receptor and mitochondrial mediated apoptotic pathways seem to be affected by calpain activation. The degradation of myofibrillar
proteins and the loss/disorganization of T-tubules structure are key factors in post-MI heart failure development.

potential targets of activated calpains, thus contributing to
the development of postischemic injury in the human myo-
cardium. Several experimental studies demonstrated that the
loss/disorganization of T-tubules structure is a key factor
in heart failure development [46-48]. Calpain-mediated
disruption of T-tubules integrity through the proteolysis of
junctophilin is demonstrated to be one of the major factors
involved in an experimental model of cardiac muscle failure
(49, 50].

Calpain deregulation is known to be an effective mech-
anism of apoptosis induction in cardiac sarcomeres through
different pathways [51-53], and apoptosis of myocardial cells
is considered an important mechanism of IRI [54-56].

Conclusively, an uncontrolled activation of calpain has
been found to be implicated in the pathophysiology of several
cardiovascular disorders [57] including myocardial IRI [58],
and the inhibition of calpains has been shown to attenuate
myocardial stunning and reduce infarct size after ischemia
reperfusion [59] (Figure 1). However, the exact role of calpain
in acute myocardial IRI remains controversial [60].

3. Oxidative Stress and Mitochondria

An oxidant and antioxidant imbalance (oxidative stress)
favours the accumulation of oxidants, from both increased
ROS production and decreased ROS scavenging ability, thus
leading to cellular damage in the cardiomyocytes [61]. Oxida-
tive stress is often associated with elevated levels of ROS or
reactive nitrogen species (RNS) in the cellular and subcel-
lular levels [61], leading to proteins, lipids, and DNA dam-
age [62]. Furthermore, in cardiomyocytes, increased ROS/
RNS levels can induce alterations of proteins involved in

excitation-contraction coupling with increased susceptibility
to proteolysis [62-65].

In the first few minutes IRI, and especially myocardial
reperfusion, induces a high production of ROS by a variety
of sources [66-69]. Since Arroyo et al. provided direct evi-
dence of ROS formation during myocardial ischemia and
postischemic reperfusion by trapping these free radicals
using nitrone DMPO [70], several preclinical and clinical
studies [71-74] have demonstrated the potential cardiopro-
tective value of antioxidants. While small amounts of ROS
could result in cardioprotection via preconditioning [75], the
excessive production of ROS during reperfusion seems espe-
cially important in inducing injury.

Mechanisms leading up to the dysfunction and the initial
sources of ROS during IRI are not completely clear [76].
Nitric oxide (NO) production is considered a key factor
in IRI. NO is an important bioactive substance which
plays an important role in the regulation of normal body
function and disease occurrence, and it is recognized as
an ubiquitous signalling molecule with a multitude of bio-
logical actions and targets. Signalling may involve direct
reactions between NO and a molecular target or can occur
through indirect reactions of secondary ROS [77]. In fact,
actions of NO are multifaceted, and its interactions with
oxygen or oxygen-related reactive intermediates (e.g., super-
oxide) yield numerous RNS and ROS. These account for
most of the so-called indirect effects attributed to NO
through oxidation, nitrosation, and nitrate reactions referred
to as oxidative, nitrosative, and nitrative stress, respectively.
The physiological production of NO in the heart maintains
coronary vasodilator tone and inhibits platelet aggregation
and neutrophil and platelet adhesion, so performing an active



role in cardioprotection [78-80]. Beyond its beneficial effects,
it has been speculated that NO excess can induce cellular
injury either due to direct toxicity [81, 82] and to the reaction
with superoxide (O27) to form the potent oxidant peroxynit-
rite (ONOO2) [83] which in turn exerts cytotoxicity via its
reaction with a variety of molecular targets [84, 85]. The
formation of highly reactive species, such as peroxynitrite, is a
possible mechanism by which NO elicits its dangerous effects
[83].

Much about NO biological actions remains contradictory,
especially with regard to pathophysiologic disturbances in
NO signalling. There is an ongoing debate about the levels of
NO involved and whether there is a clearly defined threshold
at which NO shifts from being beneficial to being destructive.
Some authors hypothesize that the biological function of
NO depends mostly on concentration and time course of
exposure to NO, supposing that cytotoxic events, such as
arrest of the cell cycle, cell senescence, or apoptosis, can occur
at high NO concentrations [86]. However, other authors
suggest that the chemical and biological reactivity of NO that
has been studied using very high NO concentrations is of
doubtful physiological relevance [87].

Zhang and Cai have shown that exogenously applied
netrin-1 exerts robust cardioprotective effects against IR, via
an increase in NO formation [88]; the same group have fur-
ther demonstrated that endogenously increased NO produc-
tion could mediate cardioprotection by modulating oxidative
stress and mitochondrial function [76]. Under physiologi-
cal oxidative stress, NO mediates S-nitrosylation of critical
protein thiols and thus averts them from further oxidative
modifications by ROS, thereby rendering cardioprotection
[89]. It is argued that NO protects the heart against IRI
[79, 90]; however, excessive NO formation is thought to con-
tribute to contractile dysfunction [91, 92].

During reperfusion NO release may be stimulated
through a number of mechanisms including the change in
shear stress in the coronary vasculature during reperfusion,
increased intracellular Ca®" levels as a result of ischemia, and
the thermodynamically favoured production of NO from L-
arginine and molecular oxygen due to reperfusion [93, 94].
NO is produced endogenously within the myocardium by
three distinct isoforms of NO synthase (NOS) [95]. Neuronal
NOS (NOS1) and endothelial NOS (NOS3) are constitu-
tively expressed within cardiomyocytes while inducible NOS
(NOS2) is only expressed within cardiomyocytes during
inflammatory responses which occur during many patho-
physiological conditions of the myocardium [96].

Mitochondria play a critical role in the pathogenesis of
myocardial IRI. They occupy 30-50% of the cardiomyocyte
cytoplasmic volume and are critical in cardiac energy balance
since energy supply for cardiomyocytes is mostly derived
from mitochondrial oxidative phosphorylation (OXPHOS).
On the other hand, they are a favoured target of intracellular
damage [97-99]. These cell organelles are the major con-
tributors of ROS as well as the major target for ROS-caused
damage [100-106]. Mitochondrial dysfunction, reflected in
the structure, function, and number of mitochondria within
the cardiomyocyte, leads to diminished energy production,
loss of myocyte contractility, altered electrical properties,
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and eventual cardiomyocyte cell death [100]. In this context,
the mitochondrial permeability transition pore (MPTP) is
thought to play a critical role in myocardial IRI (Figures 2
and 3)

MPTP refers to a mitochondrial channel which mediates
the abrupt change, or transition, in inner mitochondrial
membrane permeability which occurs under certain condi-
tions [107]. The opening of the MPTP renders the inner mito-
chondrial membrane nonselectively permeable to molecules
less than 1.5 kDa and elicits mitochondrial membrane depo-
larization and uncoupling of oxidative phosphorylation. It
also favours collapsing the mitochondrial membrane poten-
tial, and uncoupling oxidative phosphorylation, thus leading
to impairment of energy and ATP metabolism and cell necro-
sis [108-111]. MPTP opening also causes mitochondrial swel-
ling, and outer mitochondrial membrane rupture, thus
favouring the deposition of proapoptotic factors such as cyto-
chrome ¢ and SMAC/Diablo from the intermembranous
space into the cytosol, thereby initiating apoptotic cell death
[107].

During ischemia/reperfusion, intertwined biochemical
events occur leading to MPTP opening. In the ischemic
period, following factors such as Ca®*, long-chain fatty
acids, and ROS accumulation, the likelihood that MPTP will
occur upon reperfusion gradually increases [112, 113]. During
ischemia, due to increased glycolysis, an accumulation of
lactic acid and reduction of pH occur. To restore the pH,
the Na*/H" antiporter is activated, but it acts inefficiently
because Na* cannot be pumped out of the cell, as the Na*/K*
ATPase is inhibited by the absence of intracellular ATP. Con-
sequently, the cytosolic Ca®" concentration increases. More-
over, the existing decrease in the adenine nucleotide concen-
tration, which is associated with an increased phosphate con-
centration, is likely to sensitize MPTP opening in response
to Ca®*; however, low pH inhibits the opening. When
reperfusion occurs, the mitochondria recover their ability to
respire and rescue the sustained mitochondrial membrane
potential, which is required for ATP synthesis. In addition,
strong production of ROS occurs when the inhibited res-
piratory chain is reexposed to oxygen. Thus, the following
resulting conditions are nearly optimal for MPTP opening:
high Ca?" levels within the mitochondrial matrix, increased
levels of phosphate and oxidative stress, depletion of adenine
nucleotide concentration, and rapid restoration of physiolog-
ical value of pH [113-115].

In their milestone paper, Griffiths and Halestrap [116]
demonstrated that MPTP are closed during ischemia and
open the first few (2-3) minutes of reperfusion. Subsequent
data has confirmed that pore opening occurs during reper-
fusion of the heart after ischemia, but not in the ischemic
period [107]. Thus MPTP is an important new target for
cardioprotection during reperfusion [114].

4. The Matrix Metalloproteinases

One group of enzymes that is important in mediat-
ing IRI injury is the family of matrix metalloproteinases
(MMPs). The MMPs are a large family of calcium-dependent,
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FIGURE 2: Schematic representation of oxidative stress contributing to tissue injury and cell death in IRI. Following ischemia, hypoxia results
in reduction of ATP production, ion pump function unbalance, leading to overload of Na* and Ca?", activation of anaerobic glycolysis, and,
finally, reduction of pH. During the initial ischemic phase, the activation and upregulation of enzymes (such as NADPH oxidase, a superoxide-
generating enzyme comprising a membrane-bound catalytic subunit) occurs, that are capable of producing ROS, when molecular oxygen is
reintroduced in the reperfusion phase. ROS induces cell dysfunction and death via other mechanisms: activation of metalloproteinases and
calpains, mitochondrial permeability transition pore (MPTP) opening which contributes to swelling and lysis of cells. This may elicit the
release of proapoptotic factors in the cytosol, thus contributing to cell death. ROS indirectly interact with nitric oxide (NO) production,
partly mediated by the inducible NOS (iNOS), the high-capacity NO-producing enzyme. Unlike the other two NOS isoforms, iNOS is not
constitutively expressed in cells, and its production is elicited by several stimuli like IRL. NO cytotoxic effects are both direct and indirect
mediated by NO reaction with superoxide to form the potent oxidant peroxynitrite which in turn exerts cytotoxicity.

FIGURE 3: Histomorphological pictures showing the phenotypic results of altered pathways in IRL (a) Mild calpain 1 expression in the left
ventricle cardiac tissue of a patient who died following early reperfused AMI (calpain 1, antibody anti-calpain 1, Santa Cruz, USA). (b) NOX2
expression in the left ventricle cardiac tissue of a patient who died following prompt fibrinolysis in acute STEMI. (c) Strong immunopositivity
to anti-nitrotyrosine antibody (Abcam, Cambridge, UK). (d) Mild immunopositivity to anti-iNOS (inducible nitric oxide synthase) antibody
(Santa Cruz, CA, USA) in the left ventricle sample of a patient who died following reperfusion therapy in STEMI.



zinc-containing endopeptidases that have the ability to
remodel the extracellular matrix in both physiological and
pathological processes. MMPs are regulated at different levels
including transcriptional, posttranscriptional, and posttrans-
lational levels. Moreover, they are controlled via their endoge-
nous inhibitors, the tissue inhibitor of metalloproteinases
(TIMPs), and by their intra- and extracellular localization
[117]. Of all MMPs, MMP-2 (also known as gelatinase A
or type IV collagenase) plays a critical role in cardiovas-
cular diseases [117]. MMP-2 activity is also regulated via
nonproteolytic posttranslational modifications of the full-
length zymogen form, by S-glutathiolation, S-nitrosylation,
and phosphorylation [118-120]. The NO product, ONOO™,
directly activates MMP-s 2 [118] via a nonproteolytic mech-
anism involving the S-glutathiolation of the propeptide cys-
teine sulthydryl group in a reaction requiring only micromo-
lar concentrations of ONOO™ in conjunction with normal
intracellular levels of glutathione [119]. In turn, it was demon-
strated that ONOO™ inactivate TIMP-4 and TIMP-1, leading
to a net increase in MMP activity [118].

InIRI, the sudden availability of molecular oxygen during
reperfusion reenergizes mitochondria and reactivates the
electron transport chain, causing a significant increase in
the biosynthesis of ROS (including ONOO™) [94, 121] which
stimulates MMP-2 activity [118].

It has been demonstrated that MMP-2 exerts rapid
effects in modulating different cellular functions independent
of its action on the extracellular matrix (ECM). These
include effects on platelet aggregation [122], vascular tone
[123, 124], and acute mechanical dysfunction of the heart
immediately after ischemia and reperfusion [125, 126]. In
ischemia/reperfusion, injury may result in the partial proteol-
ysis of the thin-filament regulatory protein troponin I (TnI)
[60, 124, 125, 127-129], and studies on animal models have
validated this observation, showing that MMP-2 degrade Tn
I myofilaments [130].

MMP-2 has a proapoptotic role as demonstrated in
adult rat cardiomyocyte by Menon et al. who show that
inhibition of MMP-2 inhibits f-AR-stimulated apoptosis
[131, 132]. Furthermore, MMP-2 is present in mitochondria
[130], and cardiac-specific transgenic expression of active
MMP-2 causes abnormalities in mitochondria ultrastructure,
impaired respiration, increased lipid peroxidation, cell necro-
sis, and reduced recovery of contractile performance during
post-IRI [133].

Finally, a complex interplay exists between the calpain
and MMP systems since there appears to be overlap in the
substrates and/or biological actions of MMP-2 and calpains
in various cellular pathways [117]. Kandasamy et al. have
hypothesized that either MMP-2 targets a subset of proteins
similar to calpain, or calpain has been incorrectly identified
as the protease responsible for some intracellular proteolytic
activities. Indeed, much of the evidence for calpain degrada-
tion of substrates in cardiac cells rests on the use of calpain
inhibitors such as calpastatin, which has been found to inhibit
MMP-2 activity in vitro [117].

Other MMPs are thought to be involved in myocardial
injury following AMI, such as MMP-9, first known as 92-kDa
type IV collagenase or gelatinase B, a structurally complex
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metalloproteinase that intervenes in the degradation of ECM
in a large spectrum of physiology and pathophysiology
processes involving tissue remodelling, including cardiac
remodelling after AMI.

MMP-9 is expressed in the heart by endogenous cardiac
cell types (e.g., cardiomyocytes, endothelial cells, and fibrob-
lasts) and is also produced by nonresident cells that infiltrate
the infarct in response to ischemic injury (e.g., leukocytes)
[134-136].

Different and opposite functions have been hypothesized
for MMP-9. Potential detrimental consequences of MMP-9
release and activation may include stimulating inappropriate
extracellular matrix degradation, activating inflammatory
mediators, and/or increasing capillary permeability [137,
138]. On the other hand, potential beneficial effects of early
MMP-9 activation include removing matrix and necrotic
myocytes, releasing growth factors and cell surface receptors,
remodelling the extracellular matrix for scar formation, pro-
cessing inflammatory mediators such as interleukin-1f3, and
influencing angiogenesis [137]. MMP-9 has been correlated
with an increase in infarct size and left ventricle fibrosis after
experimental AMI [138-142].

Furthermore, increased myocardial MMP-9 expression
or activity has been found in experimental myocardial
injuries such as permanent coronary artery occlusion [143,
144] or reperfusion injury model in animals [145, 146], and
the possible role of MMP-9 activation in myocardial IRI has
been explored [147].

Following myocardial acute ischemia and reperfusion,
neutrophil-derived MMP-9 is released in the myocardium
and its levels increase as early as several minutes after AMI,
remaining high for the first week in many animal models [137,
144, 148]. In the early phase of reperfusion, MMP-9 activation
is likely to be localized in the perineutrophil area and might
be initiated by neutrophils adhering to the ECM [137]; its tem-
poral trend mirrors leukocyte infiltration [149]. The action of
MMP-9 appears to be complex; it directly degrades ECM pro-
teins and activates cytokines and chemokines to regulate tis-
sue remodelling. MMP-9 deletion or inhibition has proven to
be beneficial in a variety of animal models of cardiovascular
disease. On the other hand, MMP-9 cell-specific overexpres-
sion has also proven beneficial [137, 144, 146, 150] (Figure 4).

5. Ischemia/Reperfusion Injury and
Medicolegal Issues

Early reperfusion reduced mortality in AMI so that, in
many countries, the hospital mortality has declined to about
5% [151]. There is no doubt that early reperfusion, both
pharmacological and mechanical, is the only way to prevent
progression to myocardial necrosis and thus to limit the size
of the infarct. However, myocardial IRI has been described
following reperfusion therapies including percutaneous coro-
nary intervention (PCI), thrombolysis, and coronary bypass
grafting [7, 13, 16].

VAs upon reperfusion have been recognized since the
advent of recanalization techniques [152]; however their
pathophysiological and prognostic significance is still contro-
versial [153]. Several arrhythmogenic mechanisms have been
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like MMP-2. Several biological activities of MMPs may contribute to myocardial contractile dysfunction and cell death. MMPs can both
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cardiac remodelling and healing.

proposed to be involved in IRI-induced arrhythmias [154,
155]. Some of VAs that occur almost directly at the moment
of reperfusion (namely, ventricular premature beats and
accelerated idioventricular rhythms) are usually harmless
and well tolerated [152]; however it has been reported that
ventricular tachycardia and ventricular fibrillation occurring
immediately after reperfusion remain the most important
causes of sudden death following restoration of blood flow
[156, 157].

Severe arrhythmias may not be common but the fact that
they are life threatening makes them a relevant issue also
for pathologists. In fact, the occurrence of such fatal events
may represent a potential source of malpractice claims for
cardiologists and it is noteworthy that AMI, in some manner,
remains one of the most challenging areas with an associated
high risk of alleged medical malpractice [158] and one of
the clinical settings in which claims are most likely to arise
(159, 160].

There is no doubt that prompt mechanical or/and phar-
macological myocardial reperfusion represents the only real-
istic strategy in STEMI and that it has greatly improved AMI
outcome. However, patients may have increasing optimistic
expectations about the benefits of the procedures, as well
as in many other cardiological clinical settings [161-163],
and especially in cases with fatal outcome litigations and
malpractice claims may arise thus leading to medicolegal
autopsies which are critical in proving or excluding medical
malpractice. It is now recognized that there are a spectrum
of responses of the myocardium to ischemia/reperfusion
[16, 157], and knowledge on the biochemical and molecular
substrates of myocardial IRI has considerably improved.

Reperfusion induces typical patterns of myocardial injury;
contraction bands, calcium loading in the irreversibly injured
myocytes, and hemorrhage in the region due to leakage of
blood out of damaged blood vessels have been associated
with IRI [16]. There is a growing appreciation that the
pathobiologic response to ischemia/reperfusion injury is
characterized by changes involving, among others, oxidative
stress, mitochondria, and Ca” homeostasis disturbance, with
each leading to unique histomorphological footprint. As the
cellular and molecular processes of myocardial IRI are more
and more unravelled, the histopathology of reperfused AMI
has been revisited and deserves further studies [3, 164]. We
believe that, in postmortem examination in cases of fatal
outcome of reperfused AMI, forensic experts should be very
careful as this type of postmortem examination requires a
deep knowledge and investigation of the complex ionic and
biochemical alterations which could result in an unsta-
ble electrical substrate capable of initiating and sustain-
ing arrhythmias. A sound knowledge of the pathophysi-
ological changes underlying myocardial IRI and, namely,
reperfusion arrhythmias is critical for forensic pathologists
to make correct opinions concerning the real mechanism
of death. Forensic pathologists, like clinicians, must think
correlatively and move towards the explanation of the death
on the basis of the underlying complex mechanisms. As
a general concept, but mostly when deep pathophysio-
logical derangements occur potentially leading to death,
structural and anatomical knowledge obtained from autop-
tic observation is not so useful and cannot provide sat-
isfactory explanations, independently of functional know-
ledge.



6. Therapeutic Challenges

Although there is no doubt that in AMI the reopening, as
soon as possible, of occluded coronary arteries using either
thrombolytic therapy or primary percutaneous coronary
intervention is of vital importance for limiting the infarct size,
thus representing an effective tool in AMI [162,163], currently
no similarly valid options exist in the treatment of myocardial
IRI. Since the 1980s research has been focused on therapeutic
agents that would render myocardial cells more resistant to
the deleterious effects of ischemia and reperfusion [3, 164],
the concept of “cardioprotection” encompasses the manipula-
tion of the cellular events by different therapeutic tools during
ischemia and reperfusion to reduce the amount of myocardial
cells death [3, 164]. Ischemic conditioning strategies
(ischemic preconditioning, IPC; remote ischemic precondi-
tioning, RIPC; and ischemic postconditioning, iPOST) have
been widely investigated in laboratory settings. Nevertheless,
there still exists some difficulty in translating experimental
results and controlled animal models into a heterogeneous
population of human patients [12, 13, 24, 165]. An incomplete
understanding of how cardioprotective signalling may be
initiated at the level of the cardiomyocytes may, in part,
explain the lack of success [166]. A deeper knowledge of the
cellular and molecular mechanisms underlying IRI has led to
the development of cardioprotective strategies, focusing on
epigenetic regulation, limitation of cell death (both necrosis
and apoptosis), stem cell regenerative therapies, gene therapy,
and the use of growth factors [167]. Among the mechanisms
through which postischemic myocardial damage has been
shown to occur, mitochondrial dysfunction and the opening
of MPTP are key steps. This crucial role renders them
very attractive targets for therapeutic intervention [168-
170]. In this context, a potential cardioprotective effect of
intracoronary administration of 4-chlorodiazepam (4-CLD,
a benzodiazepine derivative of diazepam) in animal models
of IRI, has been recently demonstrated [171], thus suggesting
a therapeutic role of intracoronary infusion of 4-CLD in AMI
[171].

Furthermore, several lines of evidence support a potential
role of platelet-rich plasma (PRP), an autologous product
rich in growth factors obtained from a blood sample, in
the healing of MI injury [172-175]. Platelets contain a wide
amount of growth factors that are crucial in the reparative
process following ischemic myocardial injury. In addition,
they are rich in Factor XIII, a plasma transglutaminase, that
has been shown to be critical in post-MI healing [176-178].
Factor XIII influences several steps of the reparative process,
the formation of the three-dimensional fibrin meshwork,
and the ECM components. Furthermore it is essential in
adult stem cells recruitment, neoangiogenesis, and collagen
deposit, thus playing a pivotal role at the intersection of
several pathways involved in myocardial healing [179, 180].

7. Conclusions

AMI is a major cause of mortality worldwide. Early and
successful myocardial reperfusion with either thrombolytic
agents or primary percutaneous coronary intervention is the
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most effective strategy to reduce infarct size and improve clin-
ical outcome. However, the process of restoring blood flow to
the ischemic myocardium can induce myocardial reperfusion
injury, which can paradoxically reduce the beneficial effects
of myocardial reperfusion. Thus reperfusion itself may lead
to accelerated and additional myocardial injury beyond that
generated by ischemia alone [181]. Different clinical mani-
festations of this injury exist [13]; however, RAs remain the
most important causes of sudden death following reperfusion
therapy [182] even when the latter is technically successful.
Thus myocardial IRI is both a critical clinical and medi-
colegal problem. For clinicians a better understanding of the
pathophysiology of myocardial IRI may open the way to new
therapeutic strategies [25, 182, 183]. For forensic pathologists,
the value of fostering a knowledge of IRI pathophysiology
should be highlighted as this can lead to an increased aware-
ness of this potentially fatal event related to myocardial IRI,
even in the case of optimal and early treatment. The clear
investigation and comprehension of IRI may be an additional
value which may diminish the risk of exposure of physicians
to malpractice claims.
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