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Abstract

Recently, structural variation in the genome has been implicated in many complex diseases. Using genomewide single
nucleotide polymorphism (SNP) arrays, researchers are able to investigate the impact not only of SNP variation, but also of
copy-number variants (CNVs) on the phenotype. The most common analytic approach involves estimating, at the level of
the individual genome, the underlying number of copies present at each location. Once this is completed, tests are
performed to determine the association between copy number state and phenotype. An alternative approach is to carry out
association testing first, between phenotype and raw intensities from the SNP array at the level of the individual marker, and
then aggregate neighboring test results to identify CNVs associated with the phenotype. Here, we explore the strengths
and weaknesses of these two approaches using both simulations and real data from a pharmacogenomic study of the
chemotherapeutic agent gemcitabine. Our results indicate that pooled marker-level testing is capable of offering a dramatic
increase in power (w12-fold) over CNV-level testing, particularly for small CNVs. However, CNV-level testing is superior
when CNVs are large and rare; understanding these tradeoffs is an important consideration in conducting association
studies of structural variation.
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Introduction

The analysis of individual human genomes has revealed an

unexpected amount of variability in the form of duplication and

deletion of genomic regions [1,2]. Since then, a number of studies

have shown that copy-number variation plays a large role in

genetic diversity [3,4]. Other studies have identified associations

between copy-number variation and various diseases, including

Crohn’s disease, psoriasis, schizophrenia, and autism [5–9].

Because humans have two copies of each chromosome, most

individuals have two copies of a given genomic segment. Copy-

number variation exists when an individual has one or more

deletions or duplications of that segment, resulting in a different

number of copies. Such an individual is said to possess a CNV at

that region, while the normal, or copy-neutral, individuals do not.

This article discusses statistical approaches for conducting

genetic association studies of copy-number variation. Such studies

attempt to identify associations between a phenotype, such as

disease state or drug response phenotype, and genetic variation in

the form of changes in copy number. There are several techniques

for measuring copy-number variation, including array compara-

tive genomic hybridization and next-generation sequencing. We

focus here on the detection of copy-number changes using data

from genomewide single nucleotide polymorphism (SNP) arrays,

although many of the issues that we explore are relevant regardless

of the platform used to obtain the copy-number measurements.

The main advantage of SNP arrays is that vast amounts of this

type of data have already been collected in pursuit of identifying

associations involving SNPs. The convenience and low cost of re-

analyzing these data for copy-number variation has prompted a

number of studies, and should continue to do so for years to come.

We compare two strategies for CNV association testing. Each

strategy consists of two stages. In the first approach, which we refer

to as CNV-level testing, stage I consists of estimating the number of

copies present at all segments of the genome, for each individual.

This is often referred to as ‘‘CNV calling.’’ Next, stage II consists

of carrying out a genetic association test at every segment for

which copy-number variability exists. A number of articles [10–

13] have compared various methods for CNV calling. Our

approach here is different; we are interested in comparing this

family of approaches with an entirely different approach which

does not involve CNV calling.

In this second approach, which we refer to as marker-level testing,

stage I consists of carrying out an association test at every genetic

marker using raw intensity data from the SNP array. Since CNVs

span multiple markers, the presence of a single CNV that affects

the phenotype will elevate the test statistics for several nearby
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markers. This is the motivation for stage II, which consists of

pooling test results across neighboring markers to determine CNV

regions associated with the phenotype.

Because the above approaches consist of two stages, each

approach risks losing information in the first stage that may

diminish power in the second stage. We illustrate that this is indeed

a concern, and furthermore, that the type of information lost by

each approach is quite different. This has strong implications for

the power of each method to detect various forms of CNV-

phenotype associations. After a more detailed description of the

data from such studies, we illustrate the two approaches and then

compare them using both real and simulated data.

Methods

Data
The data in this article comes from a pharmacogenomic study

of gemcitabine, a commonly used treatment for pancreatic cancer.

In this section, we describe the design of the study, the general

characteristics of data arising from such studies, and how this data

was used to create spike-in simulated data sets which allow us to

estimate and contrast the power of the CNV- and marker-level

testing approaches.

Gemcitabine pharmacogenomic study
The gemcitabine pharmacogenomic study [14,15] was carried

out on the Human Variation Panel (HVP), a cell based model

system. The HVP consists of EBV-transformed B lymphoblastoid

cells derived from Caucasian-American (CA), African-American

(AA) and Han Chinese-American (HCA) subjects (Coriell Institute,

Camden, NJ). Gemcitabine drug cytotoxicity data were collected

at eight drug dosages (1000, 100, 10, 1, 0.1, 0.01, 0.001, and

0.0001 uM) [14]. Estimation of the drug response phenotype IC50

(the effective dose that kills 50% of the cells) is then completed

using a four parameter logistic model [16]. Genotyping of markers

for the cell lines was completed using the Illumina HumanHap

550K and HumanHap510S at the Genotyping Shared Resources

at the Mayo Clinic in Rochester, MN, which consists of a total of

1,055,048 markers [15,17]. In addition to the called genotypes for

the SNP markers, we have the raw intensity data to be used in

CNV analysis. One hundred seventy-four cell lines (60 Caucasian,

54 African American, 60 Han Chinese American) had both

gemcitabine cytotoxicity measurements and genome-wide marker

intensity data. To compare the two approaches for CNV analysis

for a pharmacogenomic study, we chose one chromosome

(chromosome 3) from the genome-wide data. Raw data was

normalized according to the procedure outlined in Barnes et al.

(2008) [18], which corrects for a number of potential biases,

including batch effects and differences in hybridization intensity

among the probes. To control for the possibility of population

stratification, which can lead to spurious associations, we used the

method developed by Price et al. (2006) [19], which uses a

principal components analysis to adjust for stratification.

General structure of CNV data from SNP arraysThe raw data

that arises from the gemcitabine study, or any similar study

involving genome-wide SNP arrays such as those manufactured by

Illumina or Affymetrix, consists of two intensity measurements for

each SNP, corresponding to the A and B alleles [20,21]. These

intensities are then transformed into polar coordinates, with R
representing the overall intensity and h representing the relative

contribution from each allele. To account for systematic

differences in intensity between the two alleles, one considers the

ratio between R and the expected value of R given neutral copy

number. Finally, a log transformation is applied. The result (the

log R ratio, or LRR) serves as a continuous measurement of copy

number and is vaguely normal in distribution, though with thicker

tails. In addition to SNP markers, many genotyping arrays now

include non-polymorphic markers specifically for the purpose of

copy-number measurement. We use the generic term marker to

refer to any position on the genome in which an intensity

measurement is obtained.

An illustration of the what this type of data looks like in the

presence of a putative CNV is presented in Figure 1. As the figure

illustrates, there is a substantial amount of noise present in the data

relative to the magnitude of the shift in LRR. Because of this noise,

the drop in LRR may not be obvious at a glance. However, the

statistical evidence is fairly convincing: a t-test of whether the

mean LRR for the markers in the gray region is equal to that of

the surrounding markers has p~3|10{8. Clearly, there is a need

for good statistical methods to distinguish signals from noise.

Spike-in simulations
In order to study the power of CNV- and marker-level testing

approaches, we must be able to simulate CNVs and their

corresponding LRR intensity measurements. The accuracy of

these power estimates is affected by how realistic the simulated

data is, so we give careful thought here to simulating this data in as

realistic a manner as possible. The basic design of our simulations

is use real data from the gemcitabine study and ‘‘spike’’ in a signal,

then observe the frequency with which we can recover that signal.

We used circular binary segmentation (described in ‘‘CNV-level

testing’’) to estimate each sample’s underlying mean LRR at every

position along the chromosome, then subtracted the estimated

mean from the actual LRR measurement to obtain a matrix of

residuals representing the noise accompanying the measurement

of LRR. We restricted this effort to chromosome 3 of the

gemcitabine pharmacogenomic study, resulting in a residual

matrix containing 172 samples and 70,542 markers.

We then used these residuals to simulate LRR noise over short

genomic regions in which a single simulated duplication is present.

Letting i denote subjects and j denote markers, the following

variables are generated: zi, an indicator for the presence or

absence of a CNV in individual i; xij , the LRR measurement at

marker j for individual i; and yi, the phenotype. For each

simulated data set, 200 markers were randomly selected from

chromosome 3. The LRR measurement error for simulated

subject i was then taken from the observed measurement errors at

those markers for a randomly chosen cell line in the data from the

gemcitabine study. The random selection of markers from

throughout the chromosome removes the possibility of bias arising

from correlation among the intensities of nearby markers, which

otherwise may arise from missed CNVs during the CBS estimation

or genomic ‘‘waves’’ caused by local variation in genomic GC

content [22,23].

Thus, within a simulated data set, all subjects are studied with

respect to the same genetic markers, but the markers vary from

data set to data set. Simulating the data in this way preserves all

the features of outliers, heavy-tailed distributions, skewness,

unequal variability among markers, and unequal variability

among subjects that are present in real data. A 200 marker

region corresponds to, on average, a 560 kb region of chromo-

some 3. We varied the length of the CNV from 10 to 50 markers,

corresponding to a size range of 26 to 137 kb. For the Illumina

Human1M-Duo BeadChip, which has a median spacing of 1.5 kb

between markers, these numbers of markers would correspond to

simulating a 300 kb region with CNV size ranging from 15 to

75 kb.

Association Studies of Copy-Number Variation
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We simulate results from two study designs: a population-based

cohort study in which the outcome is continuous and a case-

control study in which the outcome is binary. In the cohort study,

the CNV indicator, zi, is generated from a Bernoulli distribution,

where Pr(zi~1) is the frequency of the CNV in the population;

subsequently, yi Dzi is generated from a normal distribution whose

mean depends on zi. In the case-control study, the outcomes are

fixed (in our simulation, half of the subjects were cases and the

other half controls), whereas zi Dyi is generated from a Bernoulli

distribution with a probability given by Bayes’ rule that depends

on the frequency of the CNV in the population (c), the prevalence

of the disease in the normal population (d0), and the penetrance of

the genetic mutation (d1):

Pr(zi~1Dyi~1)~
cd1

cd1z(1{c)d0

Pr(zi~1Dyi~0)~
c(1{d1)

c(1{d1)z(1{c)(1{d0)

Note that in both sampling designs, the phenotype and LRR are

conditionally independent given the latent copy-number status zi.

As mentioned earlier, the LRR values, fxijg, derive from the

observed residuals in the real data. To this noise, we add a signal

that depends on the presence of the simulated CNV, zi. The added

signal is equal to zero unless the simulated genome contains a

CNV encompassing the jth marker; otherwise the added signal is

equal to the standard deviation of the measurement error times the

signal to noise ratio. Our simulations employed a signal-to-noise

ratio of 0.8, which corresponded roughly to a medium-sized

detectable signal based on our inspection of the gemcitabine data.

An illustration of the spike-in process is given in Figure 2.

For the simulations presented in the remainder of the article, we

used a sample size of n~1,000. For continuous outcomes, we used

an effect size (change in mean divided by standard deviation) of

0.4. For the case control studies, we assumed a rare disease

(d0~0:01) and a CNV which confers a relative risk of 2. All

association tests were conducted with a nominal overall type I

error rate of 0.05.

CNV-level testing
The idea behind CNV-level testing is to first separate each

individual’s genome into regions of constant copy number and

then to use those results for subsequent association testing. Thus,

the first challenge is to develop a method for detecting departures

from copy-neutral status.

Several methods have been proposed for this task; among the

most prominent are hidden Markov models [24,25], circular

binary segmentation [26,27], and the fused lasso [28,29]. We focus

here on circular binary segmentation, which has been found to

compare favorably with other methods [10,11]. However, as we

will comment on in the discussion, our main conclusions regarding

the fundamental differences between CNV-level and marker-level

tests would likely apply to the other methods as well.

The main idea behind circular binary segmentation (CBS) is as

follows. For each chromosome,

1. Form the sequence of LRR intensities into a circle by joining

the first and last markers

2. For all possible ways of dividing up the circle into complimen-

tary arcs, compute the t-test statistic for a difference in means

between the two arcs

3. If the maximum of these test statistics exceeds its null

distribution critical value, segment the circle there

4. Repeat recursively for the segmented arcs until no more

significant segments can be found

To carry out this analysis, we used the R package DNAcopy

(available at http://www.bioconductor.org/packages/release/

bioc/html/DNAcopy.html), which obtains the critical values in

step 3 above using a permutation testing approach. For details of

this procedure and its implementation, see [26,27]. The output of

this procedure is an estimation, at every position along the

genome, of the mean LRR at that position. These estimates, which

we denote m̂mk, are piecewise constant over arc k, and therefore also

provide an estimation of the CNV structure of each individual’s

genome.

Once these estimates have been obtained, the second stage in

CNV-level testing is to carry out the association test. In practice,

this can be fairly complicated, for at least three reasons: (1) the test

can be based on either a continuous measure, m̂mk or a

discretization such as whether m̂mk represents a duplication (gain),

deletion (loss), or normal value. (2) Overlapping CNVs do not

Figure 1. Example of LRR data for a putative CNV on Chromosome 3 for a cell line in the gemcitabine study. The gray region denotes
the estimated boundary of the CNV. The points in the gray region have a mean LRR of 20.98; the surrounding points have a mean of 20.11.
doi:10.1371/journal.pone.0034262.g001
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necessarily share the same boundaries. Whether or not these

partially overlapping CNVs represent the same CNV or different

CNVs can be a rather complicated decision, especially when the

sample size is reasonably large, as the number of overlap patterns

can be considerable. (3) Because CNVs from different individuals

do not overlap perfectly, the CNV-level tests are correlated; this

complicates efforts to correct for multiple testing. For our

simulations, we avoid these complications by focusing only on a

small genomic region with a single CNV and basing the test on

whether a CNV is detected or not, thereby skirting the above

complications. We then conduct either a t-test or Fisher’s exact

test, depending on whether the phenotype is continuous or binary.

However, it is worth noting that applications of CNV-level tests to

actual, genomewide data must contend with the above three

issues; this is discussed further in the Results section.

An important consideration in the use of CBS for subsequent

association testing is the threshold used to declare a CNV present.

If the threshold is too high, true CNVs will go undetected; if this

threshold is too low, false positives will occur as neutral regions are

called as CNVs. The tradeoff between false positives and false

negatives depends on the frequency of the CNV, as Table 1

demonstrates.

As the table shows, false positives are a larger problem when the

CNV is rare than when it is common. While highly stringent false

positive rates of 0.001 and 0.01 perform well when the CNV is

rare (5% frequency in the population), the more liberal critical

value of 0.1 attains the best power when the CNV is common

(20% population frequency). This is not surprising. One would

anticipate that power is roughly proportional to misclassification

rate; misclassification rate in turn is dominated by false positives

when CNVs are rare. For more common CNVs, however, highly

stringent thresholds cause problems as false negatives become

frequent.

In any real study, of course, there will presumably be a mixture

of common and rare CNVs that may be associated with the

phenotype. The above results indicate that a threshold of 0.01 is

fairly robust over a realistic range of CNV frequencies. This trend

was observed across a range of different marker sizes (data not

shown); accordingly, we use this value for subsequent simulations

involving CNV-level tests.

Marker-level testing
A lesser known alternative to CNV-level testing is marker-level

testing, in which association testing between copy number and

phenotype is carried out at the level of the single marker. These

tests make no effort to call CNVs as present or absent; instead,

they utilize intensity as a continuous measurement of copy number

at each marker. For example, if our phenotype is continuous, each

marker-level test may derive from a linear regression model. Such

a model may involve adjustments for additional factors, such as

race and age. Figure 3 illustrates the basic idea: three marker-level

tests are depicted, as well as a plot of the resulting { log10 (p)
values along the chromosome. As the figure illustrates, each

individual test is not particularly convincing due to the high

variability of the LRR measurements, but the aggregation of a

large number of tests with low p-values in close genetic proximity

to each other strongly suggests a copy number-phenotype

association.

The second stage in marker-level testing is to identify these

regions in which low p-values have aggregated. This requires a

systematic method for pooling information across neighboring

hypothesis tests. We propose here to pool test results by using

circular binary segmentation (described in ‘‘CNV-level testing’’) on

the p-values. Certainly, there are other possibilities (see Discus-

sion). Our purpose in this paper, however, is to broadly illustrate

the strengths and weaknesses of marker-level testing versus CNV-

level testing, and to that end we restrict attention here to CBS as

the method by which the genome is segmented in both testing

approaches.

One factor we do explore, however, is the effect of transforming

the p-values. In particular, one may imagine performing CBS on

the p-values themselves, on { log10 (p), or on W{1(p), where W is

the CDF of the standard normal distribution. The last transfor-

mation (the so-called ‘‘probit’’ transformation) is motivated by the

idea that the resulting quantity will follow a normal distribution

under the null, which should provide maximum power in the

Figure 2. Example of LRR data for a simulated CNV. Left: The noise, randomly drawn from among the observed measurement errors for a
single subject. Middle: The spiked-in signal. Right: The resulting simulated data, which looks qualitatively similar to the real CNV in Figure 1.
doi:10.1371/journal.pone.0034262.g002

Table 1. Effect of CNV-calling threshold (a) on the power to
detect a CNV.

Calling

threshold

0.001 0.01 0.1

CNV 5% 17.9 29.0 22.1

Frequency 10% 32.5 55.4 52.8

20% 50.0 82.0 88.8

Continuous outcome, 10,000 replications per cell, CNV size = 30 markers).
doi:10.1371/journal.pone.0034262.t001
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subsequent t-tests performed by CBS. The increase in power that

results from using this transformation is illustrated in Table 2,

based on simulation results. We therefore use the probit

transformation for marker-level testing when comparing associa-

tion testing approaches in the Results section. It is worth noting

that the { log10 (p) transformation is highly sensitive to low p-

values. Although this is seemingly attractive, it decreased the

power. This raises the question of whether some other method of

marker-level test aggregation might be able to harness this feature

more effectively than CBS. This is an interesting question for

future research, but beyond the scope of this paper to address.

Results

Simulated data
Using the simulation setup described in ‘‘Spike-in simulations’’,

we compared the power of both CNV- and marker-level

approaches while varying study design, CNV prevalence, and

CNV size. For each setting, 10,000 independent data sets were

generated and analyzed. Power was defined as the fraction of time

a CNV-phenotype association was declared. Note that this does

not take into account fraction of overlap. Certainly, one would

prefer a method that not only detects CNV associations but

correctly identifies their boundaries; we focus only on yes/no

detection of copy-number association here.

In the absence of spiked-in signal, each approach preserved the

type I error rate of 5% for both study designs. The power of each

approach to detect genetic associations in the presence of a spiked-

in, causative CNV is illustrated in Figure 4. The figure illustrates a

very interesting contrast between the two approaches. Relative to

marker-level testing, CNV-level testing works better for large, rare

CNVs. On the other hand, marker-level testing performs better

Figure 3. Illustration of marker-level testing. Top: Marker-level tests at three markers for the gemcitabine study. The phenotype (IC50, a
continuous outcome described in ‘‘Gemcitabine pharmacogenomic study’’) is plotted as a function of LRR, along with the regression line. The p-
values for the three F -tests are, respectively, from left to right. 0.25, 0.0008, and 0.0008, respectively, from left to right. Bottom: Plot of { log10 (p)
from the marker-level tests as a function of position along the chromosome. The three tests from the top part of the figure are plotted in red.
doi:10.1371/journal.pone.0034262.g003

Table 2. Effect of various transformations of p-value prior to
application of CBS on the power to detect a CNV.

No Transformation

pooling None Probit { log10

CNV 5% 6.8 8.6 8.6 6.7

frequency 10% 15.2 30.8 34.2 24.1

20% 54.0 82.9 88.0 76.8

Continuous outcome, 10,000 replications per cell, CNV size = 30 markers.
‘‘Power’’ here refers to the probability that a segment in which low p-values
have aggregated can be separated from the test results from surrounding
markers. The ‘‘no pooling’’ analysis (which implements a Bonferroni correction
to maintain the correct overall type I error rate) is included to illustrate the
power gained by pooling information across nearby markers.
doi:10.1371/journal.pone.0034262.t002
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when CNVs are smaller and more common. Both methods detect

associations involving large, common CNVs with adequate power,

while neither method was able to detect small, rare CNVs – note

that for both approaches, the power drops to the nominal type I

error rate of 5% as the limit of reliable detection is approached.

This is an intuitive finding (at least in retrospect). CNV calling

pools information across markers. This is most effective for large

CNVs. Typically, however, methods for CNV calling do not make

use of CNV frequency; this is valuable information when CNVs

are common. Marker-level testing does the opposite, pooling

information across subjects before attempting to identify signifi-

cant CNVs. This is most effective when the CNV is common.

However, the marker-level approach does not take advantage of

the information provided by neighboring markers when conduct-

ing its initial tests, which is valuable information for detecting large

CNVs.

How large? How rare? In our simulations, marker-level testing

had low power to detect associations involving CNVs occurring in

5% or fewer of the subjects, while CNV-level testing had little

power to detect associations involving CNVs consisting of fewer

than 20 markers (&30 kb). However, these results provide no

more than a rough guide. Different ways of carrying out these two

approaches (such as using hidden Markov models instead of CBS)

or using different types of SNP arrays will likely affect the precise

number of markers at which one approach becomes better than

the other. The important point is that over the range of

biologically plausible values, neither CNV testing approach is

clearly superior. Indeed, the differences in power can be

considerable. For 10-marker CNVs that occur with 20%

frequency, marker-level testing was found to be over 12 times

more powerful (62% vs. 5%; case-control results), whereas for 50-

marker CNVs with 5% frequency, CNV-level testing was found to

be 4.8 times more powerful (53% vs. 11%; continuous outcome

results).

Gemcitabine study
The data were analyzed using both the pooled marker-level

testing approach and the CNV-level testing approach. To deal

with the issue of partial overlap among CNV calls, we used the

cghMCR package (available at http://www.bioconductor.org/

packages/release/bioc/html/cghMCR.html) to find minimal

common regions among the CNV calls [30]. Minimal common

regions with at least three shared gains or losses among cell lines in

the sample were considered for subsequent association testing. The

most widely shared common region consisted of 20 cell lines with a

CNV in that region.

To account for multiple comparisons with the CNV-level testing

approach, false discovery rates [31,32] were calculated. This is

somewhat conservative, as partially overlapping CNVs across cell

lines introduce dependence across the tests, thereby reducing the

effective number of independent tests. Accounting for multiple

comparisons is more straightforward with marker-level testing, as

the approach we outline in ‘‘Marker-level testing’’ directly controls

the family-wise error rate (FWER) of the overall procedure (in the

weak sense [33]).

The marker-level approach identified 8 distinct regions at a

chromosome-wide significance level of 0.05. At a false discovery

rate of 5%, the CNV-level approach identified three regions

associated with IC50. Neither of these regions overlapped with the

marker-level regions (Table 3). There were, however, regions for

which the two approaches demonstrated modest agreement

Figure 4. Power as a function of method and CNV size. The CNV-level testing approach uses a false positive CNV call rate of 0.01; the marker-
level approach uses the probit transformation. The lower dashed line represents the type I error rate, while the upper dashed line represents the
‘‘oracle’’ power that would be possible if the true CNV status were known, with no measurement error.
doi:10.1371/journal.pone.0034262.g004
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(51.4 Mb and 199.3 Mb), albeit not at the level of 5%

chromosome-wide significance.

We take a closer look at the region spanning 199.28–199.32 Mb

in Figure 5. This region contained 15 markers, 6 of which had

marker-level p-values below .05. At the top of the figure, the CNV-

level testing approach is depicted. In the middle of the region,

CNV calls were made for four cell lines. These lines had a mean

adjusted IC50 of 20.8, quite a bit below the mean of 0 for the

lines without a called CNV in that region (the adjustment

procedure described in ‘‘Gemcitabine pharmacogenomic study’’

centers the response to have an overall mean of 0). A Wilcoxon

rank-sum test comparing the two groups has a p-value of 0.02,

suggesting an association between the CNV and Gemcitabine

cytotoxicity that is in agreement with the one discovered by the

marker-level approach. For CNV-level testing, however, evidence

for the association is weak after adjusting for multiple comparisons.

To the left of the shaded region in Figure 5, the marker-level

approach shows no evidence of association, and indeed, no

common regions were found there (and hence, no association test

was carried out). Meanwhile, to the right of the shaded region,

Table 3. Comparison of CNV-level and marker-level tests for the Gemcitabine data.

CNV-level Marker-level Other

Position (Mb) nc p q FWER studies

Detected by CNV-level approach 12.3–12.45 3 v0:0001 0.03 w0:2

51.4–51.5 7 v0:0001 0.01 0.1–0.2 [34–36]

185.1–185.2 3 v0:0001 0.01 w0:2 [35,37–39]

11.3–11.5 3 0.7 0.9 v0:01 [35,37,40,41]

Detected by marker – level approach 41.78–41.80 v3 0.01–0.05 [36,42]

42.6–42.7 4 0.4 0.8 0.01–0.05

44.2–44.4 3 0.1 0.6 v0:01 [36]

102.5–102.7 6 0.4 0.8 v0:01

132.5–132.6 v3 v0:01 [34,43]

139.6–139.8 5 0.2 0.6 0.01–0.05

199.28–199.32 4 0.02 0.3 0.01–0.05 [1,3,34,35,37,40,44–48]

nc~number of CNV calls in that region. If ncv3, no association test was carried out, hence the blank entries. For the marker-level tests, a FWER of 0.01–0.05 means that
controlling the FWER at the a~0:05 level, we obtain a segmentation in this region, but that if we control the FWER at the a~0:01 level, we do not.
doi:10.1371/journal.pone.0034262.t003

Figure 5. Plot of { log10 (p) from Gemcitabine marker-level tests as a function of position along the chromosome. The shaded region
denotes a region of significant elevation, as detected by the methods described in ‘‘Marker-level testing’’. The top of the plot contains annotations
describing the results of the CNV-level analysis in three distinct regions. IC50CNV is the mean adjusted IC50 for cell lines with a called CNV in that
region; IC50Ref is the mean adjusted IC50 for cell lines without a called CNV in that region.
doi:10.1371/journal.pone.0034262.g005
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which also showed no evidence of association in the marker-level

approach, a common region consisting of nine cell lines was found.

However, this region showed no association with the outcome: the

mean adjusted IC50 was nearly the same for those lines with a

CNV in the common region and those without (p~0:9).

Not all regions demonstrated this level of agreement. For

example, consider the region 102.52–102.73 Mb, plotted at the

bottom of Figure 3. It is obvious even to the naked eye that some

sort of association is present, and yet no common regions were

observed in this span of the chromosome. Clearly, there seems to

be information present in the continuous LRR measurements that

is lost when an attempt at CNV calling is made. One possibility is

that this region harbors a number of small variants that cannot be

detected by CNV calling due to an insufficient number of markers

per CNV, but that do not stand in the way of detection using the

single-marker approach.

There were also regions detected by the CNV-level approach

and not the marker-level approach, such as the region 12.31–

12.45 Mb. This region has a large number of markers (241),

making the individual CNVs easy to recognize and call.

Furthermore, the two cell lines with the highest IC50 levels both

had CNVs in this region, and the CNV-level association test was

highly significant (p~0:00007, q~0:01). However, the CNV was

also rare, present in only 3 out of 172 cell lines. The simulation

results demonstrate that the marker-level approach has lower

power that the CNV-level approach when the CNV is rare, which

helps to explain why no association was found in this region using

the marker-level approach.

CNV analysis of the of the gemcitabine pharmacogenomics

study involving the Human Variation Panel has also been carried

out by Kalari et al. [49]. In their analysis, they discovered 775

CNVs with allele frequencies w1% in 102 regions across the

genome, including 12 regions on chromosome 3. Using a CNV-

level testing approach, they reported five CNV regions to be

associated with gemcitabine IC50; none, however, were located on

chromosome 3.

Discussion

We have explored two different approaches to testing for

associations between copy number and phenotype. Our results

show that CNV-level testing has greater power to detect

associations involving large, rare CNVs, while marker-level testing

has greater power to detect associations involving small, common

CNVs.

Of course, there are other concerns besides power. Plots such as

those in Figures 3 and 5 may be of descriptive interest regardless of

the formal approach to association testing used. Circular binary

segmentation is rather computationally intensive, and is the

primary computational burden in the analysis. In a CNV-level

analysis, CBS must be run n times (once for each subject), whereas

in a marker-level analysis, it needs to be run only once (on the p-

values). For our analysis of the gemcitabine data in the Results

section, carried out on an Intel 3.00 GHz processor, the marker-

level analysis required 22.6 seconds, while the CNV-level analysis

required 52.5 minutes. Furthermore, issues of partially overlap-

ping CNVs and correction for multiple testing are far more

complicated and challenging in the CNV-level approach than the

marker-level approach.

We used a relatively simple method (CBS) for CNV calling in

this study. There are a variety of competing tools, and indeed, this

is an active area of methodological development. Certainly, the

specific numbers in the power calculations would differ for other

CNV calling tools. However, the main message of this article is the

general trend and fundamental differences between the CNV-level

and marker-level approaches, regardless of the specific techniques

used for CNV calling or marker-level test aggregation.

Indeed, as marker-level approaches are less well-known in the

statistical genetics community, far less work has gone into

developing methods for them, and there is undoubtedly much

room for improvement using marker-level approaches beyond the

simple approach presented here. Alternative approaches include

hidden Markov models, the fused lasso, local regression and

kernel-based approaches [50–54]. Nor is it clear that pooling p-

values is the best approach; a more powerful approach may be to

pool test statistics instead of p-values to account for the direction of

the association. Further research is needed to compare the relative

merits of these approaches.

Furthermore, our simulations involve a very simple genetic

scenario: a small segment of DNA in which a single CNV is either

present or absent. It is important to understand the properties of

CNV- and marker-level approaches in these simple cases,

although future research involving more complicated scenarios is

also needed.

Our findings are important for two reasons. First, as both of

these approaches are used in practice, it is important for

researchers to be aware of their strengths and limitations for

detecting certain kinds of CNV-phenotype associations. In

practice, the genetic mechanism is unknown, and may be due to

rare, large CNVs or small, common CNVs – or a combination of

both. An over-reliance on either approach is likely to lead to

missing certain types of associations, as we observed in our analysis

of the gemcitabine data.

Second, these findings highlight the inadequacy of current

approaches and the need to develop methods capable of

simultaneously pooling information across both markers and

subjects for CNV detection and association studies. Indeed, several

recent articles have proposed methods along those lines [55–57].

Such methods have the potential to avoid the loss of power and

information that comes from current two-stage approaches and

deliver robust power to detect the wide variety of CNV-phenotype

associations that may exist in nature.
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