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Editorial on the Research Topic

Bacterial Cell Wall Structure and Dynamics

The bacterial cell wall is a complex, mesh-like structure that in most bacteria is essential for
maintenance of cell shape and structural integrity. Historically, the cell wall has been of intense
research interest due to its necessity for most bacteria and absence from the eukaryotic realm,
positioning it as an ideal target for some of our most powerful antibiotics (Schneider and Sahl,
2010). In addition, bacterial cell wall fragments can have immunostimulatory and cytotoxic
properties and thus play important roles in pathogenesis and disease (Goldman et al., 1982; Fleming
et al., 1986; Royet et al., 2011; Sorbara and Philpott, 2011; Jutras et al., 2019).

The cell wall consistsmainly of peptidoglycan (PG), amesh of polysaccharide strands (composed
of a poly-[N-acetylglucosamine (GlcNAc)-N-acetylmuramic acid (MurNAc)] backbone) cross-
linked via short peptide bridges attached to the MurNAc residues (Vollmer et al., 2008a). PG is
synthesized on the external face of the cytoplasm. Synthesis steps include cytoplasmic generation of
the lipid-linked disaccharide-pentapeptide precursor lipid II, translocation of lipid II to the outside
of the cell by flippases (MurJ and/or Amj); and finally assembly of the cell wall by penicillin-binding
proteins (PBPs) and Shape, Elongation, Division, and Sporulation (SEDS) proteins (Ruiz, 2008;
Typas et al., 2011; Meeske et al., 2015, 2016; Cho et al., 2016; Taguchi et al., 2019). The assembly
process can be further subdivided into polymerization of the GlcNAc-MurNAc-pentapeptide via
glycosyltransferase reactions catalyzed by class A PBPs and SEDS proteins, and crosslinking of the
peptide sidestems into a tight meshwork by class A and B PBPs and L,D-transpeptidases in a not
(yet) fully-understood manner (Zhao et al., 2017). In addition, the PG mesh can be decorated with
secondary cell wall polymers, such as wall teichoic acids (polyol-phosphate polymers) or capsule
polysaccharides that are covalently attached to PG (Rajagopal and Walker, 2017). In the case of
mycobacteria, layers of polysaccharides and long-chain lipids are added to the PG layer, making
the cell wall structure even more complex (Jankute et al., 2015).

While the cell wall must be rigid enough to maintain high intracellular pressures and withstand
environmental assaults, it also needs to be flexible enough to allow for cellular expansion. In
addition to synthesis functions, the cell wall is thus also constantly broken down, turned over,
and remodeled (Park and Uehara, 2008; Reith and Mayer, 2011; Mayer et al., 2019). This is
accomplished by a poorly-understood, remarkable group of enzymes that collectively can cleave
and/or modify a variety of PG structures. So-called “autolysins,” for example, are a functionally
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diverse group of enzymes that cut PG crosslinks
(endopeptidases), peptide sidestems (amidases,
carboxypeptidases), or the sugar backbone (muramidases,
lytic transglycosylases) (Scheurwater et al., 2008; Vollmer et al.,
2008b). PG-acetyltransferases “decorate” MurNAc backbone
structures with acetyl residues, imparting increased lysozyme
resistance (Moynihan and Clarke, 2011). L,D-transpeptidases
(Mainardi et al., 2008) orchestrate D-amino acid (DAA) exchange
reactions that can replace terminal D-Ala residues with a variety
of alternative DAAs (Cava et al., 2011); this can be exploited to
label PG with fluorescent compounds (Kuru et al., 2012). Many
of these systems fulfill important functions such as daughter
cell separation, sacculus expansion during growth, insertion
of macromolecular trans-envelope protein complexes, and PG
recycling (Scheurwater and Burrows, 2011; Vollmer, 2012;
Johnson et al., 2013).

Due to its importance for bacterial survival and the many
open questions concerning mechanistic details of synthesis and
turnover, the cell wall remains at the center of a large number
of active research programs. The last decade in particular
has seen a resurgence in interest in the bacterial cell wall—
a Pubmed search with the keywords “peptidoglycan synthesis
bacteria” reveals a total of 7,762 publications, of which 3,532
(45%) were published in the last 10 years. This renewed interest
has been fueled by novel imaging techniques (super-resolution
imaging and the development of live cell wall stains) and by
new revelations of processes that had been thought to be well-
understood for decades. Some recent examples include the
finding that the class A “penicillin-binding proteins” (aPBPs)
require outer membrane cofactors for in vivo function (Paradis-
Bleau et al., 2010; Typas et al., 2010), and that RodA/FtsW
possess glycosyltransferase activity (Taguchi et al., 2019). At
the same time, the cell wall remains a highly attractive target
for antibiotic development, which has in the last decade
become ever more important due to the rise in antibiotic
resistance development.

In this special topic issue, we explore some new developments
in the realm of bacterial cell wall biology. This collection
of articles touches upon several cornerstones of PG research,
with contributions focusing on the cell wall as a target
for novel antibiotics, and aspects of its synthesis, turnover
and modification.

THE CELL WALL AS A TARGET FOR

ANTIBIOTIC DISCOVERY

In a bioinformatics tour-de-force, Jukič et al. describe novel
inhibitors of UppS, an isoprenyl transferase enzyme that catalyzes
a critical step in the biosynthesis of the lipid carrier molecule
undecaprenol pyrophosphate (UPP). UPP is essential for the
translocation of the PG precursor lipid II and other extracellular
polysaccharides and thus constitutes a promising target for a
novel class of cell envelope antibiotics. These inhibitors were
identified by virtual docking models that predicted molecule
binding based on UppS crystal structures and their interaction
with a known inhibitor, bisphosphonate BPH-629. This clever

approach resulted in the identification of several inhibitors, one
of them with µM range inhibitory activity.

Drug-resistantMycobacterium tuberculosis strains are a major
global threat that is not being adequately met with current
drug discovery efforts. In their review article, Catalão et al.
describe the history of peptidoglycan-targeting drugs and their
use in mycobacteria. The authors provide a potential path
forward by discussing recent advances such as therapies using β-
lactam/β-lactamase inhibitor combinations and the use of phage
endolysins for the treatment of mycobacterial infections.

CELL WALL SYNTHESIS AND

ARCHITECTURE

Using X-ray crystallography and liquid state NMR,
Maya-Martinez et al. investigate the structure-function
relationships of PBP4 of Staphylococcus aureus, a class C PBP
that unexpectedly has no PG hydrolase (D,D-peptidase) activity,
but only transpeptidase activity. S. aureus is characterized by
a very high degree of PG cross-linking and PBP4 apparently
plays a major role in this hyper-crosslinking. The authors show
transpeptidase activity of PBP4 with disaccharide peptides
in vitro, producing dimeric, multimeric, and cyclic products.
Structural studies with an active site mutant (S75C) revealed
potential binding sites for the donor and acceptor stem peptides
involved in the transpeptidation reaction.

Hottmann et al. report on peptidoglycan metabolism in
the oral Gram-negative pathogen Tannerella forsythia (Phylum
Bacteroidetes). T. forsythia depends on an exogeneous supply
of the cell wall sugar N-acetylmuramic acid (MurNAc), as it
lacks genes generally essential for bacteria for de novo synthesis
of the peptidoglycan precursor UDP-MurNAc. A pathway
for the catabolism of MurNAc involving a MurNAc-6 kinase
(MurK) and a MurNAc-6P hydrolase (MurQ etherase) was
established in T. forsythia, which counteracts a proposed cell
wall synthesis pathway that utilizes salvaged MurNAc from the
medium. Accordingly, a mutant in murK exhibited increased
tolerance to low external MurNAc concentrations, presumably
since blocking MurNAc degradation enhances peptidoglycan
precursor synthesis.

The exact in vivo architecture of PG is poorly understood.
Li et al. used Atomic Force Microscopy (AFM) for a detailed
study of PG architecture, particularly at the septum, in B.
subtilis. Surprisingly, B. subtilis undergoes significant changes in
thickness and overall cell wall architecture in different growth
phases. Li et al. were also able to isolate and image septa at
varying stages of completion, visualizing the PG dynamics of
septal closure at high resolution.

In a thought-provoking perspective article, Vincent et al.
present a hypothesis for the evolutionary origins of the
unique mycobacterial cell wall through a series of horizontal
gene transfers. They support their argument by observing the
distribution of key cell-wall biosynthetic enzymes across the
order, which suggests that the arabinogalactan components
pre-date the outer membrane and virulence related lipids. In
their article, the authors propose an experiment whereby the
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evolutionary origins of the leaflet could be tested by attempting
to reconstruct the mycobacterial cell wall in an Actinobacterium
that currently lacks this feature.

CELL WALL TURNOVER AND

MODIFICATION

Duchêne et al. describe new phenotypes for endopeptidase
mutants in Lactobacillus plantarum. The mechanisms of
regulation and physiological functions of cell wall lytic enzymes
are still poorly understood, particularly in non-model organisms.
L. plantarum is an ideal system to study PG hydrolase phenotypes
due to its relatively small number of PG lytic enzymes (a
“mere” twelve!). The authors carefully dissect the cell biological
consequences of the loss of L. plantarum’s endopeptidases and
assign new putative functions to these enzymes. This study
thus lifts the curtain on endopeptidase function in a Gram-
positive non-model organism, which is of particular importance
given the high level of redundancy of PG lytic enzymes in
many model bacteria, which ordinarily makes gene-phenotype
association difficult.

During cell wall turnover in the Gram-positive pathogen S.
aureus, theMurNAc-GlcNAc disaccharide is released from PG by
the major autolysin Atl and its components eventually reused for
PG biogenesis. Kluj et al. report on the fate of this disaccharide,
which is taken up and is concomitantly phosphorylated by
a phosphotransferase system (PTS) transporter. In order to
facilitate PG recycling, the product MurNAc-6P-GlcNAc is
split intracellularly by a novel phospho-glycosidase (MupG),
constituting the first characterized representative of a novel class
of phospho-muramidase enzymes distributed mainly within the
Firmicutes bacteria.

Hager et al. report on an intriguing mode of attachment used
by some bacteria (e.g., Bacillus anthracis and Paenibacillus alvei)
to bind cell-surface proteins to the cell envelope: pyruvylated
secondary cell wall polymers act as high-affinity ligands for
binding. In this study, the enzymatic pathway leading to
the synthesis of pyruvylated disaccharide repeats, [-4-beta-
GlcNAc-1,3-(4,6-Pyr)-beta-ManNAc-1-], of the P. alvei cell
wall polymer was reconstituted. The reconstitution involved
recombinant CsaB enzyme, catalyzing the attachment of a
pyruvate to position 4 and 6 of ManNAc in the lipid-linked
precursor molecule.

Devine provides a concise mini-review about the phosphate
starvation regulation in the Gram-negative E. coli and the Gram-
positive B. subtilis. In both organisms, phosphate limitation
is sensed by the two-component system PhoPR. However,
the mechanisms controlling the Pho response differ. In
Bacillus subtilis, phosphate-limitation response is linked with
wall teichoic acid metabolism. PhoR activity is controlled by
biosynthetic intermediates of WTA metabolism, which either
promotes or inhibits autokinase activity. In E. coli, phosphate
is sensed directly through substrate-responsive conformational
changes in a phosphate transporter.

Vermassen et al. give a comprehensive overview of the
biochemistry and in vivo cleavage activity of PG lytic enzymes.

This review highlights the “mix and match” approach that many
cell wall lytic enzymes have undergone, combining different
PG cleavage catalytic functions (e.g., lytic transglycosylase and
peptidase activity) within the same enzyme.

The unique chemical nature of PG allows it to act as a potent
signaling molecule. Irazoki et al. provide an overview of the
process of PG release across a broad range of bacteria and PG
sensing by a wide range of hosts. The authors highlight the
multiplicity of systems to generate and sense bacterial PG and
suggest that there is still a great deal to be learned about the
sensing of these important molecules. They conclude that this
field will be driven by the development and application of new
analytical technologies to identify novel PG receptors.

Peptidoglycan recycling among many Gram-negative bacteria
is achieved through a core pathway of degradation, recovery and
recycling. In some pathogenic Neisseria, the recycling system
is partially defective, which leads to an increase in the release
of immunostimulatory PG fragments. In their review article,
Schaub and Dillard discuss some of the differences between
Neisserial PG turnover and other, more intensively studied
bacteria such as E. coli. They conclude by proposing Neisseria sp.
as an attractive model system for the study of cell wall growth and
turnover due to their lower number of cell wall-active enzymes,
variation in cell shape, and natural competence.

In addition to variations in glycan composition and stem-
peptide composition, PG can also be O-acetylated at the C-
6 of MurNAc, or, less frequently, GlcNAc. Sychanta et al.
provide an overview of recent advances in understanding the
biochemistry of O-acetyltransferase systems in Gram-positive
and Gram-negative bacteria. They also discuss current efforts at
understanding the impact of inhibiting these systems and address
unanswered biological questions such as the source of acetate for
wall modification.

Bacterial cell wall biology remains a major frontier, both in
our quest to develop a profound understanding of fundamental
microbiology and to discover novel compounds that may be used
to treat infections caused by antibiotic resistant bacteria. We
hope that this special issue further advances this frontier and
inspires additional exploration—peptidoglycan is, in many ways,
still as mysterious as it was 7,762 publications ago.
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