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ABSTRACT

Ubiquitination is essential for plant growth and development. Deubiquitination coop-
erates with ubiquitination to regulate the ubiquitination levels of target proteins. The
ubiquitin-specific protease (UBP) family is the largest group of deubiquitinases (DUBs),
which perform extensive and significant roles in eukaryotic organisms. However, the
UBP genes in wheat (TaUBPs) are not identified, and the functions of TaUBPs are
unknown. The present study identified 97 UBP genes in the whole genome of T.
aestivum. These genes were divided into 15 groups and non-randomly distributed on
chromosomes of T. aestivum. Analyses of evolutionary patterns revealed that TaUBPs
mainly underwent purification selection. The studies of cis-acting regulatory elements
indicated that they might be involved in response to hormones. Quantitative real-
time PCR (qRT-PCR) results showed that TaUBPs were differentially expressed in
different tissues. Besides, several TaUBPs were significantly up-regulated when plants
were treated with salicylic acid (SA), implying that these DUBs may play a role in
abiotic stress responses in plants and few TaUBPs displayed differential expression
after viral infection. Furthermore, TaUBPIA.1 (TraesCS1A02G432600.1) silenced by
virus-induced gene silencing (VIGS) facilitates Chinese wheat mosaic virus (CWMV)
infection in wheat, indicating that TaUBPIA.I may be involved in a defense mechanism
against viruses. This study comprehensively analyzed the UBP gene family in wheat and
provided a basis for further research of TaUBPs functions in wheat plant response to
viral infection.

Subjects Agricultural Science, Bioinformatics, Genetics, Plant Science

Keywords Wheat, UBP, Gene family, Evolutionary patterns, Stress responses, Virus-induced gene
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INTRODUCTION

Post-translational modifications (PTMs), including phosphorylation, ubiquitination,
sumoylation, glycosylation and lipidation, control many cellular processes in eukaryotes
(Clague, Coulson & Urbe, 2012; Isono & Nagel, 2014). Ubiquitination is one of the most
vital PTMs and is involved in diverse cellular pathways and physiological events, such
as cell-cycle progression, immune responses, and DNA repair (Pickart, 2004; Vierstra,
2009). Protein ubiquitination and deubiquitination have been widely studied (Frappier
& Verrijzer, 2011; Zhang, 2003). Proteins are ubiquitinated through three ordered steps,
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and a cascade of three enzymes is involved: E1 ubiquitin activating enzyme, E2 ubiquitin
conjugating enzyme, and E3 ubiquitin ligase (Afanassov, Koutelou & Dent, 2011; Zhou et
al., 2017). The number of conjugated ubiquitin molecules and the type of ubiquitin linkage
determine the fortune of ubiquitinated substrate proteins. For a longtime, functional
studies of ubiquitylation have focused on the function of E3 ubiquitin ligase that binds
the substrate and thus confers specificity. In plants, the multi-subunit E3 ligases comprise
the Cullin RING ligases (CRLs) which is important for promoting ubiquitylation. SCF
complex is the largest group of CRLs and consists of four subunits: Cullin 1 (CUL1),
S-phase kinase-associated protein 1 (SKP1/ASK), F-box substrate-binding protein and the
RING subunit RING-box 1 (RBX1). Additionally, a conserved protein complex called the
COP9 signalosome (CSN) is required for CRL activity (Wei, Serino ¢ Deng, 2008).
Ubiquitination and deubiquitination coordinate the binding of ubiquitin to its substrate.
Deubiquitination gets involved in regulating the ubiquitination levels of target proteins and
is critical for regulating cellular processes (Vierstra, 2009; Wilkinson, 2000). For instance,
deubiquitination is responsible for the activation of ubiquitin molecules after translation.
It is also essential for the recycling of the ubiquitin molecules and can rescue proteins
from degradation before they are recognized by the degradation machinery. Additionally,
it could affect the binding affinity of the target protein to its interactor protein and thereby
regulate downstream processes (Isorno ¢ Nagel, 2014). The processes of deubiquitination
are regulated by deubiquitinating enzymes (DUBs). By explicitly removing ubiquitin
moieties, DUBs deubiquitinate target proteins and affect their activity, stability and
fate (Katz, Isasa ¢ Crosas, 2010; Neutzner ¢ Neutzner, 2012). Among the several types of
DUBs, ubiquitin-specific proteases are the largest and most diverse subfamily in eukaryotes
(Amerik & Hochstrasser, 2004; Nijman et al., 2005; Wilkinson, 1997). Ubiquitin-specific
protease is abbreviated as UBP in the plant, Ubp in fungus and USP in human. In the
following, it is generally expressed as UBP. UBP proteins are highly conserved and contain
a ubiquitin carboxyl-terminal hydrolase (UCH) domain, which commonly possesses two
similar triads of catalytic residues: each triad contains highly conserved cysteine (Cys) and
histidine (His) residues which are crucial for deubiquitination (Yan et al., 2000). Besides,
UBPs can regulate the function of E3 ubiquitin ligases. For instance, the deneddylating
activity of CSN and/or the deubiquitylating activity of UBP12 maintain CRL levels in
plants (Wu, Chan & Chien, 2006). In humans, USP15 coordinates with CSN to remove
conjugated ubiquitin chains from the RBX1 subunit of CRL for CRL adapter proteins’
stability (Chou et al., 2017). The deubiquitylating enzymes, USP7 and USP9X, differentially
regulate the ubiquitin E3 ligase MARCH7 (Nathan et al., 2008). The inhibition of USP7
leads to the degradation of the E3 ligase MDM2 (Turnbull et al., 2017). The stability of the
E3 ubiquitin ligase MARCHS is regulated by USP19 (Nakamura et al., 2014). Currently, 16
Ubp genes in yeast (Wilkinson, 1997), 27 UBP genes in A. thaliana (Yan et al., 2000) and 25
UBP genes in rice (Wang et al., 2018a) have been identified. Studies in yeast have revealed
several Ubps-controlled processes, such as stress responses, energy metabolism, nutrient
utilization and sexual reproduction (Auesukaree et al., 2009; Dudley et al., 2005; Kahana,
2001). In plants, UBPs have been shown to be involved in controlling cell proliferation
(Du et al., 20145 Liu et al., 2008), endoreplication (Xu ef al., 2016), root hair elongation
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(Doelling et al., 2001), root differentiation (An et al., 2018), flowering time (Derkacheva
et al., 2016), pollen development and transmission (Nassrallah et al., 2018), canavanine
resistance (Yan et al., 2000), regulation of MYC2 levels in jasmonate responses (Jeorg et
al., 2017), abscisic acid (ABA)-mediated resistance to salt and drought stress (Zhao et
al., 2016), pathogen defense (Ewan et al., 2011; Zhou et al., 2017), and deubiquitination of
monoubiquitinated-H2A and -H2B (Derkacheva et al., 2016; Nassrallah et al., 2018; Walton
et al., 2016). Therefore, UBPs are essential to many important facets of plant growth and
development. However, as most research has focused on single UBP genes, systematic
analyses of UBP gene family members are few. Despite the fact that wheat is an important
food crop globally, the UBP gene family members in wheat, their functions and their
evolutionary relationships to other crop species have not yet been reported. As UBPs are
essential for many agriculturally significant traits, understanding the role of UBPs in wheat
can be an important tool to improve wheat quality and yield.

Ubiquitination has been reported to improve plant defense against various pathogens
(Dreher ¢ Callis, 2007). Previous research has shown that the SCF complex participated in
plant-virus interactions. First, restriction of the replication of Plantago asiatica mosaic virus
and Potato virus X, virus-induced necrosis, and the host and non-hosts resistance require an
essential SKP1-interacting eukaryotic protein, named SGT1 (Komatsu et al., 2010). Second,
N gene-mediated resistance to Tobacco mosaic virus (TMV) arose due to virus-induced
gene silencing of SKP1, SGTI, or CSN in N. benthamiana (Liu et al., 2002). Third, the
F-box protein, ACIF, affects N gene-mediated responses to TMV and is indispensable for
TMV-triggered hypersensitive response in Nicotiana tabacum (Van den Burg et al., 2008).
According to previous reports, ubiquitin-specific proteases (USPs) have multiple functions
in the immune response against viral infections. USP4 positively regulates RIG-I-mediated
antiviral response through deubiquitination and stabilization of RIG-1 (Wang et al., 2013).
USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25 and
negatively regulates virus-induced type I interferon signaling (Pauli et al., 2014; Zhang et
al., 2015). USP17 is involved in virus-triggered type I IEN signaling (Chen et al., 2010). In
plants, UBPs function in regulating immunity (Zhou et al., 2017). For instance, UBP12 and
UBP13 in A. thaliana, as well as their tobacco homologue, NtUBP12, negatively regulate
plant immunity (Ewan et al., 2011). The deubiquitinating enzymes, Ubp14 and Ubp4 in
M. oryzae, are required for pathogen virulence (Que et al., 2020; Wang et al., 2018b). To
date, the role of UBPs in the defense of viral infections has not yet been reported although
UBP:s are critical for plant immunity.

The growth and development of wheat are restrained by abiotic and biotic stresses, such
as cold, drought, and plant viruses. Plant RNA viruses are one of the major causes of losses
of economically important agriculture (Sanfacon, 2017). For example, a soil-borne virus
disease of wheat caused grain yield losses commonly of 10-30% and sometimes up to 70%
in Shandong province, China (Chen, 1993). Among these viruses, CWMYV and wheat yellow
mosaic virus (WYMYV), threaten wheat production worldwide. CWMYV is a member of the
genus Furovirus, family Virgaviridae (Adams, Antoniw ¢ Kreuze, 2009), and its genome
consists of bipartite single-stranded positive-sense RNA, including CWMV RNA1 and
CWMV RNA2 (Diao et al., 1999). CWMV RNA1 encodes two replication-related proteins
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and a movement protein (MP) required for viral movement. It is predicted that CWMV
RNA2 encodes four proteins, including a coat protein (CP), two minor CP-related proteins
(N-CP and CP-RT), and a cysteine-rich protein (CRP) (Andika et al., 2013; Diao et al.,
1999; Sun et al., 2013a; Sun et al., 2013b). WYMYV belongs to the genus Bymovirus, family
Potyviridae, and has a genome containing two positive single RNA strands (Zhang et al.,
2019). Both WYMV RNA1 and WYMV RNA2 encode a polyprotein, respectively. The
polyprotein encoded by RNA1 produces eight proteins, including the CP and the nuclear
inclusion b protein (NIb), necessary for virus replication. The polyprotein encoded by
RNA2 produces two proteins, P1 and P2. CWMYV and/or WYMV induce abnormal growth
and development of wheat, and infection with CWMYV and/or WYMV dramatically reduce
wheat yields. UBPs are vital for various plant physiological activities, mainly in plant
immunity. However, there is no research on the relationships between UBPs in wheat
and viral infections. Therefore, we identified the UBP gene family in wheat and further
explored the roles of wheat UBP genes in stress responses.

In this study, we identified 97 UBP genes in wheat and analyzed their phylogenetic
relationship, evolutionary patterns and divergence patterns. We also found an abundance
of hormone-related cis-acting regulatory elements in TaUBPs. We further analyzed the
expression levels of 15 TaUBPs in different tissues and examined their expression patterns in
response to salicylic acid (SA). Additionally, we examined the TaUBPs expression patterns
in response to CWMV or WYMV. This work lays a reliable bioinformatic foundation
for studies of the TaUBP gene family, particularly for investigations of the relationships
between TaUBPs and viral infections.

MATERIALS & METHODS

Identification of UBP genes in wheat

To identify UBP genes in T. aestivum (TaUBPs), UBP protein sequences in A. thaliana
(AtUBPs) (https://www.arabidopsis.org/) were used as seed sequences to search the wheat
database using Ensembl Plants (http://plants.ensembl.org/). According to the filtering
conditions (E-val <1.0E—5, %ID > 50), redundant genes were removed, and the longest
representative transcripts were selected for more accurate analyses. The potential members
of the TaUBP gene family were verified using Pfam (https://pfam.xfam.org/) by submitting
obtained putative TaUBP protein sequences.

Characterization of TaUBPs

Information about the TaUBP gene family, such as chromosomal localization, the
CDSs’ length, and the number of amino acids obtained from the Ensembl Plants. The
theoretical isoelectric point (pI) and molecular weight (MW) of each TaUBP protein were
obtained using ExPAsy (https://web.expasy.org/compute_pi/). Subcellular localization
was predicted by Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)

and the signal peptides of the TaUBP proteins were predicted using SignalP5.0
(http://www.cbs.dtu.dk/services/SignalP/).
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Multiple sequence alignments and phylogenetic analysis

Three data sets were used for phylogenetic analysis, including identified TaUBP
protein sequences, 27 AtUBP protein sequences (Liu et al., 2008) downloaded from
TAIR (https://www.arabidopsis.org/), and 25 UBP protein sequences in O. sativa
(OsUBPs) (Wang et al., 2018a) downloaded from the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu/downloads_gad.shtml). Multiple sequence alignments
were performed through MEGA-X software using MUSCLE function. Further, the
neighbor-joining method was used to generate a phylogenetic tree based on 1000 bootstrap
replicates and p-distance methods, which were used with the pairwise deletion option
to address gaps in the amino acid sequences (Kumar et al., 2018). Next, using the same
methodology, the phylogenetic tree of TaUBP protein sequences was constructed. The
genome information was provided in Table S1.

Analysis of chromosomal location and duplication of TaUBPs

The wheat genomic sequences and genome annotation files were downloaded from the
Ensembl Plants database. Then, we used them to generate a graph of chromosomal location
and detect duplication relationships of TaUBPs through TBtools software using Graphics
function (Chen et al., 2020).

Calculation of Ka/Ks values

Ka/Ks values are the ratio of the number of nonsynonymous substitutions per
nonsynonymous site (Ka) to the number of synonymous substitutions per synonymous
site (Ks), which is a powerful indicator for measuring selection pressure. Generally, if the
Ka/Ks value >1, some of the mutations are profitable under advantageous selection; if the
Ka/Ks value = 1, the mutations are neutral; if the Ka/Ks value <1, the mutation restrict the
purifying selection (Shiu et al., 2004). Ka and Ks values were calculated through TBtools
software using Ka/Ks Calculator function. The divergence time (T) was calculated as T =
Ks/(2 x 9.1 x 1077) million years ago (Mya) (Hurst, 2002; Yang ¢ Bielawski, 2000).

Cis-acting regulatory elements analysis
The promoter region, 2.0 kb upstream of the transcription start site, of all of the TaUBPs,
were obtained from the Ensembl Plants database. Then, the cis-acting regulatory elements

were screened via PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/).

Plant growth, SA treatment, and inoculation of virus
Seeds of the wheat cultivar, ‘cv Yangmai 158/, were germinated in an artificial growth
chamber: 25 &+ 2 °C and 70% relative humidity under long-day conditions (16 h light/8 h
dark cycles) (Yang et al., 2020). The detailed information on the artificial growth chamber
is provided in Table S1. The grown wheat plants at the three leaf-stage were used to analyze
gene expression levels in response to salicylic acid (SA) treatment. 18 wheat plants were
treated with 100 uM SA solution or distilled water (as controls). Then, all samples were
collected at six (0, 1, 3, 6, 12, and 24 h) time intervals from inoculation.

Full-length cDNA clones of CWMYV and WYMV RNAs have previously been constructed
(Yang et al., 2016; Zhang et al., 2019). ‘cv Yangmai 158/plants at the three leaf-stage were
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inoculated with inoculation buffer (as controls), CWMV or WYMV. Virus transcription
and friction inoculation were performed as previously described (Yang et al., 2020). After
inoculation, wheat plants were grown on a mixed soil matrix (peat: vermiculite = 1:1)
under a long-day photoperiod, at 15 & 2 °C and 70% relative humidity. Then, all samples
were harvested at 8, 11, 14, and 17 days post-inoculation (dpi), with three biological
replicates per sample.

The collected leaf samples were immediately frozen in liquid nitrogen and stored at
—80 °C prior to the extraction of total RNA. The experiment was independently repeated
three times.

Gene expression analysis by qRT-PCR

Quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of
TaUBPs. Total RNA was isolated for each sample using the R6827 Plant RNA Kit protocol
(OMEGA). First-strand cDNA was synthesized from the total RNA using the First Strand
cDNA Synthesis Kit ReverTra Ace -a- (TOYOBO). Then, qRT-PCR was carried out using
SYBR-green fluorescence and the LightCycler®480 Real-Time PCR System (Roche). The
procedure used for qRT-PCR was 3 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, 30
s at 62 °C, and 30 s at 72 °C. The T. aestivum cell division cycle (TaCDC) gene (Accession
Number: XM _020313450) was used as an internal reference gene (Zhang et al., 2019). The
relative expression levels of TaUBPs were calculated using the 2724¢" method (Livak ¢
Schmittgen, 2001). The detailed information of the instruments and the reagents used in
this experiment is provided in Table S1.

Virus-induced gene silencing (VIGS) in wheat

Barley stripe mosaic virus (BSMV) is a positive-sense RNA virus and its genome consists of
tripartite single-stranded RNA, including BSMV a, § and y. BSMV-based gene silencing
vectors have been widely used in wheat (Holzberg et al., 2002). We got the best fragment
sequence (300 bp) of TaUBPIA.I (TraesCS1A02G432600.1) for VIGS through an online
website (https://solgenomics.net/) using VIGS Tool function and choosing T. aestivum
database. Next, the best fragment was amplified from the cDNA of the wheat plant and
then digested with Pac I and Not I restriction enzymes. The products were inserted into
the BSMV vy to generate recombinant plasmid BSMV y: TaUBPIA.I. Then BSMV a, 3, v
and y: TaUBP1A.1 were digested with Mlu 1, Spe I, Mlu I and BssH 11 restriction enzymes.
Subsequently, using RiboMAX ™ Large Scale RNA Production Systems-T7 (Promega),
in vitro transcriptions of linearized plasmid transcripts of BSMV RNA a, § and v/ v:
TaUBPIA.1 were obtained, and they were mixed at a molar ratio of 1:1:1. The former
(BSMV RNA a, 3 and y) was named BSMV: 00 (as negative control), and the latter (BSMV
RNA o, and y: TaUBPI1A.1) was named BSMV: TaUBP1A.1. Additionally, FES was used as
inoculation buffer (0.1 M glycine, 0.06 M potassium phosphate, 1% sodium pyrophosphate
decahydrate, 1% bentonite, 1% celite, pH 8.5). Then viruses were inoculated into leaves
of three-leaf-stage wheat plants. In the same way, in vitro transcriptions of linearized
plasmid transcripts of CWMV RNA R1 and R2 were also mixed at a molar ratio of 1:1,
then inoculated into the upper leaves of the BSMV-infected wheat plants. The detailed
information of the reagents used in this experiment is provided in Table S1.
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RESULTS

Genome-wide identification and characterization of the UBP gene
family in wheat

After genome-wide searching of UBP homologs, a total of 97 candidate UBP genes in wheat
were identified. Then, to verify the UCH domain’s existence, the 97 candidate UBP protein
sequences were submitted to the Pfam database. All 97 candidate UBP proteins were found
to contain the UCH domain, suggesting that they are UBP gene family members (TaUBPs)
(Fig. S1). The detailed characteristics of TaUBPs, including the Ensembl wheat gene 1D,
chromosome location, the number of exons, the CDSs’ length, the number of amino acids,
physicochemical parameters, predicted subcellular localization, and the presence of signal
peptide, are provided in Table S2. The number of exons ranged from 2 to 32, and the
CDSs’ length ranged from 366 to 4023 bp. Corresponding to the CDSs’ length, protein
size varies significantly, as the number of encoded amino acids ranged from 121 to 1340
aa. The largest protein TaUBPID.1 (TraesCS1D02G441600.1) was 11 times larger than the
smallest TaUBP5D.1 (TraesCS5D02G214000.1). The predicted MW of TaUBP proteins
varied from 13.28 to 152.71 kDa and the theoretical pI ranged from 4.45 to 9.60. Based on
these findings, individual proteins belonging to the TaUBP gene family possess different
physicochemical properties in wheat.

To understand the function of the identified TaUBPs, we predicted the subcellular
localization and signal peptides. The prediction results showed that 94 TaUBPs
exhibited nuclear localization, and TaUBPI1A.1, TaUBPI1B.1 (TraesCS1B02G468200.1) and
TaUBPID.2 (TraesCS1D02G441900.1) were located in both the nucleus and the chloroplast.
The results of signal peptide prediction revealed that TaUBP5A.1 (TraesCS5A02G246000.3),
TaUBP5B.1 (TraesCS5B02G243400.1) and TaUBP5D.2 (TraesCS5D02G252600.2)
contained a signal peptide each (Table S2).

Phylogenetic analysis

To better understand the evolutionary relationships and to classify TaUBPs, a phylogenetic
tree was constructed using 27 AtUBP, 25 OsUBP and 97 TaUBP protein sequences (Fig. 1).
We also constructed a phylogenetic tree using 97 TaUBP protein sequences (Fig. S2).
According to two phylogenetic trees and sequence similarity of all UBP proteins, the 97
TaUBPs were clustered into 15 groups (G1-G15). As illustrated in Fig. 1, the phylogenetic
tree showed that TaUBP proteins shared high homology with AtUBP and OsUBP proteins.
There are 8 TaUBPs in group G15, and protein domain analysis showed that TaUBP1A.1,
TaUBPI1B.1, TaUBP1D.1 and TaUBP1D.2 proteins had a DUF4220 domain each, as
well as TaUBP1A.1, TaUBP1A.2 (TraesCS1A02G432100.1), TaUBP1B.1, TaUBP1D.1
and TaUBPI1D.2 proteins had a DUF594 domain each (Fig. S1). DUF4220 and DUF594
domains are unique and do not exist in AtUBP and OsUBP proteins (Wu et al., 2019).
In addition, UBP genes from the same species often exist in pairs, such as TaUBP1A.3
(TraesCS1A02G192900.1) and TaUBPID.3 (TraesCS1D02G196500.1), implying that they
are paralogous genes. There are some closely related gene pairs from different species,
such as TaUBP2A.1 (TraesCS2A02G340100.1) and OsUBP04g.1 (LOC_Os04¢37950.1),
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Figure 1 The phylogenetic tree based on alignment of UBP proteins from A. thaliana, O. sativa and T.
aestivum. The phylogenetic tree was generated by the p-distance methods using MEGA X software with
1000 bootstrap replicates. All UBPs are divided into 15 subclasses represented by specific colored back-
grounds. AtUBPs, OsUBPs and TaUBPs are indicated by gold dots, blue dots and purple dots, respectively.
Full-size & DOI: 10.7717/peerj.11594/fig-1

suggesting that they may be orthologous. Moreover, TaUBPs existed in each group, and
most of the groups contained TaUBPs, AtUBPs and OsUBPs.

Visualization of chromosomal location and duplication of TaUBPs
Based on the available wheat genome annotation information, a total of 97 TaUBPs were
mapped onto 21 wheat chromosomes to further investigate their functions (Table S2).
Chromosomal locations were detected using TBtools, and the visualized distribution of
TaUBPs is shown in Fig. 2. There were 32, 30, and 35 TaUBPs non-randomly distributed in
the A, B, and D sub-genomes, respectively. The number of TaUBPs per chromosome varied
from a minimum of three genes to a maximum of eight genes. Within the sub-genome D,
chromosome 7 had eight TaUBPs, whereas chromosomes 3A, 3B, 3D, and 4B had only three
TaUBPs each. Within all sub-genomes, eight wheat chromosomes contained four TaUBPs
each, five wheat chromosomes contained six TaUBPs each, and three wheat chromosomes
contained five TaUBPs each. Hence, the chromosomal distribution of TaUBPs was scattered
and non-random.
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Figure 2 Distribution and duplication events of 97 TaUBPs. The paralogous TaUBP gene pairs
mapped to 21 wheat chromosomes. Chromosome number is indicated outside the outer circle. The
duplication events of different chromosomes are highlighted with different colored lines inside. The scale

is in mega-bases (Mb).
Full-size Gl DOI: 10.7717/peerj.11594/fig-2

It has been confirmed that tandem and segmental duplications are two main causes
of gene family expansion in plants (Cannon et al., 2004). According to the chromosomal
location map (Fig. 2), 97 TaUBPs were distributed irregularly across 21 chromosomes.
Moreover, the duplication relationships of TaUBPs among the A, B, and D sub-genomes
were analyzed. As illustrated in Fig. 2, we identified two tandem duplication clusters and
54 collinear TaUBP gene pairs. Two groups of two tandem duplicated genes were located
in chromosomes 1D and 7D. Additionally, 54 collinear TaUBP gene pairs were distributed

in different chromosomes.

Evolutionary and divergence patterns
The Ka/Ks ratio is an indicator of selective pressure acting on a protein-coding gene. To

determine the selection mode of duplicated UBP genes, Ka/Ks ratios were calculated for

each gene pair (Table S3). The results illustrated that the Ka/Ks ratios of the 48 orthologous
genes (T. aestivum-O. sativa, Ta-Os) varied from 0.032 to 0.652 (Table S3), indicating that
these UBP genes had been influenced principally by the high purifying selection. The Ka/Ks
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ratios of the 54 paralogous genes (T. aestivum-T. aestivum, Ta-Ta) were all less than one,
and the two paralogous genes were 1.001 and 1.090 (Table S3).

The divergence time (T) was calculated, revealing that the 56 paralogous genes (Ta-Ta)
diverged between 1.057 and 68.418 million years ago (Mya), and that the 48 orthologous
genes (Ta-Os) were estimated to have diverged between 22.478 and 73.254 Mya (Table S3).

Prediction of cis-acting regulatory elements in promoter regions of
TaUBPs

In plants, cis-acting regulatory elements in the promoter regulate gene transcription

by binding to target transcription factors (Butler ¢» Kadonaga, 2002). Some cis-acting
regulatory elements are involved in stress responses, such as hormones, dehydration, and
cold responses (Liu et al., 2017; Osakabe et al., 2014; Pieterse ¢ Van Loon, 2004; Sakuma
et al., 2002). Some cis-acting regulatory elements are known to mediate plant immunity
(Kurilla et al., 2019; Shan et al., 2016; Yu et al., 2019). The predicted cis-acting regulatory
elements in the promoter regions of TaUBPs are provided in Table S4. As shown in
Fig. 3, the seven types of elements related to abiotic/biotic stress, development, hormone
response, light response, transcription, the circadian clock and the cell cycle are visualized.
The most abundant elements were transcription-related elements (1822 in total) among
the seven types of elements. In addition, there were 1044 hormone-responsive elements,
1014 light-responsive elements, and 436 abiotic/biotic stress-related elements. In summary,
distinct TaUBP promoters contained different types and numbers of cis-acting elements.

Tissue-specific expression of TaUBPs

To comprehensively dissect the biological functions, we randomly selected one TaUBP
from each group as the representative for expression analysis in different tissues (roots,
stems, and leaves) of wheat plants by qRT-PCR (Fig. 4). All primers used for qRT-PCR
are provided in Table S5. As shown in Fig. 4, the selected 15 TaUBPs were expressed in
all plant tissues, and the expression levels of these genes in young leaves were mostly
higher than in mature ones. The TaUBPIA.I expression level was detected highest

in stems. Followed by the TaUBP2B.1 (TraesCS2B02G268700.1) which was highly
expressed in stems and young leaves (top, second, and third leaf). Further TaUBP3B.1
(TraesCS3B02G142100.2) and TaUBP6D.1 (TraesCS6D02G179700.1) were highly expressed
in the top leaf. Relative to the expression level of the TaUBPIB.2 (TraesCS1B02G342600.2)
in roots, the expression levels in young leaves (top, second, and third leaf) were similar.
Otherwise, the expression levels of TaUBPIB.2, TaUBP3A.1 (TraesCS3A02G295900.1) and
TaUBP6D.2 (TraesCS6D02G339500.1) were down-regulated in the stems relative to those
in the roots.

Expression of TaUBPs upon treatment with SA

According to the results of the cis-acting regulatory elements analysis, ten types of hormone-
responsive elements were identified (Fig. 5A and Table S4). As illustrated in Fig. 5A,
hormone-responsive element ABREs respond to ABA; AuxRR-cores, TGA-boxes, and TGA-
elements respond to auxin (IAA); CGTCA-motifs and TGACG-motifs respond to methyl
jasmonate (MeJA); GARE-motifs, P-boxes, and TATC-boxes respond to Gibberellin (GA)
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Figure 3 Prediction of cis-acting regulatory elements in TaUBPs. (A) The number of seven types of
cis-acting regulatory elements detected in the promoter region of each TaUBP. (B) Name and position of
seven types of cis-acting regulatory elements in TaUBPs.

Full-size & DOI: 10.7717/peerj.11594/fig-3

and TCA-elements respond to SA. Among the predicted hormone-responsive elements,

ABREs were the most abundant. There are 314 ABREs among hormone-responsive

elements (Fig. 5A). By counting the number of certain hormone-responsive elements,

the total number of MeJA-responsive elements is the most abundant. We also found

TCA-elements involved in response to SA. As it has been shown that several AtUBPs

function regulating ABA and MeJA responses, we hypothesized that the TaUBPs may
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Figure 4 Differential expression of 15 TaUBPs in different tissues of wheat plants by qRT-PCR. ToL:
top leaf; SeL: second leaf; ThL: third leaf; FoL: fourth leaf; BoL: bottom leaf; ST: stem; RO: root. The mean
expression value was calculated from three independent biological replicates relative to the mean expres-
sion value in roots. Color scale represents log2 expression values, with the color from blue to orange in-
dicating low to high expression abundance. The raw quantitative data of relative expression values is pro-
vided in Table S6.

Full-size Gl DOI: 10.7717/peerj.11594/fig-4

have similar functions (An et al., 2018; Cui et al., 2013; Derkacheva et al., 2016; Zhao et al.,
2016).

Hence, to explore the relationships between UBP genes and SA signaling, we selected
15 TaUBPs as representatives and performed qRT-PCR to evaluate their expression levels
after SA treatment. The results showed that all selected TaUBPs reached peak induction
and were distinctly up-regulated after three hours of SA treatment, and the most highly
expressed (>6-fold that of negative controls) was TaUBPIA.1 (Fig. 5B). In general, all
selected TaUBPs showed significant changes in response to SA.

Expression of TaUBPs under CWMV or WYMYV infection

As previously mentioned, UBPs have multiple functions that are important for plant
growth and development. However, there are no studies on UBP gene family members
in wheat, particularly on their roles in biotic stress. CWMV and WYMYV are two viruses
that devastate wheat production worldwide. To investigate whether TaUBPs respond to
CWMV or WYMV infection, wheat plants were inoculated with these two viruses. The
results showed that the expression levels of 15 TaUBPs displayed differential induction
relative to mock-inoculated controls (Fig. 6).
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Figure 5 Number of hormone-responsive cis-acting regulatory elements in TaUBPs and relative ex-
pression analysis of 15 representative TaUBP:s after three hours of SA treatment. (A) ABRE responds

to ABA; AuxRR-core, TGA-box, and TGA-element respond to IAA; CGTCA-motif and TGACG-motif re-
spond to MeJA; GARE-motif, P-box, and TATC-box respond to GA; TCA-element responds to SA. (B) Y-
axes represent relative gene expression values normalized to reference gene TaCDC. Means and standard
errors were calculated from three independent replicates. Significant differences compared with the sam-
ples water-treated were indicated by asterisks (*, P < 0.05). The raw quantitative data of relative expression
values is provided in Table S7.

Full-size & DOI: 10.7717/peerj.11594/fig-5

After CWMYV infection, the expression level of TaUBPI1A.1 was distinctly up-regulated
at 11 dpi, with a gradual decrease in expression at all later time points. The expression levels
of the two genes TaUBPI1B.2 and TaUBP2B.1 peaked at 17 dpi. Three genes peaked at 8
dpi, namely TaUBP3A.1, TaUBP3A.2 (TraesCS3A02G201000.1) and TaUBP3B.1. Among
them, the expression levels of TaUBP3A.2 and TaUBP3B.1 were lowest at 11 dpi, with a
gradual increase at all later time points. The expression level of TaUBP6D.2 peaked at 14
dpi, with a gradual increase during the early time points (Fig. 6).
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Figure 6 Relative expression analysis of 15 representative TaUBPs inoculated with CWMV or WYMV.
X-axes represent time points after virus infection. Y-axes represent relative gene expression values normal-
ized to reference gene TaCDC. Means and standard errors were calculated from three independent repli-
cates. Significant differences compared with mock-inoculated controls were indicated by asterisks (¥, P <
0.05). The raw quantitative data of relative expression values is provided in Table S8.

Full-size & DOI: 10.7717/peerj.11594/fig-6

After WYMV infection, the expression level of TaUBP1A.1 was up-regulated at 11 and
14 dpi. TaUBPI1B.2 showed a gradual increase in expression and peaked at 17 dpi. The
expression levels of TaUBP2B.1 and TaUBP3A.1 only exhibited slight changes over the
17-dpi time course. The expression level of TaUBP3A.2 was down-regulated after 11 dpi.
The expression level of TaUBP3B.1 was down-regulated at 11 dpi, with a gradual increase
at all later time points. The expression level of TaUBP6D.2 was down-regulated at 8 dpi
and up-regulated at 14 dpi, with a gradual increase during the early time points (Fig. 6).
These results showed that most selected TaUBPs are substantially affected by CWMYV and
WYMYV and may function in post-infection responses.

Knockdown of the TaUBP1A.1 facilitated CWMYV infection in wheat
To investigate the relationship between TaUBPs expression and CWMYV infection in
wheat, BSMV-based virus-induced gene silencing (VIGS) was used to silence TaUBP1A.1
in wheat. We inoculated six three-leaf-stage wheat plants with BSMV: 00 + CWMYV or
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BSMV: TaUBP1A.1 + CWMV. After 7 dpi, all BSMV-infected wheat plants showed mosaic
symptoms in newly formed leaves, and TaUBPI1A.I-silenced wheat plants exhibited more
severe symptoms (Fig. 7A). Furthermore, we analyzed the silencing level of the TaUBPIA. 1
in the BSMV: TaUBPIA.1 + CWMYV co-inoculated wheat plants through qRT-PCR using
TaUBPIA.1 specific primers. The results demonstrated that TaUBPIA.1 transcript level in
the plants co-inoculated with BSMV: TaUBP1A.1 + CWMYV were better silenced (p <0.01)
than the plants co-inoculated with BSMV: 00 + CWMYV (Fig. 7B). After that, the expression
level of CWMV CP was also detected by qRT-PCR using CWMV CP specific primers in
these plants. The results indicated that the expression level of CWMV CP of BSMV:
TaUBPIA.1 + CWMYV inoculated wheat was significantly higher than the inoculated wheat
with BSMV: 00 + CWMV (Fig. 7C). These results suggested that silencing TaUBPIA.I
impaired the host plant resistance to CWMV. All associated primers in this experiment are
provided in Table S5.

DISCUSSION

The eukaryotic-specific UBP family is one of the largest families of DUBs, and it acts
in plant growth and development. UBP families have been identified and characterized
in several organisms, including A. thaliana (Yan et al., 2000), rice (Wang et al., 2018a) ,
Moso Bamboo (Wu et al., 2019), yeast (Wilkinson, 1997) and M. oryzae (Cai et al., 2020).
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A previous study has reported detailed characteristics and functions of UBP genes in

A. thaliana (Zhou et al., 2017). However, the UBP gene family members have not been
systematically described in wheat, and the roles of UBP genes in plant virus infection
have not been reported. In this study, we identified and characterized 97 UBP genes in
wheat. By analysis of two phylogenetic trees (Fig. 1, Fig. 52), TaUBP gene family could be
classified into 15 groups (G1-G15). According to the phylogenetic tree (Fig. 1), TaUBPs
shared high homology with AtUBPs and OsUBPs, indicating that UBP genes may have a
relatively high homology among closely related species. This phylogenetic tree also showed
that UBPs from the same species were distributed into different groups, revealing that UBPs
exhibited differences in evolution among species. Additionally, TaUBPs existed in each
group and most of the groups contained TaUBPs, AtUBPs and OsUBPs, revealing that UBP
genes divergently evolved between species. As shown in Fig. S1, TaUBP proteins in each
group shared a similar structure, indicating functional similarities among these proteins.
Furthermore, TaUBP proteins in group G15 contain two unique domains (DUF4220 and
DUF594) that do not exist in A. thaliana and rice. Interestingly, the UBP proteins in moso
bamboo also contained special DUF4220 domains (Wu et al., 2019). The results indicated
that UBPs in group G15 have functional similarities among wheat and moso bamboo.
Based on the chromosomal location, A sub-genome contained 32 TaUBPs, B sub-genome
contained 30 TaUBPs and D sub-genome contained 35 TaUBPs. Within all sub-genomes,
the number of TaUBPs per chromosome varied from three to eight, manifesting TaUBPs
non-random distribution in the chromosomes.

Gene duplication events are vital for gene expansion and help organisms adapt to
various environments. By analysing the duplication relationships among TaUBPs, we
identified two tandem duplication clusters and 54 collinear TaUBP gene pairs (Fig. 2). The
results indicated that tandem and segmental duplication events were essential in expanding
the TaUBP gene family and segmental duplication events seemed to be a predominant
duplication pattern. To explore the evolutionary patterns of TaUBPs, we calculated the
Ka, Ks, and Ka/Ks values for each paralogous gene (Ta-Ta) and each orthologous gene
(Ta-0Os). The Ks values demonstrated that duplication events occurred 1.057-68.418 Mya
in wheat, and the divergence time between wheat and rice was 22.478- 73.254 Mya. In
addition, the Ka/Ks ratios can be used to determine the selection mode of duplicated UBP
genes. Here, the Ka/Ks ratios of the 54 paralogous gene pairs (Ta-Ta) were all less than one
except two paralogous gene pairs were 1.001 and 1.090, suggesting that TaUBPs mainly
underwent purification selection.

To reveal the possible biological functions of TaUBPs, we predicted cis-acting regulatory
elements. According to the results, the type of cis-acting regulatory elements of each TaUBP
is different. Therefore, TaUBPs may be involved in specific regulatory mechanisms related
to various stress responses. Cis-acting regulatory elements largely determine tissue-specific
gene expression patterns. In our study, we evaluated the expression profiles of the TaUBPs
in different tissues (roots, stems, and leaves). According to the gene expression patterns,
TaUBPs may be constitutively expressed in wheat plants. All selected TaUBPs were
expressed in all tissues of the plants, and expression levels in young leaves mainly were
higher than in mature leaves, suggesting that TaUBPs may be relative with leaf growth and
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development. However, faster growth and development may account for the increased
expression levels observed in young leaves. A few TaUBPs showed tissue-specific expression
in wheat. For instance, TaUBPI1B.2 showed high expression level in the roots and young
leaves (top, second, and third leaf), suggesting it relates to root and leaf development.
Cis-acting regulatory elements also largely determine stress-responsive gene expression
patterns. We found an abundance of SA hormone-responsive cis-acting elements in the
promoter regions of TaUBPs, indicating the essential roles of TaUBPs in SA hormone-stress
responses. Accordingly, we explored the relationships between TaUBPs and SA signaling
by validating the expression levels of TaUBPs after SA treatment. After three hours of SA
treatment, 15 analyzed TaUBPs were distinctly up-regulated and peaked at this time point.
Overall, TaUBPs showed significant changes, implying that several TaUBPs have potential
functions in response to SA.

To investigate whether TaUBPs are responsive to viruses, wheat plants were inoculated
with CWMYV or WYMYV. Our results showed that relative to mock-inoculated controls,
the expression levels of most of the TaUBPs that were analyzed were substantially altered
after infection. For instance, we found that the expression level of TaUBPIA.1 reached
the highest level at 11 dpi, with a gradual decrease at all later time points after CWMV
infection. As mentioned above, studies have reported that UBPs are involved in pathogen
defense and immune response. Therefore, we hypothesized that TaUBPs might respond
to viral infection. Subsequently, we used BSMV-mediated VIGS to transiently silence the
TaUBPIA.1 to investigate its biological function after CWMYV infection. The experiment
data showed the expression level of CWMV CP in TaUBPIA.I-silenced wheat plants
was significantly increased compared to the non-silenced wheat plants, suggesting that
TaUBPIA.1 responses to CWMYV infection in wheat. Thus, UBP gene family members in
wheat might possess specific functions in defensing viruses.

CONCLUSION

In this study, 97 TaUBPs were identified and characterized. We constructed two
phylogenetic trees and systematically analyzed evolutionary and divergence patterns
alongside the stress responses of selected TaUBPs. These TaUBPs could be divided into
15 groups, and the members of TaUBP gene family from the same group were found to
have a similar protein structure. The divergence time of UBP genes indicated a complex
evolutionary history for this family in wheat. The expression profiles of UBP genes
indicated that these genes play a crucial role in plant growth and development, as well as
in stress responses. In addition, silencing TaUBP1A.I enhanced the infection of wheat by
CWMV. This is a systematic and comprehensive study of TaUBPs that can aid in cloning
and functional analyses in wheat and lays the foundation for further exploration of the
relationship between UBPs and immunity in this important crop.
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