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Abstract

Background: Technological advances in next-generation sequencing (NGS) and chromatographic assays [e.g., liquid
chromatography mass spectrometry (LC-MS)] have made it possible to identify thousands of microbe and metabolite
species, and to measure their relative abundance. In this paper, we propose a sparse neural encoder-decoder network
to predict metabolite abundances from microbe abundances.

Results: Using paired data from a cohort of inflammatory bowel disease (IBD) patients, we show that our neural
encoder-decoder model outperforms linear univariate and multivariate methods in terms of accuracy, sparsity, and
stability. Importantly, we show that our neural encoder-decoder model is not simply a black box designed to
maximize predictive accuracy. Rather, the network’s hidden layer (i.e, the latent space, comprised only of sparsely
weighted microbe counts) actually captures key microbe-metabolite relationships that are themselves clinically
meaningful. Although this hidden layer is learned without any knowledge of the patient’s diagnosis, we show that the
learned latent features are structured in a way that predicts IBD and treatment status with high accuracy.

Conclusions: By imposing a non-negative weights constraint, the network becomes a directed graph where each
downstream node is interpretable as the additive combination of the upstream nodes. Here, the middle layer
comprises distinct microbe-metabolite axes that relate key microbial biomarkers with metabolite biomarkers. By
pre-processing the microbiome and metabolome data using compositional data analysis methods, we ensure that
our proposed multi-omics workflow will generalize to any pair of -omics data. To the best of our knowledge, this work
is the first application of neural encoder-decoders for the interpretable integration of multi-omics biological data.
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Background

The human gut is a complex ecosystem in which host
cells and foreign organisms coexist, cooperate, and com-
pete. Suspended in this ecosystem is a milieu of nutrient
metabolites that act like a currency, being exchanged and
converted by the organisms living in the environment.
Technological advances in next-generation sequencing
(NGS) and chromatographic assays [e.g., liquid chro-
matography mass spectrometry (LC-MS)] have made it
possible to identify thousands of microbe and metabo-
lite species, and to measure their relative abundance. By
applying NGS and LC-MS on fecal samples, one gains
two complementary “views” on the complex ecosystem
in which gut bacteria produce, consume, and induce
the metabolic milieu. These data modalities have each
advanced our understanding of elusive gut pathologies
like inflammatory bowel disease [1], and are increasingly
being collected in parallel [2—4].

Once rarely encountered, inflammatory bowel dis-
ease (IBD) has become a major health burden in devel-
oped countries, with its incidence steadily rising since
the second world war [5]. IBD is an umbrella term for
two distinct clinical syndromes, Crohn’s disease (CD)
and ulcerative colitis (UC), that are both characterised
by a chronic immunological disturbance in the gastroin-
testinal (GI) tract, caused by genetic and environmental
factors [6, 7]. While CD presents with patchy transmu-
ral (deep) inflammation in any part of the GI tract, UC is
marked by diffuse mucosal (superficial) inflammation that
extends from the rectum through the colon [8]. Although
the inflammation in IBD does not have an infectious ori-
gin, patients with CD and UC exhibit an irregular gut
microbiome, having less bacterial diversity, a depletion
of healthy bacteria, and an excess of unhealthy bacteria
[5, 9, 10]. These changes have been partly attributed to
an abnormal immune response to benign commensual
organisms [5]. Microbiome irregularity, called dysbiosis,
also associates with concurrent changes in microbial func-
tions [11] and in metabolic profiles [12], that together can
disrupt normal gut physiology. For example, Marchesi et
al. found low levels of short chain fatty acids in IBD fecal
samples [13], which may be related to changes in how the
gut bacteria metabolize carbohydrates [1].

Franzosa et al. studied the paired microbial and
metabolic profiles of 164 IBD patients and 56 healthy
controls, producing one of the largest publicly available
multi-omics data set of its kind [14]. In their multi-omics
analysis, the authors report that only 6% of all possible
pairwise associations were statistically significant, con-
cluding that metabolites “tend not to associate mech-
anistically” with the microbiome [14]. However, multi-
omics data integration can be approached in several ways
, ranging from simple to complex. We organize these
approaches into four tiers. The first, and simplest, uses
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iterative univariate-univariate regressions, e.g., measur-
ing the Pearson’s correlation between a single bacteria
and a single metabolite (as done by Franzosa et al. [14]).
This straightforward method is implemented in several
microbiome-specific software tools [15]. Although pair-
wise associations can be easy to interpret, they lack the
ability to model the additive effect of bacteria (or metabo-
lite) co-occurence. The second uses iterative univariate-
multivariate regressions, e.g., measuring a single bacteria
as a function of all metabolites (and vice versa). This
method is still easy to interpret, and has been applied to
infer gene expression from DNA mutations [16], as well as
metabolite variables from the microbiome [2]. The third
uses a single multivariate-multivariate regression, such as
a canonical correlation (CanCor) analysis. CanCor is a
powerful tool that can find a combination of microbes
that maximally correlate with a combination of metabo-
lites. This technique has been applied previously to study
the relationship between volatile breath metabolites and
gut microbiome in IBD patients [17], but its widespread
application is limited by high-dimensionality [1] (at least
without regularization [18]).

Stepping further toward deeper modeling, we explore
the fourth tier which leverages a multi-layer neural net-
work to model a single multivariate-multivariate regres-
sion. The hidden layers of these networks act like a switch-
board to connect the input layer with the output layer
through a set of intermediate nodes that can learn com-
plex (non-linear) patterns between the layers. In biology,
deep neural networks have been used in many applica-
tions, including predicting the expression of 20,000 genes
from 1,000 hallmark genes [19]. While useful, the hidden
layers of these networks do not have a natural mean-
ing that connects the model to real biological processes.
To address this limitation, many neural networks follow
the encoder-decoder pattern in which the network has an
hourglass shape, featuring a narrow middle layer that com-
presses the input-output relationship. This layer is regu-
larized to be low dimensional so that it only has enough
information space to describe the input-output transfor-
mation. As such, all other information is filtered out. This
layer divides the network into two specialized parts: the
encoder and the decoder. One could think of a generic
encoder-decoder network as a neural “signal translator’,
designed to turn one data set X into another data set Y,
through a middle representation Z.

Encoder-decoder networks have been studied in com-
puter vision in the form of fully convolutional mod-
els [20], where an image is encoded into a compact
representation that is then decoded into the desired
feature map. In biomedical imaging, U-net [21] has
succeeded in segmenting cell images with the encoder
and decoder forming the two interacting shafts of a
U shape. In biology, autoencoders — a special type of
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encoder-decoder architecture where the input and out-
put are identical — have been used to cluster yeast,
Pseudomonas, and cancer cells, where the hidden layer
supposedly provides a biologically meaningful abstrac-
tion of the data [22]. However, generic encoder-decoders
that transform one data domain to another have not
apparently been used for multi-omics data integration.
In this generalized form, encoder-decoders can act like
a CanCor, predicting multiple outputs from multiple
inputs through a latent space. Unlike CanCor, encoder-
decoders learn deep non-linear relationships between the
features.

Using the encoder-decoder architecture, we seek to find
a good model that can provide simple, descriptive, and
verifiable patterns within the multi-omics data. In this
manuscript, we introduce our highly interpretable neu-
ral encoder-decoder, designed to learn the non-linear and
synergistic relationship between the gut microbiome and
their surrounding metabolites. In doing so, we demon-
strate that (a) neural networks outperform linear models
in microbiome-metabolome predictions, and that (b) net-
work sparsification, along with a non-negative weights
constraint, improves the accuracy, stability, and inter-
pretability of the encoder-decoder model. Importantly, we
show that our neural encoder-decoder model is not sim-
ply a black box designed to maximize predictive accuracy.
Rather, the network’s hidden layer (i.e., the latent space,
comprised only of sparsely weighted microbe counts)
actually captures key microbe-metabolite relationships
that are themselves clinically meaningful. Although this
hidden layer is learned without any knowledge of the
patient’s diagnosis, we show that the learned latent fea-
tures are structured in a way that predicts IBD and
treatment status with high accuracy. Taken together, our
work demonstrates that paired multi-omics data can be
integrated using a neural network whose hidden layer
abstracts a clinically meaningful representation of the
input data without any supervision. By pre-processing the
data using standard compositional methods, we ensure
that our encoder-decoder workflow will generalize to any
pair of -omics data.

Methods

Data acquisition and processing

We acquired paired microbiome and metabolome data
as raw proportions from the supplement of Franzosa et
al. [14]. To reduce the dimensionality of the data, we
removed features in which more than 50% of the measure-
ments were zero. We replaced the remaining zeros with a
very small number using the cmultRepl zero-replacement
function implemented in zCompositions, an imputation
tool which explicitly models the relative nature of NGS
and LC-MS data [23]. Next, we processed the data using
one two of pipelines: “Complete” or “Summarized”
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In the “Complete” pipeline, we applied the centered log-
ratio (clr) transformation directly to the bacteria species-
level and metabolite cluster-level abundances. The clr is a
cornerstone in the analysis of compositional data [24—27]:

[ Kils eeer xiD] )
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where x; is a sample vector of bacteria or metabolite abun-
dances. Beyond transforming the data into real numbers,
the clr is also convenient for machine learning applica-
tions because the “normalization factor” is applied to each
sample independent of all other samples, thus preserving
test set independence.

In the “Summarized” pipeline, we aggregated the bacte-
ria species-level abundance into genus-level abundance by
summing across the respective genus members. We also
aggregated the metabolite cluster-level abundance into
class-level abundance by summing across the respective
class members. We retrieved the species-to-genus con-
version table from the Integrated Taxonomic Information
System (ITIS) (via the R package taxize [28]), and the
metabolite-to-class conversion table from the supplement
of Franzosa et al. [14]. Features that did not belong to
any genus or class were dropped. Table 1 describes the
dimensionality of the data before and after processing.

clr(x;) = log ( (1)

Our motivation: predicting metabolites from microbes

The nature of the relationship between the two data
modalities can be explicitly represented if we can find
a way to predict one from the other. The ideal model
would not only identify correlations between the pairs of
data, but would also reveal the mechanism through which
they influence each other. These complex processes can
be considered from the point-of-view of regression mod-
els that can predict metabolite abundance from bacteria
abundance.

We formulate the prediction problem as a search
for the parametric function f, with parameter set 0,
that takes as input the (clr-transformed) microbe abun-
dances X to estimate the (clr-transformed) predicted
metabolite abundances ¥ of the real (clr-transformed)
observations Y:

Y =£00

Table 1 This table counts the number of features in the data
before and after processing

Raw Complete Summarized
Metabolites 8848 clusters 1692 clusters 143 classes
Bacteria 201 species 191 species 51 genera

Removal of features with mostly zeros reduced the number of metabolite clusters
from 8848 to 1692, and the number of bacteria species from 201 to 191.
Summarization further reduced the dimensionality to 143 classes and 51 genera
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where X € RP~*Ncontains D, microbes and Y,V €
RPy*N contains D, metabolites for the same N subjects.

The parameter set 0 is estimated by minimizing the
error between the predicted and real observations, e.g.,
using the mean square error (MSE):

1
0* = argminﬁ Hﬁ;(X) - YH; (2)

The choice of the function fand the optimization strat-
egy used to solve Equation 2 is the key to having a
predictive model with better accuracy, stability, and inter-
pretability. In the next section, we will propose a deep
neural network that is specifically designed for this goal.
First, let us consider the most direct and straightforward
baseline to model the functional f: a linear regression
(LR) model, where the abundance of each metabolite is
predicted as a linear combination of all available microbes:

Y=WX+b

where W e RPy*Px is the linear transformation matrix
and b is the bias term. The problem in Equation 2 now has
the form:

1
W, b = argmin— ||WX + b — Y3

While being the simplest model, LR suffers from oper-
ating on a full transformation matrix. The large number
of parameters (i.e., weights) not only makes the LR prone
to overfit when the data set is small and high-dimensional,
but also makes the model difficult to interpret. To reduce
the density of the linear transformation matrix, Lasso reg-
ularization constraints can be added to reduce the number
of active (i.e., non-zero) weights in the transformation
matrix W [29]. With this regularization, the objective
function turns into

1
W* b* = argmin~ WX + b — YIZ+alW,

where the hyper-parameter « controls the sparsity of the
model and ||W|; is /;-norm of the linear weights. An
example Lasso model is illustrated in Fig 1b.

Our model: a sparse neural encoder-Decoder for data
integration

Although simple and easy to interpret, a univariate multi-
omics model depends on the major assumption that the
processes in which microbes affect metabolites are singu-
lar and independent from each other. On the other hand,
neural networks can learn many sub-processes of a global
process that governs the dynamic, multi-stage interaction
between the two modalities.

The traditional method for learning multivariate-
multivariate relationships is canonical correlation (Can-
Cor) analysis, though like LR it can only find linear rela-
tionships between the data modalities. Instead, we pro-
pose to construct a robust and interpretable deep neural
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network. Our model is designed to relax the key assump-
tion behind LR and CCA: that there exists a direct and
linear relationship between the two data modalities. This
relaxation will extend our representation of the predictive
model via two hypotheses:

1. There exists intermediate factors that act in the
middle of the process that transforms microbes to
metabolites.

2. The transformation between these factors may
contain non-linear parts.

The neural encoder-Decoder (NED) network

The neural encoder-decoder (NED) architecture aims to
predict a multivariate random process using the informa-
tion from another multivariate process through an inter-
mediate representation called the latent feature space.
The part of the network that extracts relevant informa-
tion from the input (i.e., microbes) into the latent space
is called the encoder. The part of the network that pre-
dicts the output (i.e., metabolites) from the latent space is
called the decoder. The latent feature space is realized as
the narrowhidden layer lying between the encoder and
decoder. Compared with a direct linear model like linear
regression, the encoder-decoder network should have a
more robust representation because the weights undergo
non-linear activation. As such, we expect the NED to
perform better.

To maintain the interpretability of the model, and to
make it more robust to small amounts of training data,
we restrict the number of hidden layers to one. Our initial
experiments show that a large number of hidden lay-
ers does not improve the predictive performance of the
NED because the model is easily overfitted on the limited
training data.

In operation, the two parts of the model work together
sequentially. First, the encoder extracts the relevant infor-
mation from the microbes X to store in the latent variables
Z by an encoding function consists of a linear kernel W,
followed by a fixed non-linear activation function o:

Z = fg (X) = 0e(WeX + be)

Second, the decoder decrypts the latent content in Z
to predict the value of Yas Yusing a similar decoding
function:

Y = f 00 = 0a(WaZ + ba)

The final predictive model is the composition of the
encoder and decoder:

Y =/fX) = (f§ o fih)(X)

This model is trained using the loss function:

1
L = min— [[fp(X) Y| (3)
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Fig. 1 This figure compares the computation network of NEDs with their direct linear counterparts. The green circles are components of metabolite
abundances {X;}, the red circles are components of bacteria abundance {¥;}, and the blue circles are latent variables {Zx}. Arrows denote linear
combinations from the source to the destination, while white circles with the tanh graph denote non-linear activation steps

with the optimized parameter set 6:
9 - 96 U ed - {Wei be: Wd! bd}

Figure 1 compares the computation network of NEDs
with their direct linear counterparts. Let {X;};i=12,. p,
denote the D, components of X, and let {Yj}jzl,z,m,Dy
denote the D, components of Y. The number of latent
variables D, is a meta-parameter that can be chosen by
heuristics (though we set D, = 70 a priori). To increase
robustness and interpretability, models with fewer con-
nections are preferred. An LR model has Cir = D,.D,
connections, while an NED has Cngp = Dx.D; + D;.D,
connections. Thus, we see that when D, << Dy, D), then
CNEp < Cir. This makes NED less likely to overfit and
easier to interpret. We can further reduce the density of
NED networks using a sparsity procedure that eliminates
redundant connections between the layers.

Sparsifying the nED network

To further improve the stability and interpretability of the
model, we seek to learn an NED model with the fewest
number of active weights: a sparser neural network
where most weights equal zero. Research into sparser neu-
ral networks have achieved major advancements recently.
This line of work is motivated by the intuition that deep
networks are generally over-complete, and sparse net-
works could reduce computational overhead [30]. Fur-
thermore, sparser deep networks are also known to ease
the explanability of the underlying process [31, 32]. The
major approaches to sparser networks work by either
pruning unnecessary weights [33] or enforcing sparsity
constraints as an additional regulatory loss [34]. To spar-
sify NED into a new model, called Sparse-NED, we use
a pre-training screening method that is similar to the
one-shot pruning strategy first proposed by Lee et al.
in [35].
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The learning of Sparse-NED consists of two stages:
screening and training. In the screening stage, we iden-
tify the connections that are most useful in extracting
the information needed to predict metabolite abundance
from microbe abundance. All other links are marked as
unnecessary. In the training stage, the network is trained
with these redundant links deactivated from the forward
and backward operations.

The screening stage starts with one training iteration on
the fully connected model, where the derivative g(w; D) of
the loss L (from Equation 3) is estimated through back-
propagation on a sample set of data D. These derivatives
are the key to evaluating the importance of a connection
because when the derivative at a connection has a high
magnitude, that connection will have a measurable effect
on the loss, and hence be more salient to the prediction
of metabolite abundance. Slightly different from [35] —
where only a mini-batch is used as D for sensitivity calcu-
lation — we use all of the available training data instead.
The saliency of each connection s, is calculated as the
normalized magnitude of the derivatives:

_ |gewD)|

i [gk(w; D)

Next, the connections in the network are sorted in
descending order of s;, and only top-k connections are
kept for network training and inference. The number of
kept connections k is controlled through the sparsity level
B relative to total number of connections in the fully
connected network.

k=p16|

(4)

(4

The hyper-parameter g is to balance the accuracy and
sparsity of the model. In our experiment, we choose a 8
so that the number of active (i.e., non-zero) connections is
on par with other sparse models in the comparison. Using
the remaining connections, the Sparse-NED is trained via
back-propagation. An example Sparse-NED is illustrated
in Fig 1d.

Interestingly, a hidden node could lose all incoming
connections, causing it to become isolated. For example,
this could happen when there were more hidden nodes
than needed to represent all of the latent information.
Although we did not expect this for our experiment, node
isolation would be favorable because it would mean that
the multi-modal relationship discovered by the model
is of a lower rank (i.e., represented by fewer variables
in total); a lower rank makes for a more interpretable
model. Node isolation could also make the Sparse-NED
model more resilient to changes in the size of the latent
space: if a practitioner specifies too many hidden nodes,
node isolation could cause the excess nodes to auto-
matically deactivate during training, leaving only the
necessary nodes.
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The non-Negative weights constraint

With a small number of active connections, Sparse-NED
is significantly easier to understand than a fully connected
NED. However, among the remaining connections, many
of them spontaneously have negative weights. These nega-
tive connections in neural networks have been understood
to inhibit an analysis of how the factors from one layer
affect another [36]. To improve the interpretability of a
network, non-negative constraints can be used to prevent
the weights from falling below zero [37]. In our applica-
tion, the non-negative weights provide a clearer mean-
ing to how microbe abundances contribute to metabolite
abundances, both in encoder and decoder, because the
contribution is always positive.

To implement this insight, we apply the non-negative
constraint on Sparse-NED model by clamping the inter-
mediate estimation of the parameters to [0, 00) at every
training iteration:

6] = max(0,6f)

where 6] is the i-th parameter of the model at iteration ¢
in training.

In our experiment, we observe that non-negative con-
straints not only promote interpretability, but also have a
beneficial effect on the overall fitness and sparsity of the
model. When weights are forced to be positive or zero, the
nodes in each layer tend to compete with each other for
influence. This actually makes the Sparse-NED even more
sparse.

Model evaluation

With the goal of deeply understanding the bacteria-
metabolite relationship, we want a model that is not only
accurate, but also highly interpretable, and whose inter-
pretation is stable across different folds of the data. In this
section, we discuss the three criteria used to evaluate our
predictive models: accuracy, sparsity, and stability.

Accuracy The accuracy of a predictive model fj is cal-
culated by the Pearson correlation coefficient between
the predicted metabolite abundance V= fo(X) and the
measured abundance Y for the top 10 best predicted
metabolites. Compared to intensity-based criteria, the
correlation coefficient is not influenced by the scales used
in the signal and is reliable across different data normal-
ization methods. To mitigate the influence of spurious
correlation, correlations are always calculated using the
clr-transformed data. For all experiments, we use a five-
fold cross-validation scheme that validates the model on
five different 80%-20% training-test set splits, and report
the average accuracy.

Sparsity The sparsity of fy is measured by the number of
active linear connections Cy, in the model. In the case of
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NED and its variations, it includes the weights from both
the encoder and decoder network sections.

Stability While accuracy and sparsity are desired prop-
erties of a predictive model, their performance and inter-
pretation are only reliable when they are consistent across
changes in the training set composition. For each model
family, we evaluate the stability of predictive models
by measuring the average pair-wise similarity [38] of
the model parameters 6 across different training sets.
Specifically, we divide the data set into 5 folds and
learn an instance of the model for each fold. Then, for
each pair of model instances, we calculate the Pearson’s
correlation coefficient between the model parameters.
The main measurement for the stability of a method,
the stability index, is calculated as the average simi-
larity between all pairs of model instances within the
model family.

To concentrate on the stability of the model architec-
ture, we calculate the stability index using the binary
adjacency matrix of the connections between each layer
in the model. For fully connected models (e.g., a linear
regression or CanCor) — where every factor in a layer
affects every factor in the subsequent layer — the binary
adjacency matrix contains all ones. Therefore, the stability
index always equals one and is not worth mentioning. For
sparse methods (e.g., Lasso and NED), the stability index
measures the consistency and reliability of the cross-layer
connections. For multi-layer models like NED and its
variants, we use the first model instance to initialize the
training of the other instances so that we preserve the
correspondence of the mid-layer variables (e.g., the latent
variable “V5” in fold 1 is the same as the latent variable
“V5” in fold 2).

Interpretation of network layers

The neural network contains three layers: the microbe
input layer, the hidden (i.e., latent) layer, and the metabo-
lite output layer. In order to understand the nature of the
latent space, we performed a separate analysis of each
layer and compared their results. All microbe and metabo-
lite analyses were performed on the clr-transformed data,
while the latent space analyses were performed on the
unaltered (i.e., tanh-compressed) data.

Differential abundance (DA) analysis

We performed an analysis of variance (ANOVA) of
the microbe, metabolite, and latent space feature sets
(separately) for the three experimental groups [ulcer-
ative colitis (UC), Crohn’s disease (CD), and healthy
control (HC)]. We consider any feature with an FDR-
adjusted p-value p < 0.05 to be significant. Note
that the prior clr-transformation makes univariate sta-
tistical testing of relative data valid, so long as the
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results get interpreted with regard to the reference
used [26, 27].

Redundancy analysis (RDA)

We performed a redundancy analysis (RDA) of the
microbe, metabolite, and latent space feature sets
(separately) using the rda function from the vegan
R package [39].

Random forests

We used the microbe, metabolite, and latent space fea-
tures to train a random forest classifier to predict several
two-factor outcomes (see Results and Discussion). Ran-
dom forest models were trained using the randomForest
function from the randomForest R package [40] with-
out any feature selection or hyper-parameter turning. For
each feature space, and for each outcome, we compared
the average “out-of-the-box” AUC across 25 randomly
sub-sampled test set splits using the pIMonteCarlo func-
tion from the exprso R package [41].

Results and discussion
Summarization preserves data structure
The data sets produced by high-throughput molecular
assays like NGS and LC-MS often have many more fea-
tures than samples. In statistics, high-dimensionality is
a problem because the likelihood of a false discovery
increases with each additional test. In machine learning,
high-dimensionality increases the likelihood of an over-
fit and also makes the resultant model more difficult to
interpret. Therefore, it is sensible to reduce the num-
ber of features before training a model. After removing
zero-laden features, we used domain-knowledge to aggre-
gate the remaining features into biologically meaningful
groups. For metabolites, we used functional classes; for
bacteria, we used assigned genus. Table 1 describes the
dimensionality of the data before and after processing.
Figure 2 shows the first two principal components for
the metabolite data (top) and microbiome data (bottom),
as processed using the “Complete” (left) and “Summa-
rized” (right) pipelines. Here, we see that using domain-
knowledge to summarize the metabolite clusters into
classes, and the bacteria species into genera, does not
appear to alter the fundamental structure of the data. To
quantify the agreement between the two pipelines, we
calculated the Pearson’s correlation between the “Com-
plete” inter-sample distances and the “Summarized” inter-
sample distances. We find that the “Summarized” inter-
sample distances agree with the “Complete” distances for
both metabolites (0 = .903) and microbes (p = .674).
The greater incoherence observed for the microbe data
is consistent with the understanding that different bac-
teria species within the same genus can occupy distinct
ecological niches.
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Fig. 2 This figure shows the first two principal components for the metabolite data (top) and microbiome data (bottom), as processed using the
“Complete” (left) and “Summarized” (right) pipelines. Here, we see that using domain-knowledge to summarize the metabolite clusters into classes,
and the bacteria species into genera, does not appear to alter the fundamental structure of the data
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Otherwise, we note that the IBD patients clus-
ter more distinctly according to their gut metabolites
than their gut bacteria. Indeed, a differential abun-
dance analysis of the metabolic data reveals 128 (out
of 143) significant metabolite classes, compared with

15 (out of 51) significant bacterial genera (see Sup-
plement for a complete list). Table 2 shows the aver-
age clr-transformed abundances for select bacteria gen-
era, chosen because they were found previously to
associate with IBD. Two genera, Ruminococcus and
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Table 2 This table shows the average clr-transformed abundances for select bacteria genera, chosen because they were found

previously to associate with IBD

Genus p-value Control 1BD uc cD Previous Association Agreement
Clostridium <0.001 3.785 4.898 4397 5331 Decreased in IBD No
Ruminococcus <0.001 2.895 -0.352 0.517 -1.102 Decreased in IBD Strong
Lactobacillus 0.006 1.352 2.202 1.586 2733 Decreased in IBD No
Fusobacterium 0.012 -2.560 -1.866 -2.336 -1.460 Presentin IBD Strong
Bifidobacterium 0.097 3.179 3417 4.262 2.686 Decreased in IBD Mixed
Bacteroides 0.199 5.698 4.939 5.142 4.764 Decreased in IBD Weak

Since abundance is expressed relative to the per-sample mean, positive values signify above-average presence for samples within that group. The evidence for previous
association is taken from [42]. All p-values are FDR-adjusted. Two genera, Ruminococcus and Fusobacterium, show an association that agrees with past literature

Fusobacterium, show an association that agrees with past
literature [42].

Microbe abundance predicts metabolite abundance

Since metabolites and bacteria both associate with IBD,
it is meaningful to explore their mutual dependence. In
the Introduction, we described four approaches to inte-
grating multi-omics data: univariate-univariate regres-
sion, univariate-multivariate regression, multivariate-
multivariate regression, and neural networks. Franzosa
et al. reported weak univariate-univariate regressions
for these data [14]. Here, we evaluate the performance
of the other multi-omics approaches by benchmarking
the performance of microbe-metabolite predictive mod-
els with 5-fold cross-validation. The quantitative eval-
uation is done using the three criteria described in
“Model evaluation” section.

Neural encoder-Decoders outperform linear regression

We do not expect that the microbiome alone can predict
the abundance of all metabolites. Rather, we are motivated
to answer two research questions: (1) Which metabolites
can be predicted by the microbiome? and (2) How reliable
is that prediction? Table 3 and Table 4 show the per-
formance of the microbe-metabolite prediction models
for the “Complete” and “Summarized” data, respectively.

The tables are organized by the multi-omics integra-
tion scheme used: univariate-multivariate, multivariate-
multivariate, or neural network. To answer the two
research questions, we compare the accuracy of each
model for the top 10 best predictions, along with its
sparsity and stability.

Sparsity improves accuracy and interpretability

Without regularization, it is easy for a model to over-
fit. Therefore, it is no surprise that the sparse linear
regression (i.e., LASSO) and the sparse neural encoder-
decoder outperform their fully connected counterparts.
Nevertheless, in both cases, the neural encoder-decoder
outperforms linear regression (although LASSO performs
impressively well).

Non-negative weights improve interpretability

With the default linear regression and the neural encoder-
decoder network, weights can take on any value. Here,
we propose using a non-negative weights constraint to
improve the interpretability of the model. For a neural
network, this constraint means that when an input node
contributes to a hidden node, that contribution is always
additive. This allows us to interpret the hidden layer as
an aggregation of the input activity. Likewise, each out-
put node is computed as an aggregation of the hidden

Table 3 Performance when predicting metabolite (cluster-level) abundance from microbiome (species-level) abundance

Method Top 10 Corr.Coef Active links Stability index
Linear Regression (LR) 0.46 241956 _

+ Sparsity (LASSO) 0.70 6143 0.50

+ Non-neg. weights 0.70 4417% 0.52

CCA 047 20449 (E) + 241956 (D) _

Linear NED 0.60 10010 (E) + 118440 (D) _

+ Nonlinear activation (NED) 0.74 10010 (E) + 118440 (D) _

+ Sparsity (Sparse-NED) 0.74 2216 (E) + 4284 (D) 0.79

+ Non-neg. weights (Nonneg-Sparse-NED) 0.74 1522* (E) + 2568%*(D) 0.63

Acronyms: NED neural encoder-decoder; E encoder; D decoder. The stability indices of the fully connected models are naturally 1.0 and not worth including
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Table 4 Performance when predicting metabolite (class-level) abundance from microbiome (genus-level) abundance

Method Top 10 Acc Corr.Coef Active links Stability index
Linear Regression (LR) 0.39 9741 _

+ Sparsity (LASSO) 0.62 898 057

+ Non-neg. weights 0.58 685 061

CCA 061 2601 (E) + 9741 (D) _

Linear NED 0.59 7150 (E) + 84600 (D) _

+ Nonlinear activation (NED) 0.63 7150 (E) + 84600 (D) _

+ Sparsity (Sparse-NED) 0.67 551 (E) + 702 (D) 0.80

+ Non-neg. weights (Nonneg-Sparse-NED) 0.66 360* (E) + 428* (D) 0.66

Acronyms: NED neural encoder-decoder; E encoder; D decoder. The stability indices of the fully connected models are naturally 1.0 and not worth including

node activity. Combined with sparsity, the non-negative
weights constraint ensures that each node is the simple
sum of just a few elements. Table 3 and Table 4 show that
this constraint does not seriously reduce accuracy, though
it advantageously does force the network to be even more
sparse (see Active links column).

The latent space is clinically coherent

The latent space of the encoder-deconoder network is a
learned abstraction of the input data, designed to describe
how gut microbes associate with gut metabolites for all
patients. As such, variance within the hidden layer reflects
inter-patient variance within the microbe-metabolite axis.
We focus this section on the sparse and non-negative
neural encoder-decoder model, trained using the “Sum-
marized” data, because we think it nicely balances accu-
racy with interpretability. For this neural network, the
value of each hidden node equals tanh(x - w + b), where
x is the per-sample microbe abundances, w is the weights
associated with each microbe, and b is an offset. Together,
these hidden nodes comprise a new feature space, learned
in a fully unsupervised way, that can be analyzed directly
with routine statistical modelling.

The latent space associates with iBD

For each of the 70 nodes in the hidden layer, we can
compute the variance across all patients: some nodes are
more variable than other nodes. We can also compute
the amount of weight coming in and out of each node:
some nodes have more “traffic” than other nodes. High-
traffic nodes strongly relate multiple microbes to multiple
metabolites, while low-traffic nodes describe fewer or
subtler relationships. Figure 3 plots the node variance
against the node traffic. Here, we see that the high-
variance nodes are usually the high-traffic nodes, suggest-
ing that the nodes which model the strongest microbe-
metabolite interactions also vary the most between indi-
vidual patients. An ANOVA of the latent features reveals
that the high-variance-high-traffic nodes significantly
associate with IBD (FDR-adjusted p-value < 0.05). Since

the latent space is an abstraction of the relationship
between microbes and metabolites, its association with
IBD suggests that the relationship between microbes and
metabolites is itself associated with IBD.

The latent space is a noise filter

While an ANOVA allows us to measure the statistical
association between the latent space and IBD, we can fur-
ther understand the clinical relevance of the latent space
with a redundancy analysis (RDA). RDA is a principal
component analysis that constrains the principal axes so
that they describe the part of the latent space that is
also explained a “conditioning matrix’, L. Here, the condi-
tioning matrix contains the clinical covariates: age, fecal
calprotectin, diagnosis, antibiotic use, immunosupres-
sant use, mesalamine use, and steroid use. In the left
panel of Fig. 4, we see that the first RDA axis involves mul-
tiple correlated nodes that all associate strongly with the
IBD diagnosis (CD vs. HC vs. UC). Although medication
use is confounded by diagnosis, we see that the off-axis
node “V21” is perfectly anti-correlated with antibiotic use
(and CD), while the off-axis node “V66” is correlated
with it. The right panel shows box plots for some of the
longest first-axis and off-axis arrows. By looking at the
RDA eigenvalues, we know that 26.9% of the latent space
can be explained by the clinical covariates in L. This is
more than the 12% of the microbe data, and the 23.6%
of the metabolite data, explained by L. In other words, a
higher fraction of the hidden layer is explained by clini-
cal covariates than the input or output layer. This finding
supports two hypotheses. First, the relationship between
microbes and metabolites is itself associated with IBD.
Second, the encoder-decoder latent space acts like a noise
filter that can extract the clinically relevant part of the
source data in a fully unsupervised way.

The latent space is discriminative

From our differential abundance analyses, we know that
the microbes, metabolites, and latent features all associate
with IBD (though there are more metabolite associations
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Fig. 3 This figure shows the variance of a hidden layer node (y-axis) versus the total weight going in and out of that node (x-axis). There are 70
nodes, named arbitrarily, and colored by their association with IBD (FDR-adjusted p-value < 0.05). The most heavily weighted nodes are the most
important for predicting metabolite abundances. The most variable nodes differ the most between patients. Here, we see that the most variable
and most heavily weighted nodes all associate with IBD

than microbe associations). Although we have shown that
the latent space is clinically coherent, we want to fur-
ther demonstrate its discriminative power in classification
tasks. Table 5 shows the average “out-of-the-box” AUC
for binary classifiers trained on 25 randomly sub-sampled
training sets. For most outcomes, the latent space clas-
sifier performs at least as well as the microbe classifier.
However, when predicting antibiotic use and immunosup-
pressant use, the hidden layer is actually more predictive
than either the microbe or metabolite abundances.

The latent space is interpretable

Figure 5 shows a three layer graph relating microbes
to metabolites, built using the edge overlap across all 5
training set folds. The middle layer contains latent vari-
ables that weigh the microbe abundances so that they
maximally predict the metabolite abundances. The graph
reveals a general structure: the top half describes how
the microbes that are enriched in healthy guts predict

the metabolites that are also enriched in healthy guts,
while the bottom half describes how the microbes that
are depleted in healthy guts predict the metabolites that
are also depleted in healthy guts. Ruminococcus and
Fusobacterium are both replicated IBD biomarkers, and
the latent variables that relate them to metabolites also
associate with IBD.

In the upper graph, we see how Ruminococcus (among
others) contributes to 6 latent variables which go on to
predict several healthy metabolite signatures, including
tropane alkaloids and steroidal saponins, as well as
other plant-derived compounds. It is interesting, though
perhaps not surprising, that some of the plant-derived
compounds enriched in the healthy gut have known
medicinal properties [43, 44]. In the lower graph, we see
how Fusobacterium (among others) contributes to a sin-
gle latent variable; this node, V61, is highly predictive
of the abundance of bile acids, alcohols, and deriva-
tives. This finding is consistent with the literature which
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Fig. 4 The left panel shows the first two RDA axes of the latent feature space, constrained by the known clinical covariates: age, fecal calprotectin,
diagnosis, antibiotic use, immunosupressant use, mesalamine use, and steroid use. The right panel shows box plots for some of the longest first-axis

suggests that the bile acid conjugate taurine is a substrate
for bacteria metabolism, and that a defect in the detoxifi-
cation of taurine by-products is associated with ulcerative
colitis [45].

Conclusions
Inflammatory bowel disease (IBD) presents a major health
burden to developed countries. Although IBD is not

infectious, patients with Crohn’s disease (CD) and ulcer-
ative colitis (UC) exhibit an abnormal gut microbiome as
well as an altered gut metabolome. In this manuscript,
we propose a neural encoder-decoder model to learn a
set of weighted connections that can predict metabo-
lite abundances using only microbe abundances. We
show that this neural network outperforms linear mod-
els for microbiome-metabolome predictions, and that

Table 5 This table shows the average “out-of-the-box” AUC for binary classifiers trained on 25 randomly sub-sampled training sets

Feature Space CDvs. HC UCvs. HC CDvs. UC antibiotic IST mesalamine steroids
Microbes only 0.944 0.741 0.784 0.822 0.713 0.582 0.693
Latent space only 0.932 0.759 0.764 0.866 0.731 0.646 0.670
Metabolites only 0.944 0.930 0.781 0.811 0.682 0.956 0.739
Microbes and metabolites 0.950 0.933 0.799 0.838 0.696 0.956 0.750
All layers 0.952 0.925 0.818 0.854 0717 0.948 0.729

In most cases, the latent space classifier performs at least as well as the microbe classifier. Acronyms: CD Crohn'’s disease; UC ulcerative colitis; HC healthy control; IST

immunosuppressive therapy
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Fig. 5 This figure shows a three layer graph relating microbe abundances to the top 10 best predicted metabolite abundances, built using the edge
overlap across all 5 model instances. Yellow nodes are significantly enriched in healthy guts, while blue nodes are significantly enriched in IBD guts.
The middle layer contains latent variables that weigh the bacteria abundances so that they maximally predict the metabolite abundances. Most of
these latent variables, learned in a fully unsupervised way, are themselves significantly associated with IBD

sparsification, along with a non-negative weights con-
straint, further improves the accuracy, stability, and inter-
pretability of the encoder-decoder model. Importantly,
the neural encoder-decoder model is not simply a black
box designed to maximize predictive accuracy. Rather, the
hidden layer of the model can help visualize the predictive

relationship between microbes and metabolites. More-
over, the learned latent feature space (i.e., the hidden
nodes themselves) appears to structure the data in a clin-
ically coherent way: the latent space associates with, and
predicts, IBD diagnosis and medication use. Our finding
suggests that the microbe-metabolite axis itself, not just
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the microbes and metabolites alone, is an IBD-specific
biomarker signature. To the best of our knowledge, this
work is the first application of neural encoder-decoders
for the interpretable integration of multi-omics biological
data.
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