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Abstract: The formation of adipocytes during embryogenesis has been largely understudied.
However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which
migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation
(adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists
of two phases, namely commitment and terminal differentiation. This review discusses the role of
signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and
differentiation into mature adipocytes, as well as limitations in our understanding of these processes.
To date, a limited number of transcription factors, genes and signalling pathways have been described
to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis
have used preadipocytes already committed to the adipogenic lineage, which are therefore not
suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players
including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs
have been described to be involved in the differentiation of preadipocytes to adipocytes; however,
only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed
understanding of how the molecular players underpinning adipogenesis relate to adipose tissue
function could provide new therapeutic approaches for addressing obesity without compromising
adipose tissue function.

Keywords: adipogenesis; adipocyte commitment; adipocyte progenitor; transcription factor; miRNA;
signalling pathway; epigenetic regulator; adipose tissue

1. Introduction

A 2020 World Health Organization report states that globally, 39% and 13% of adults 18 years
and older are overweight and obese, respectively. It also lists obesity as a chronic disease that has
nearly tripled since 1975 [1]. Obesity is a risk factor for many non-communicable diseases such as
type 2 diabetes, cardiovascular diseases and hypertension, respiratory disorders, certain cancers,
and various other diseases and disabilities [2,3]. The aetiology of obesity is multifactorial and involves
an interaction between genetic and environmental factors [4,5]. Environmental factors have played a
major role in the dramatic increase in the global prevalence of obesity. Several studies have shown
that obesity results from an imbalance between energy consumed and energy spent [3,6,7]. Diets high
in saturated fats, sugar, and processed foods increase caloric intake. This, together with reduced
physical activity, results in an energy imbalance [6,7]. Excess energy is stored as lipids in adipocytes
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either through the process of adipocyte hyperplasia (formation of new adipocytes) or hypertrophy
(enlargement of existing adipocytes). These two mechanisms result in increased fat mass and increased
secretion of fatty acids, peptides, inflammatory cytokines, and adipokines [3,8].

Adipose tissue is a loose connective tissue found beneath the skin (subcutaneous) and/or
surrounding organs and tissues, and it contains a collection of mature adipocytes, preadipocytes,
mesenchymal stromal/stem cells (MSCs), vascular endothelial and contractile cells (pericytes and
smooth muscle cells), nerves, and an array of immune cells [9]. Adipose tissue is essential for the
regulation of energy supply and acts as a caloric reservoir [5]. Adipose tissue is also an active endocrine
organ that secretes numerous bioactive peptides and proteins that play a role in controlling and
maintaining the activity of other cells and organs. These adipocyte-secreted factors are collectively
referred to as adipokines and include cytokines, hormones, growth factors, and acute phase proteins [2].
There are two main types of adipose tissue, brown adipose tissue (BAT) and white adipose tissue (WAT).

Adipocytes that constitute BAT have distinctive features such as the presence of many intracellular
lipid droplets and numerous mitochondria, as well as high levels of expression of mitochondrial
uncoupling protein 1 (UCP1), that distinguish it from WAT. The main function of BAT is non-shivering
thermogenesis in response to cold stress or β-adrenergic stimulus [10]. Activated BAT takes up fatty
acids and glucose to provide fuel for sustained thermogenesis [11]. The cells that constitute BAT
secrete adipokines such as fibroblast growth factor 21 (FGF21), interleukin 6 (IL6), and chemerin;
it is not clear however whether BAT performs functions other than regulating thermogenesis [12,13].
The distribution of BAT in mice and humans varies. In mice, large BAT depots are located in the
inter-scapular, subscapular, and cervical regions, while smaller depots are found around the aorta
and in the hilum of kidney [14]. Analysis of glucose uptake in humans by 18fluoro-2-deoxy-d-glucose
position emission tomography-computed tomography (18FDG PET-CT) showed that the location of
BAT is not limited to the carotid artery, aorta and subscapular region, but that it is widespread and
inversely proportional to body mass index (BMI) [15,16].

White adipose tissue is the most abundant type of adipose tissue composed of adipocytes
characterized by a large unilocular lipid droplet whose main function is energy storage. White adipose
tissue is also secretes adipokines like leptin and adiponectin for energy homeostasis [16]. Anatomically,
WAT depots can be classified as being either subcutaneous or visceral [17]. Studies in mice mostly
make use of inguinal subcutaneous WAT (scWAT) and perigonadal visceral WAT (in male mice)
to represent subcutaneous and visceral depots, respectively. Depots of scWAT in mice include the
interscapular, anterior and posterior inguinal scWAT, while visceral depots are mesenteric, perigonadal,
and retroperitoneal [16].

A third class of adipose tissue is located within WAT and is known as brite/beige, containing
adipocytes with characteristic features of BAT, being induced by cold stress [18]. Researchers have
argued that brite adipocytes within scWAT depots are completely different from resident white
adipocytes, and have even suggested the entire inguinal scWAT to be a brite adipocyte organ [19].
The function of brite adipocytes is thermogenesis to maintain body temperature; these cells express
levels of UCP1 mRNA similar to brown adipocytes. Brite adipocytes also have a positive effect on
whole body glucose regulation, and have been suggested to play a role in the treatment of type
2 diabetes [16].

Adipose tissue develops during embryogenesis in week 14–24 of gestation in humans [20].
Adipocytes are generally believed to originate from multipotent MSCs, precursor cells that arise from
the mesoderm. Adipocytes located in the craniofacial region are generated from the neuroectoderm [21].
The development of adipocytes is an ongoing process, continuing throughout an individual’s lifespan.
Over the last few years, several studies have investigated the development of adipocytes (adipogenesis)
to better understand how new adipocytes are formed and what factors are involved. The molecular
mechanisms that direct the differentiation of adipocyte precursor cells (brown or white or brite)
into mature adipocytes are complex, and consist of many molecular players. This review will
discuss the differentiation of white adipocyte precursor cells (preadipocytes) down the adipogenic
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lineage, with a focus on some of the key molecular players which include but are not limited to
signalling pathways, epigenetic regulators, transcription factors, and others. It will also provide an
integrated and interactive synopsis of the molecular players regulating the expression of peroxisome
proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer-binding protein alpha (C/EBPα),
which are central to the regulation WAT adipogenesis. A summary of these interactions is shown in
Figure 1, which integrates the different categories of molecular regulators.
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Figure 1. Molecular regulation of peroxisome proliferator-activated receptor gamma (PPARγ) and
CCAAT-enhancer-binding protein alpha (C/EBPα) expression during adipogenesis. Signalling pathways
are shaded purple, miRNAs in italics, enzymes in bold, transcription factors in red, epigenetic
modifications underlined, protein complexes and genes in standard font and the master regulators of
terminal differentiation shaded grey.

Signalling pathways such as the canonical Wnt/β-catenin, Hedgehog and transforming growth
factor beta (TGF-β) 1 and 2, as well as Sirtuin (Sirt) 1, microRNA (MiR)-27a and MiR-93, inhibit
PPARγ and C/EBPα expression. Conversely, the glucocorticoid, cAMP, and bone morphogenetic
proteins (BMPs) signalling as well as methyltransferase mixed lineage leukaemia protein 3/4 (MLL3/4)
polycomb repressive complex 2 (PRC2) and enhancer of zeste homolog 2 (Ezh2), MiR-210 (MiR-210),
bromodomain-containing protein 4 (BRD4), Sirt 7 and MiR-146 promote PPARγ and C/EBPα expression.
H3K9me2 and HDAC9 directly inhibit C/EBPα expression while H3K27me3 and H3K4me2 directly
promote it. LSD1 promotes and inhibits C/EBPα expression indirectly through H3K4me2 and
H3K9me2, respectively. H3K9, H3K18, H3K27, coactivator-associated arginine methyltransferase
1 (CARM1), ten eleven translocation (Tet) 2, C/EBPβ, C/EBPδ, signal transducers and activators of
transcription (STAT)5, early B-cell factor 1 (EBF1), sex determining region y-box (SOX) 6, kruppel-like
factors (KLF) 5, 6 and 9, MiR125p-5p, switch/sucrose nonfermenting family (SWI/SNF), and protein
arginine methyltransferases (PRMT) 5 directly promote PPARγ expression, while general control
non-depressible 5 (Gcn5) and p300/CREB-binding protein (CBP)-associated factor (PCAF), CBP/p300,
H3K4me3, H3K9/K14, Krox20, zinc finger factor 638 (ZNF638), KLF4, and KLF9 are the indirect
promoters of PPARγ expression. Forkhead box protein O1 (FOXO1), DNA methyl transferase (Dnmt)
1, GATA2, KLF2 and MiR-130 directly inhibit PPARγ expression while Sirt 2, G9a and H3K9me2 and
SOX9 are the indirect inhibitors of PPARγ expression. PPARγ or C/EBPα transactivate each other.
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2. Adipocyte Tissue Progenitors

A panel of cell surface markers which includes positive expression of platelet-derived growth
factor receptor α (PDGFRα), cluster of differentiation 34 (CD34), CD24, CD29, and spinocerebellar
ataxia type 1 (Sca1), and negative expression of CD31, Ter119 (lymphocyte antigen 76) and CD45, have
been established to isolate and study adipocyte progenitor cells. However, these markers are not
known to have a functional role in adipocyte development nor do they provide information on the
developmental origins of adipocytes [16]. In vivo cellular lineage tracing tools have been developed and
implemented to understand the developmental origins of adipocytes. It was observed that embryonic
mesenchymal precursor cells expressing Engrailed 1 (En1) give rise to interscapular BAT, dermis and
skeletal muscle [16,22]. Furthermore, it was shown that brown preadipocytes from interscapular
BAT express myogenic factor 5 (Myf5) and myoblast determination protein 1 (MyoD). This BAT had
a gene expression profile that was similar to that of skeletal muscle rather than preadipocytes of
perigonadal WAT [23]. Another lineage tracing study using a Myf5-Cre knock-in allele, showed that
interscapular BAT and skeletal muscle are positive for Myf5 while inguinal and perigonadal WAT
are negative for Myf5 [24]. A similar result was obtained with the use of paired box transcription
factor 7 (Pax7)-Cre [25], confirming that BAT and WAT development are from different precursors,
with BAT and muscle sharing a common Myf5+ and Pax7+ precursor cell, while WAT arises from a
different lineage. More recently, it has been shown using Myf5 labelling to distinguish between BAT
and WAT lineages, that interscapular, anterior, and retroperitoneal WAT was labelled with the same
Myf5-Cre knock-in allele used in the BAT studies, suggesting that the situation is more complex than
previously demonstrated [26,27]. Furthermore, studies combining Myf5-Cre with a dual fluorescent
mTmG reporter, used for labelling adipocytes [28], confirmed that unilocular white adipocytes present
in the interscapular, anterior, and retroperitoneal WAT depots originated from Myf5-Cre expressing
precursors, and that not all brown adipocytes come from Myf5-Cre expressing cells [29]. This study
also showed that only half of the adipocytes in the cervical BAT depot were labelled with Myf5-Cre,
and none in the perirenal or periaortic BAT were labelled, while all adipocytes in the subscapular
and interscapular BAT depots were marked with Myf5-Cre. These observations in BAT and WAT
were consistent even when a Pax3-Cre knock-in driver was used. This suggests that a distinct pool of
brown and white adipocyte precursor cells exist that arise from embryonic En1+, Pax3+ and Myf5+

mesenchymal precursors [29].
It is evident from lineage tracing studies that adipocytes arise from multiple lineages that are

dynamic and heterogeneously distributed. Also, not all precursor cells that express Myf5 give rise
to BAT and skeletal muscle, since some Myf5 promoter expressing precursor cells also give rise to
white/brite adipocytes. Furthermore, it is not known if brite adipocytes in subcutaneous tissue arise
as a result of trans-differentiation or interconversion of pre-existing mature UCP1 negative white
adipocytes [30,31], or whether they arise de novo from precursor cells [32]; there is nonetheless strong
evidence in support of both models. It is therefore important to understand the developmental origins
of adipocytes in vivo to help identify adipocyte precursor cells and the distribution patterns and
metabolic differences of the different fat depots, as this could provide opportunities to engineer the
development of a particular type of adipocyte (brown or white or beige) for potential health benefits.

3. The Adipocyte Formation Process (Adipogenesis)

Adipogenesis is a complex multi-step process that involves the differentiation of MSCs into
mature, lipid containing adipocytes [8,33,34]. Two phases have been recognized: commitment
and terminal differentiation. Commitment involves the commitment/conversion of MSCs into
preadipocytes followed by terminal differentiation into mature adipocytes [35,36]. MSCs become
committed to the adipocyte lineage and lose their ability to differentiate into other cell types (osteocytes,
chondrocytes, myocytes etc.), while at the same time undergoing morphological and functional
changes [36]. The processes of preadipocyte commitment and differentiation involve numerous
signalling pathways as well as multiple transcription factors and genes [8,33,34]. Although several
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signalling pathways have been implicated, this review will focus on those that have been described to
play a role in preadipocyte commitment and differentiation, as well as transcription factors involved
in regulating adipogenesis. Recent studies have also implicated epigenetics in regulating gene
expression during adipogenesis [36]. The epigenetic factors that play a role in adipogenesis such
as chromatin remodelling complexes, epigenomic readers, histone methyltransferases/demethylases,
histone acetylases/deacetylases, DNA methylases/demethylases, and miRNAs, will also be discussed.

4. Regulation of Adipogenesis Via Signalling Pathways

Several signalling pathways have been described to play a role in adipocyte differentiation
(summarized in Table 1).

4.1. Insulin-Like Growth Factor 1 (IGF-1) Signalling

Preadipocytes have a large number of IGF-1 receptors relative to insulin receptors. Both IGF-1 and
insulin bind to IGF-1 receptors to induce preadipocyte differentiation. However, insulin only binds to
the IGF-1 receptor at nonphysiologically high concentrations to mimic IGF-1 activity. Furthermore,
stimulation of preadipocyte differentiation by growth hormones occurs through paracrine or autocrine
activity by stimulating IGF-1 secretion. IGF-1 is therefore the true inducer of preadipocyte differentiation
in vitro. IGF-1 induces differentiation at physiological concentrations that are much lower than insulin
and also binds more tightly to the IGF-1 receptor [37]. Zhang et al. (2003) showed that ectopic
expression of the full length preadipocyte factor (Pref-1) in 3T3-L1 or 3T3-F442A cells only inhibited
differentiation when IGF-1 or insulin were absent from the adipogenic differentiation cocktail [38].
They demonstrated further that the p42/p44 mitogen-activated protein kinase (MAPK) pathway that
is compromised in preadipocytes overexpressing Pref-1, was rescued by IGF-1 and insulin to allow
for clonal expansion and terminal differentiation. This suggests that IGF-1/insulin bypass the Pref-1
blockade of preadipocyte differentiation [38]. Primary cilium formation occurring at the growth
arrest stage during differentiation in confluent 3T3-L1 cells, renders IGF-1 receptors more sensitive to
insulin than the IGF-1 receptors not located in cilia. The insulin receptor substrate 1, a downstream
molecular target of IGF-1 receptor signalling, is recruited to the basal body during cilium formation
and is phosphorylated by receptor kinase in cilia [39]. Another IGF-1 receptor signalling molecule,
also activated at the basal body during cilium formation, is Akt-1, also known as protein kinase B
(PKB). The inhibition of cilium formation in 3T3-L1 cells by suppressing intraflagellar transport protein
88 homolog (IFT88) or Kinesin family member 3a (Kif3a), blocked IGF-1 receptor signalling, thereby
suggesting that the formation of the primary cilium and its basal body during growth arrest induces
differentiation in preadipocyte through IGF-1 receptor signalling [39]. Finally, mice with tissue specific
double knockout of insulin and IGF-1 showed a significant decrease in both white and brown fat
mass, and were resistant to high fat diet-induced obesity and glucose intolerance [40]. These mice
showed decreased brown fat activity and were unable to maintain body temperature when kept at 4
◦C, but were responsive to β3-receptor stimulation. This suggests that insulin and IGF-1 not only play
a role in WAT adipogenesis, but are crucial for brown fat development as defective thermogenesis
occurs when they are disrupted [40].

4.2. Glucocorticoid (GC) Signalling

Glucocorticoids are steroid hormones that play an essential role in regulating adipogenesis and
are included in most adipogenic differentiation media. They transmit a signal through an intracellular
glucocorticoid receptor (GR), that subsequently regulates transcription factors [41]. Dexamethasone
(Dex), the synthetic GC present in adipogenic differentiation cocktails, is a potent inducer of adipogenesis
in vitro [42]. Preadipocytes from humans express GC receptors through which GCs stimulates the
expression of PPARγ and C/EBPα during adipogenesis [43,44]. Pref-1 is also reported to be a target for
GCs, as Dex has been shown to attenuate Pref-1 expression during adipogenesis in a dose-dependent
manner, and therefore could be one of the mechanisms through which GCs promote preadipocyte
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differentiation [45]. In a more elegant experimental design, 3T3-L1 preadipocytes treated with Dex
for 48 hrs followed by a further 48 h of treatment with methylisobutylxanthine (IBMX), induced
adipogenic differentiation, while treatment firstly with IBMX followed by Dex did not induce any
significant differentiation and had low expression of PPARγ and C/EBPα. This observation was
consistent even when C3H10T1/2 were used instead of the 3T3-L1 preadipocytes [42]. It was further
observed that Pref-1 expression was inhibited by Dex-to-IBMX treatment and not by IBMX-to-Dex
treatment. This suggests that Dex primes preadipocytes into a novel intermediate cellular state during
differentiation in vitro, that may be defined by the inhibition of Pref-1 expression [42].

4.3. cAMP Signalling

Cyclic AMP signalling is primarily mediated through cAMP-responsive element-binding protein
(CREB). cAMP, through its cellular target protein kinase A (PKA), phosphorylates and activates CREB,
which binds to the Cyclin D1 promoter to activate transcription in the early stages of adipogenesis,
thereby promoting 3T3-L1 differentiation [46]. Ectopic expression of cAMP signalling targets CREB in
3T3-L1 cells and stimulates differentiation [47]. The active phosphorylated CREB interacts with the
C/EBPβ promoter only after adipogenic induction of 3T3-L1 cells, suggesting that active CREB activates
C/EBPβ expression to promote adipogenesis [48,49]. Mouse embryonic fibroblast (MEF) differentiation
into adipocytes was markedly inhibited in CREB−/−MEFs [49]. This demonstrates that cAMP, through
CREB, activates C/EBPβ expression in the early stages of adipogenesis in 3T3-L1 preadipocytes.

Petersen et al. (2003) showed that an exchange protein directly activated by cAMP (Epac) is
required for cAMP dependent activation of adipocyte differentiation [50]. Epac, in synergy with PKA of
the cAMP signalling pathway, works via Ras-like GTPases, Ras-related protein 1 (Rap1) and Rap2 (as a
guanine nucleotide exchange factor) to promote adipogenesis. The function of PKA in this scenario is
to downregulate the activity of Rho and Rho-kinase that suppress the proadipogenic action of IGF-1.
This interplay between Epac and PKA demonstrates another mechanism of cAMP signalling that uses
both Epac and PKA to drive adipocyte differentiation in 3T3-L1 cells [50].

Both GC and cAMP signalling pathways positively regulate preadipocyte commitment and
differentiation [42,50]. However, it is important to note that the different preadipocyte cell lines each
provide their own unique perspective in the study of adipogenesis. For example, GCs and cAMP
signalling are both required for 3T3-L1 preadipocyte differentiation. This is not the case with Obl771
preadipocytes, in which glucocorticoids alone are sufficient to stimulate high levels of cAMP required
for differentiation [51].

4.4. TGF-β Signalling

Transforming growth factor beta inhibits preadipocyte commitment through mothers against
decapentaplegic 3 (SMAD3) signalling, by phosphorylating and suppressing PPARγ expression as well
as the expression of C/EBPs [52,53]. Deletion of transforming growth factor beta receptor 2 (Tgfbr2)
in MSCs resulted in a marked increase in adipocyte expansion in murine bone marrow and this was
accompanied by an increase in PPARγ expression [54]. Transforming growth factor beta 1 is the most
abundant growth factor in bone matrix and regulates cell growth and differentiation. Human bone
marrow mesenchymal stromal/stem cells (BM-MSCs) treated with TGF-β1 for up to 7 days, showed
reduced adipogenic differentiation in favour of osteogenic differentiation [55]. Global gene expression
analysis revealed that serpin peptidase inhibitor clade B (ovalbumin) member 2 (SERPINB2) was
significantly downregulated in TGF-β1 treated cells. Silencing of SERPINB2 in untreated cells enhanced
both their adipogenic and osteogenic differentiation capacity. This suggests that TGF-β signalling
plays a role in both adipogenic and osteogenic differentiation, and SERPINB2 was identified as the
TGF-β1 responsive gene through which it negatively regulates human BM-MSCs differentiation [55].
Skeletal unloading in rats caused a progressive increase in C/EBPα and C/EBPβ followed by PPARγ2
transcripts in BM-MSCs from day 5 to 7. The administration of TGF-β2 to these rats reversed the effects
caused by skeletal unloading. The resultant suppression of PPARγ2 following TGF-β2 administration
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was associated with higher runt-related transcription factor 2 (Runx2) expression [52]. Furthermore,
initial suppression of C/EBPα and C/EBPβ by TGF-β2 increased serine phosphorylation of PPARγ,
which inhibited its transactivation activity and suppressed BM-MSCs adipogenic differentiation.
Hence, TGF-signalling through TGF-β2 suppressed adipogenesis in BM-MSCs in vivo by inhibiting
expressionof C/EBPα, C/EBPβ, and PPARγ [52].

4.5. BMP Signalling

Bone morphogenetic protein 4 signalling is important in the preadipocyte commitment process,
and has been shown to commit C3H10T1/2 pluripotent cells to the adipocyte lineage [56]. BMP4 binds
to bone morphogenetic protein receptor type 1A (BMPr1A) and BMPr2 receptors which phosphorylate
SMAD1/5/8 to form a complex with SMAD4. This complex is translocated to the nucleus to regulate
BMP4 signalling to target genes such as translationally controlled tumour protein 1 (TPT1), lysyl oxidase
(LOX) and αB-crystallin, which are involved in the commitment of C3H10T1/2 cells to the adipocyte
lineage [56]. BMP4 treated C3H10T1/2 cells differentiated into adipocytes with increased expression of
C/EBPα, PPARγ, and adipocyte protein 2 (aP2) [53]. BMP4 pre-treated C3H10T1/2 cells implanted
subcutaneously into athymic mice developed into adipose tissue similar to that found in normal fat
depots [57]. Treatment of A33 preadipocytes derived from C3H10T1/2 cells with the BMP4 antagonist
noggin, inhibited adipogenic differentiation, indicating the importance of BMP4 in maintaining
preadipocyte commitment [58]. Inhibiting BMP4 signalling in human adipose derived stromal/stem
cells (hASCs) suppresses adipogenesis [53]. Adipose precursor cells secrete Wnt1 inducible signalling
pathway protein (WISP2) which forms a complex with zinc finger protein 423 (Zfp423) in the absence of
BMP4 stimulation. BMP4 phosphorylates SMAD1/5/8 leading to the dissociation of the WISP2/Zfp423
complex and the release of Zfp423, which in turn activates PPARγ transcription in the nucleus, thereby
committing cells to the adipogenic lineage [53].

The role of BMP2 signalling in preadipocyte commitment is not fully understood, but several
studies have implicated it in the commitment of C3H10T1/2 cells to this lineage [53,59]. BMP2 committed
C3H10T1/2 cells exhibit a certain level of plasticity in differentiation between the different lineages
(adipogenesis, chondrogenesis, and osteogenesis), with adipogenesis being particularly favoured at low
concentrations of BMP2 [59]. BMP2 induces C3H10T1/2 adipocyte commitment through the activation
of SMAD1 and p38 kinase, which stimulate PPARγ expression [60]. Interestingly, the adipogenic effect
of BMP2 is greater in hASCs obtained from older than from younger individuals [53].

BMP7 predominantly plays a role in brown adipocyte lineage commitment [53]. This, however,
is concentration dependent, with BMP7 at low concentrations promoting adipocyte differentiation in
mouse BM-MSCs, while adipogenesis is inhibited at higher concentrations [55]. BMP7 also promotes
adipogenic differentiation in human BM-MSCs, but not osteogenic nor chondrogenic differentiation [61].
BMP7 combined with BMP4 induced the expression of UCP1 in hASCs, and could possibly play a
role in white to brown (brite) adipocyte formation [62,63]. BMP7-induced adipogenesis led to increase
lipid accumulation and PPARγ expression. BMP7 induced brite adipocyte formation by increasing
UCP1 expression and decreasing transcription factor 21 (TCF21) (white specific marker) in hASCs,
and this was found to be donor dependent [63]. BMP7-treated C3H10T1/2 cells that were implanted
subcutaneously into the sternal region of athymic nude mice differentiated to form adipose tissue
containing brown adipocytes in vivo [64].

4.6. Wnt Signalling Pathway

Wingless-type MMTV integration site family members are glycoproteins that play an essential
role in various cellular processes, including embryogenesis, cell proliferation, and cell fate
determination [65,66]. There are 19 Wnt genes that encode cysteine-rich glycoproteins that act in an
autocrine or paracrine manner [65,67]. The Wnt proteins activate either a Wnt/β-catenin dependent
pathway (canonical pathway) or a Wnt/β-catenin independent pathway (non-canonical pathway).
Several studies have shown that β-catenin is essential for the regulation of adipogenesis [67,68].
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Wnt proteins are secreted into the extracellular environment and activate a cascade of intracellular
signals [66]. Wnt proteins bind to a cell surface receptor complex consisting of Frizzled receptor (FZD)
and its co-receptor, low density lipoprotein receptor related protein 5/6 (LRP) [65,69]. Once the Wnt
protein is bound to the receptor complex, a signal is transduced via phosphoprotein Dishevelled (Dsh),
resulting in the inactivation of the β-catenin destruction complex. The β-catenin destruction complex
consists of Axin, casein kinase 1α (Ck1α), protein phosphatase 2A (PP2A), adenomatosis polyposis coli
(APC) and glycogen synthase kinase 3 (GSK3). Inactivation of this destruction complex prevents the
phosphorylation and degradation of cytosolic β-catenin, thereby stabilizing it for translocation to the
nucleus [66,70,71]. In the nucleus, β-catenin binds to the T-cell factor/lymphoid enhancer-binding factor
(TCF/LEF) family of transcription factors, resulting in the activation of Wnt target genes/transcription
factors controlling myogenesis [MYC, cell cycle regulator cyclin D1 (CCND1), and axis inhibition
protein 2 (AXIN 2)] [67].

The Wnt signalling pathway has been extensively studied and is a negative regulator of
adipogenesis. Several in vitro studies have found that the Wnt signalling pathway inhibits the
terminal differentiation of preadipocytes into mature adipocytes [65,72]. Following the activation
of the Wnt pathway, the expression of proadipogenic transcription factors (C/EBPα and PPARγ) is
inhibited [70]. When 3T3-L1 cells were induced to undergo adipogenic differentiation, there was an
increase in the expression of PPARγ, C/EBPα and adducin 1 (Add1), as well as the adipogenic genes,
aP2 and adiponectin (APM1). However, in a model in which the Wnt signalling pathway was activated,
there was little to no expression of PPARγ, C/EBPα, Add1, aP2 and APM1 [69]. Thus, inhibition of this
pathway results in the formation of mature adipocytes [65,69].

4.7. Hedgehog Signalling Pathway

The Hedgehog (Hh) signalling pathway plays a role in embryogenesis and cell differentiation [73].
Activation of the Hh signalling pathway inhibits adipogenesis and promotes osteogenesis and
chondrogenesis [74]. This signalling pathway involves the binding of extracellular Hh protein to a cell
surface receptor complex consisting of Patched (Ptch) and Smoothened (Smo). Smo then activates a
cascade of intracellular signals resulting in the activation of target genes by Gli family transcription
factors (Gli 1, 2, and 3) [75]. Adipocyte differentiation is prevented through the specific inhibition
of C/EBPα and PPARγ [35]. A study by Suh et al. (2006) using 3T3-L1 cells showed that activation
of the Hh pathway inhibited adipocyte differentiation; cells retained the appearance of uninduced
3T3-L1 cells and there was a reduction in lipid accumulation. The authors further observed reduced
expression of C/EBPα, PPARγ, aP2, and Adiposin, while Pref-1 levels were elevated [76].

4.8. MAPK Signalling Pathways

The intracellular MAPK signalling pathway is important for cell proliferation and differentiation.
It is subdivided into three pathways: extracellular signal-regulated kinases (ERKs), c-Jun
amino-terminal kinases (JNKs) and p38 MAPK. The ERK and p38 MAPK pathways have been
implicated in the regulation of adipogenesis [77]. Extracellular signal-regulated kinase signalling
plays a role during the early stages of adipogenesis, as ERK1-/- mice were protected against high
fat diet induced obesity with a decrease in adiposity. Preadipocytes from these mice as well as
embryo fibroblasts showed impaired adipogenesis [78]. Contrary to the reports on the involvement
of ERK in early adipogenesis, other studies have shown that sustained activation of ERK decreases
adipogenesis by inhibiting PPARγ expression through MAPK mediated phosphorylation [79,80].
There have been contradictory reports on the role of the p38MAPK pathway in adipogenesis [77,81–83].
In p38MAPKalpha knockout cells or cells in which p38MAPK has either been inhibited or disrupted,
phosphorylation of CEBPβ was enhanced and PPARγ expression increased, suggesting that p38MAPK
plays a negative role in adipogenesis [77]. Conversely, an increase in p38MAPK activity has been
observed during human preadipocyte differentiation, and using pharmacological substances to inhibit
p38MAPK in these cells greatly reduces the accumulation of triglycerides and the expression of PPARγ



Int. J. Mol. Sci. 2020, 21, 4283 9 of 27

together with other adipocyte specific markers. This suggests that p38MAPK plays a positive role in
primary human preadipocyte differentiation [81]. Another study showed that specific inhibitors of p38
blocked adipogenesis in 3T3-L1 cells. Treatment with a p38 inhibitor reduced CEBPβ phosphorylation
in vivo with a corresponding decrease in PPARγ expression. This suggests that CEBPβ may be a target
for p38 during adipogenesis, and that p38 MAPK activity promotes 3T3-L1 differentiation during the
initial stages of adipogenesis [82,83].

4.9. Other Signalling Pathways

The Ras signalling pathway induces 3T3-L1 preadipocyte differentiation; ectopic expression of the
Ras oncogene induces preadipocyte differentiation in the absence of insulin and IGF-1 [37]. Further
evidence suggests that activated Ras mediates its adipogenic effect through cytosolic serine/threonine
protein kinase rapidly accelerated fibrosarcoma 1 (Raf-1), as the expression of Raf-1 was sufficient
to induce preadipocyte differentiation [37,84]. Retinoblastoma protein (pRb) in the Rb signalling
pathway binds to E2 transcription factor (E2F) to repress its activity, thereby inhibiting cell-cycle
progression. pRb also acts with E2F to inhibit the expression of the PPARγ2-c subunit and subsequently
adipogenesis [85]. Cyclin-dependent kinase phosphorylates pRb which can either suppress or promote
adipogenesis, depending on the cellular context and activity of the transcription factor induced.
pRb releases E2F which activates cell-cycle genes required for synthesis phase (S-phase) entry and
cell-cycle progression, that are critical for mitotic clonal expansion [48,86]. Conversely, pRb can
also bind to RUNX2, inhibiting adipogenesis in favour of osteogenic differentiation [87]. Myostatin
signalling inhibits 3T3-L1 preadipocyte differentiation and BMP7-induced C3H 10T1/2 adipogenic
differentiation in vitro [88] (Table 1).

Table 1. Signalling pathways involved in the regulation of adipogenesis.

Signalling Pathways Effect on Adipocyte Differentiation References

IGF-1 Promotes [37–40]
Glucocorticoid Promotes [42–45]

cAMP Promotes [46–50]
TGF-β1 and 2 Inhibits [52–55]

BMP2 Promotes [59,60]
BMP4 Promotes [53,56–58]
BMP7 Promotes [55,61–64]
Wnt Inhibits [65,69,70,72]

Hedgehog Inhibits [74,76]

ERK/MAPK Promotes [78]
Inhibits [79,80]

P38/MAPK Promotes [81–83]
Inhibits [77]

Ras Promotes [37,84]
Retinoblastoma protein Inhibits [85]

Myostatin Inhibits [88]

5. Epigenetic Regulation of Adipogenesis

Epigenetic mechanisms play a crucial role in regulating gene expression and chromatin structure
and result in heritable changes in gene expression without altering DNA sequences. A broadened
definition of epigenetics includes any alteration of chromatin or DNA that effects gene expression,
and this includes post translational modifications to proteins such as acetylation, methylation and
phosphorylation, histone modifications, RNA silencing, non-coding RNA regulation including miRNAs,
short interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs) and long non-coding RNAs
(lncRNAs), protein phosphorylation, genomic imprinting, cell differentiation, and environmental
factors. This review will focus on those epigenetic modifiers acting at the genomic level with a well
described role in adipogenesis, such as chromatin remodelling complexes, epigenomic readers, histone
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methyltransferases/demethylases, histone acetylases/deacetylases, DNA methylases/demethylases,
and miRNAs (Tables 2 and 3).

5.1. Chromatin Remodelling Complexes

Remodelling of chromatin architecture renders DNA accessible during replication, transcription,
and DNA repair, thereby allowing for changes in gene expression. Remodelling occurs
through covalently modified histones and ATP-dependent chromatin remodelling factors [89].
The switch/sucrose nonfermenting family is a multi-subunit ATP-dependent chromatin remodelling
complex that makes use of mammalian brahma (BRM) or brahma-related bromodomain protein (BRG1)
as ATPase [90]. Salma and colleagues (2004) analysed interactions between PPARγ2 and SWI/SNF.
They found that prior to the interaction of SWI/SNF enzymes with the PPARγ2 promotor, changes
occurred in the binding of C/EBP activators, general transcription factors, and polymerase II. In contrast,
PPARγ2 transcription only occurred after the association of SWI/SNF with transcription factor II H
(TFIIH). Therefore, adipogenesis proceeds when SWI/SNF is recruited to PPARγ2 [90,91].

5.2. Histone Methylation

Histones are a family of alkaline proteins and are of five major types: H1, H2A, H2B, H3, and H4.
Their main function is to package DNA to form structural units called nucleosomes [92]. Histone
methylation allows for either the activation or repression of transcription and is dependent on the
methylation of lysine or arginine residues [93]. Little is known about histone marks in human adipose
tissue; however, it has been shown that alterations in histones are an essential element in the epigenetic
regulation of adipogenesis. Examples of the effect of histone methylation on gene expression include
methylation of histone 3 lysine 4 (H3K4) that can be mono-, di-, and tri-methylated, as well as H3K36
and H3K79, all of which are associated with gene activation. On the other hand, methylation of H3K9
and H3K27 is related to gene repression [94]. C/EBPβ and H4 promotors are involved in cell progression
through growth phase 1 (G1) as a result of C/EBPβ binding to and transactivation of H4 promoters,
thereby increasing H4 expression. Musri and colleagues (2006) observed H3K4 di-methylation at
the APM1 promoter in 3T3-L1 fibroblasts, indicating transcriptional competence, which represents a
marker for cells that have undergone determination to the preadipocyte stage. The authors knocked
down the H3K9 methyltransferase, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1);
this decreased H3K9 and increased H3K4 di-methylation at the C/EBPα promoter, resulting in an
increase in C/EBPα gene expression [95,96].

Lysine specific demethylase 1 (LSD1) plays a role in both the activation and repression of
transcription, depending on the biological processes and associated protein complex [90]. A study
by Musri and colleagues (2010) demonstrated the effect of LSD1 on the differentiation of 3T3-L1
preadipocytes. Knockdown of the H3K4/K9 demethylase LSD1 decreased 3T3-L1 cell adipogenic
differentiation. This resulted in an increase in H3K9 di-methylation and a decrease in H3K4
di-methylation at the promoter region of C/EBPα, which impaired C/EBPα activation. Hence,
knockdown of LSD1 increases the levels of histone repressive markers, which inhibits adipogenesis [95].
LSD1 is essential for the development and function of BAT. Sambeat and colleagues (2016) assessed
Myf5+ progenitor cells in which LSD1 had been knocked out, and found an increase in H3K9
di-methylation (H3K9me2) on the UCP1 promoter. This inhibited UCP1 expression, resulting
in defective BAT function and development. The authors then undertook a study in UCP1-Cre
mediated LSD1 knockout mice, and found an increase in adipose tissue as well as cold intolerance [97].
During adipogenesis, G9a and H3K9me2 levels decreased to enhance chromatin opening and binding of
C/EBPβ to the PPARγ promoter, thereby activating the expression of PPARγ. In addition, G9a knockout
mice showed an increase in both WAT and BAT [98].

Nuclear receptor binding SET domain protein 2 (Nsd2) is an H3K36 di-methyltransferase
(H3K36me2) and is involved in the positive regulation of adipogenesis. The depletion of Nsd2 has no
effect on H3K36me2 but increases H3K27 tri-methyltransferase (H3K27me3), which in turn represses
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adipogenesis [99]. In vivo studies showed that LSL-H3.3K36M;Myf5-Cre mice had a decrease in BAT
and an abnormal hunched posture [99]. Fatty acid binding protein 4 (FABP4) promoter driven H3K36M
transgenic mice exhibited whitening of BAT and developed insulin resistance in WAT. This shows
that Nsd2 is essential for the development and function of adipose tissue [99]. Lysine demethylase 5
(Kdm5), a family of H3K4 demethylases, is involved in cell cycle progression where it binds to and
activates specific promoters. Knockdown of Kdm5 results in inhibition of adipogenesis as a result of
reduced mitotic clonal expansion [100]. However, the role of Kdm5 in vivo is not yet fully understood.

Zhang and colleagues (2012) stated that “global levels of histone modifications remain stable
during adipogenesis” [101]. Using 3T3-L1 cells, they observed an increase in H4K20 mono-methylation
from day 0 to day 2. During clonal expansion, at time points of 6 hrs and 1 day, there was a general
loss of histone 3. Using chromatin immunoprecipitation (ChIP) analysis, they examined the different
types of methylation on H3K4. They found that the C/EBPβ exon and 3′UTR had only a small amount
of K4 mono-methylation but contain a large amount of K4 tri-methylation. In addition, high levels
of K4 tri-methylation were present in all the induced adipogenic genes. From these findings they
concluded that there is a positive correlation between H3K4 tri-methylation and gene activation in
adipogenesis [101]. A study by Ge (2012) showed that H3K4 methyltransferase MLL3/4 and H3K27
demethylase tetratricopeptide repeat protein (UTX; also known as KDM6A) control the expression of
PPARγ and C/EBPα. Both histone modifiers associate with paired box transcription activation domain
interacting protein (PTIP) [102]. MLL3/4 are required for the activation of adipogenesis through the
induction of PPARγ and C/EBPα. During adipogenesis, MLL3/4 are recruited to further activate
downstream enhancers. However, in in vivo studies in Myf5-Cre-mediated MLL4 knockout mice,
these mice had defects in BAT, and adipogenesis was inhibited [103]. Wnt genes are repressed by H3K27
methyltransferase (PRC2) and its subunit Ezh2, which in turn promotes adipogenesis. These results
indicate that methylation facilitated by H3K4 and H3K27 controls the expression of the main genes
involved in adipogenesis [94,102]. In the regulation of BAT, Ehmt1 is essential for stabilizing the
PR domain containing 16 (PRDM16) protein that is required for thermogenesis. Ohno et al. (2013)
produced Myf5-Cre-mediated Ehmt1 knockout mice that showed a reduction in BAT-mediated adaptive
thermogenesis, systemic insulin resistance, as well as obesity. This suggests that Ehmt1 plays an
essential role in controlling cell fate in BAT and energy homeostasis [104].

In addition to lysine methylation, arginine methylation is also implicated in adipogenesis.
In mammals, 9 PRMTs mediate arginine methylation, of which PRMT5 and CARM1 play a role.
CARM1 is recruited to promoters and is a transcriptional coactivator for PPARγ, hence promoting
adipogenesis [90]. Yadav and colleagues (2008) knocked down CARM1 in 3T3-L1 cells which
inhibited adipogenesis, thus indicating that it is an important element in the activation of PPARγ.
CARM1 knockout embryos displayed decreased lipids in BAT, indicating that CARM1 is necessary
for differentiation into mature adipocytes [90,105]. PRMT5 is required for enhancer promoter loop
formation of PPARγ2 and demethylates histones at adipogenic promoters. LeBlanc and colleagues (2012)
found that the presence of PRMT5 promotes the binding of ATP-dependent chromatin remodelling
enzymes that are essential for PPARγ2 binding to PPARγ2-regulated promoters. When PRMT5
is overexpressed, adipogenesis increases; on the other hand, the inhibition of PRMT5 resulted in
the repression of adipogenic genes. Thus, PRMT5 plays a role in coactivation for adipogenic gene
expression and adipogenesis [106,107].

5.3. Histone Acetylation

Histone acetylation plays an important role in gene expression. It involves the addition of acetyl
groups on the histone N-terminal tail by histone acetyl transferases (HAT). There are two types of
HAT: Type A contains a bromodomain, that is found in the nucleus and acetylates chromatin and
nucleosomal histones, for example Gcn5/PCAF and CBP/p300; Type B is found in the cytoplasm and
acetylates newly transcribed histones [108]. Acetylation results in a relaxed chromatin structure that
allows for transcriptional activation [109]. Histone tails H3 and H4 contain many acetylated sites and
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therefore are involved in positive gene expression. General control non-depressible 5 and PCAF are
involved in the acetylation of H3K9 and play a role in adipogenesis by regulating the expression of
PPARγ and PRDM16. Jin and colleagues (2014) demonstrated that a double knockout of Gcn5 and
PCAF prevented adipocyte differentiation and BAT development by inhibiting PPARγ expression.
Ectopic expression of PPARγ was able to rescue the adipogenic defects caused by the double knockout,
but not brown adipocyte enriched PRDM16 expression. These results indicate that WAT adipogenesis
is regulated by Gcn5 and PCAF through PPARγ expression, and brown adipogenesis is regulated by
influencing the expression of PRDM16. Hence, the transcription of general white adipogenic genes
and brown adipogenesis is regulated through different mechanisms [110]. A study using 3T3-L1
cells showed that ribozyme-mediated targeting of CBP or p300 inhibited the expression of PPARγ.
This indicates that CBP and p300 are required for the induction of PPARγ [111]. CBP deficient mice
showed a decrease in WAT but not in any other tissues. These mice displayed an increase in insulin
sensitivity and glucose tolerance [112]. Even though CBP and p300 contain similar sequences, they
appear to be involved at different time points during adipogenesis [111].

Using ChiP analysis and 3T3-L1 cells, Zhang et al. (2012) analysed H3K9/K14 and H4K12
acetylation in relation to adipogenesis. Like H3K4 tri-methylation, C/EBPβ exon and 3′UTR were
highly acetylated during H3K9/K14 acetylation, but not in H4K12 acetylation. In addition, the aP2
gene showed the highest amount of histone acetylation. PPARγ2 and aP2 showed increased levels of
acetylation on both H3 and H4 tails [101]. Xu, Ande, and Mishra (2013) examined temporal changes in
acetylation of protein lysine in 3T3-L1 cells during adipogenesis over an eight-day period. The cells
were analysed using SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and
immunoblotting with anti-lysine acetylation specific antibody [113]. During days 1–4 of adipogenesis,
downregulation of protein acetylation occurred, while during days 4–8 upregulation took place.
Since histone deacetylase (HDAC) inhibitors play a role in the early stages of adipogenesis, these results
demonstrate that downregulation of protein acetylation is critical for adipocyte differentiation.

Bromodomain-containing protein 4 is a member of the bromodomain and extraterminal domain
(BET) protein family, and acts as an epigenetic reader by binding to acetylated histones and transcription
factors that promote the expression of PPARγ. The disruption of BRD4 in BRD4 knockout cell lines
inhibits PPARγ expression and suppresses adipogenesis [114]. Lee and colleagues (2017) demonstrated
that BRD4 binds to active enhancers through enhancer epigenetic writers MLL3/4 during adipogenesis,
which facilitates the recruitment of positive transcription elongation factor (p-TEFb), RNA polymerase
II (Pol II) and transcription factor II D (TFIID) [90,115]. BRD4 knockout models showed a decrease in
BAT and muscle mass in vivo, and the mice displayed an abnormal hunched posture. This indicates
that BRD4 is an important factor for adipogenesis as well as myogenesis in vivo [115].

5.4. Histone Deacetylation

Histone deacetylases (HDACs) are involved in chromatin modification. HDACs deacetylate
histones (removal of an acetyl group), compacting the chromatin structure and preventing the binding
of transcription factors. There are 4 classes of HDACs. Class I consists of HDACs 1, 2, 3, and 8. Class II
consists of HDACs 4, 5, 6, 7, 9 and 10. Class III consists of sirtuins 1–7, a group of nicotinamide adenine
dinucleotide (NAD)-dependent enzymes. Class IV consists of HDAC 11 [116,117].

HDAC 1 negatively regulates adipogenesis. Eung and colleagues (2006) observed that levels of
HDAC 1 expression were reduced during adipogenesis. Further investigation identified HDAC 1
as a possible regulator of PPARγ, C/EBPα, sterol regulatory element binding transcription factor 1c
(SREBP-1c) and aP2 expression [117]. Although this study identified a role for HDAC 1 in regulating
adipogenesis, controversy still remains regarding its role [118]. Haberland and colleagues (2010) found
that HDACs 1 and 2 together promote adipogenesis, as their deletion inhibited this process [119].
As the role of HDAC 1 is not completely understood, further research is required. HDAC 9 negatively
regulates adipogenesis. Chatterjee and colleagues (2011) found that HDAC 9 inhibited adipogenesis in
3T3-L1 cells. It was subsequently found that HDAC 9 forms a complex with upstream transcription
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factor 1 (USF-1) and interacts with the promoter of the C/EBPα gene. Knockout of HDAC 9 resulted in
increased expression of C/EBPα in vivo, possibly indicating the target of HDAC 9 [120].

Histone deacetylases class III consists of 7 Sirt enzymes that regulate various cellular processes by
deacetylating lysine residues. A few of the Sirt enzymes have been implicated in adipogenesis [121,122].
Sirt 1 is a negative regulator of adipogenesis. Picard and colleagues (2010) observed that a reduction
in Sirt 1 resulted in increased expression of PPARγ, C/EBPα and aP2. Knockout of Sirt 1 promoted
adipogenesis in vivo as well as a decrease in free fatty acid release from WAT [123,124]. Sirt 2 has
also been implicated as a negative regulator of adipogenesis. In vitro knockdown of Sirt 2 promoted
adipogenesis, and increased expression of PPARγ, glucose transporter type 4 (Glut4), and adipsin.
It was also shown that Sirt 2 deacetylates FOXO1, and as a result FOXO1 binds to PPARγ and represses
its activity [125]. Sirt 6 is a positive regulator of adipogenesis, playing a role in clonal expansion. In vitro
studies using 3T3-L1 cells revealed that knockout of Sirt 6 impaired differentiation. This was confirmed
in in vivo studies whereby a reduction in subcutaneous adipocytes was observed and a decrease in
expression of PPARγ, C/EBPα, aP2, and APM1 was found. Sirt 6 was found to particularly target
kinesin family member 5C (KIF5C), inhibiting its expression during adipogenesis [126]. An antagonistic
effect has been reported between Sirt 7 and Sirt 1. Sirt 7 interacts with Sirt 1 leading to Sirt 1 being
acetylated. This decreases Sirt 1 activity and as a result, adipogenesis is promoted. Sirt 1 expression
is increased in Sirt 7-/- mice. A reduction in WAT was observed as well as a decrease in expression
of PPARγ and aP2. Sirt 7 therefore plays a positive role in regulating adipogenesis by inhibiting
Sirt 1 [121].

5.5. DNA Methylation

DNA methylation is a key element in the regulation of gene expression and cell differentiation.
It involves the transfer of a methyl group onto the fifth carbon (C5) of cytosine, forming 5-methylcytosine
(5mCs). This is facilitated by Dnmts [127,128]. Dnmts have been shown to regulate adipogenesis.
Dnmt1 is involved in clonal expansion and the early stages of adipogenesis. High levels of Dnmt1
expression are observed in the first 24 hrs following adipogenic induction, with a subsequent reduction
in expression [129]. To further examine the functional role of Dnmt 1 during adipogenesis, PPARγ and
Glut4 loci were analysed. Both loci showed increased methylation of 5′-carbon-phosphate-guanine-3′

(CpG5) islands, particularly during the early stages of differentiation, with a decrease in the level of
methylation thereafter. Based on these findings, it is believed that Dnmt1 suppresses the expression of
adipogenic genes and in turn allows clonal expansion to occur. When Dnmt 1 was silenced, spontaneous
differentiation of preadipocytes occurred [129]. Therefore, Dnmt1 appears to promote the early stages
of differentiation (clonal expansion) through the methylation of PPARγ, thereby inhibiting its early
expression. The level of methylation decreases during the later stages of differentiation, allowing the
expression of PPARγ and thereby promoting differentiation.

5.6. DNA Demethylation

Ten eleven translocation enzymes are a group of enzymes implicated in the reversal of DNA
methylation through the oxidation of 5mCs [130]. Yoo and colleagues (2017) reported that Tet 1 and
2 positively regulate adipogenesis, specifically by reducing DNA methylation as well as inducing
hydroxymethylcytosine at the PPARγ locus. In vitro knockdown of Tet 1 and 2 prevented expression
of PPARγ and subsequently blocked adipogenesis. It was also found that Tet 2 was mainly responsible
for modulating expression at the PPARγ locus [131] (Table 2).
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Table 2. Epigenetic factors involved in the regulation of adipogenesis.

Regulator Effect on Adipogenic Differentiation References

Chromatin Remodelling Complex In Vitro In Vivo
SWI/SNF Promotes - [91]

Lysine methyltransferases
SETDB1 Inhibits - [95,96]

G9a Inhibits Inhibits [98]
Nsd2 Promotes Promotes [99]

MLL3/4 Promotes Inhibits [103]
Ezh2 Promotes - [94,102]

Ehmt1 - Promotes [104]
Lysine demethylases

LSD1 Promotes Promotes [95,97]
Kdm5 Promotes - [100]

Arginine methyltransferases
CARM1 Promotes Promotes [90,105]
PRMT5 Promotes - [106,107]

Histone acetyltransferases
Gcn5/PCAF Promotes Promotes [110]
CBP/p300 Promotes Promotes [111,112]

Epigenetic reader BRD4 Promotes Promotes [114,115]
Histone deacetylases

HDAC 1 Inhibits - [117]
HDAC 1 and 2 Promotes - [119]

HDAC 9 Inhibits [120]
Sirt 1 Inhibits Inhibits [123,124,132]
Sirt 2 Inhibits - [125]
Sirt 6 Promotes Promotes [126]
Sirt 7 Promotes Promotes [121]

DNA methyltransferase

Dnmt1 Promotes (clonal
expansion) - [129]

DNA demethylases
Tet 1 and 2 Promotes - [131]

5.7. miRNAs

MicroRNAs are small non-coding 20–22 nucleotide RNA sequences, that are critical
posttranscriptional regulators modulating the expression of transcription factors and genes in various
cellular processes [133]. Several studies have implicated miRNAs in the regulation of adipogenesis
(Table 3). Different miRNAs are expressed at various stages of adipogenesis and regulate this process
either positively or negatively [134].

Esau and colleagues (2004) investigated miRNA expression in preadipocytes and mature
adipocytes. Levels of miR-143 expression were found to increase in human white preadipocytes
induced to undergo adipogenic differentiation [135], and the inhibition of miR-143 was shown to
prevent adipocyte differentiation. MiR-143 targets ERK5, which is an essential component of the MAPK
signalling pathway [135,136]. The MiR 17-92 cluster plays a positive role in the clonal expansion phase
of adipogenesis. The MiR 17-92 cluster is a highly conserved cluster consisting of miR-17, miR-18a,
miR-19a, miR-9b, miR-20a, and miR-92A [137,138]. The miR 17-92 cluster targets retinoblastoma-like
protein 2 (RB2/P130) of the retinoblastoma tumour suppressor gene family, also referred to as checkpoint
proteins [138]. Ouyang and colleagues (2015) investigated the role of miR-125b-5p in adipogenesis using
3T3-L1 cells, and found that it inhibits cell proliferation while promoting adipogenic differentiation.
This was evident from the increase in lipid droplets and the expression of PPARγ, C/EBPα and FABP4.
miRNA-125b-5p was found to suppress the G1/S transition as well as to inhibit the expression of G1/S
associated genes [139].
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The miR-30 family (miR-30 a–d) has been identified as being pro-adipogenic. A study by
Zaragosi et al. (2011) showed miR-30 a–d was upregulated in mature adipocytes. It was further
reported that miR-30 a and d specifically target RUNX2, a major pro-osteogenic transcription factor,
thereby inhibiting osteogenesis and stimulating adipogenesis [140]. Another miRNA that targets
RUNX2 and has the same effect on adipogenesis is miR-204 and its homolog miR-211 [141]. MiR-124
also inhibits osteogenesis, but instead of targeting RUNX2, it targets distal-less homeobox 5 (Dlx5),
another pro-osteogenic transcription factor [136]. Thus, miR-30 a and d, miR-204, and miR-124 appear
to play a role in adipocyte commitment. There have also been several miRNAs reported to suppress
or inhibit adipogenesis [69,142]. Expression of MiR-130 results in the inhibition of adipogenesis by
specifically targeting PPARγ [142]. Another negative regulator of adipogenesis is miR-27a, which has
been shown to target PPARγ and C/EBPα [143]. MiR-210 was found to promote adipogenesis by
suppressing the Wnt signalling pathway [69], while MiR-146 promotes adipogenesis by suppressing
Sirt 1 and subsequently acetylating FOXO1 [144]. MiR-93 is another miRNA found to inhibit Sirt-7 as
well as T-box 3 (Tbx3), and in turn negatively regulates adipogenesis [145] (Table 3).

Table 3. MicroRNAs involved in the regulation of adipogenesis.

MicroRNAs Target Experimental Model References

Proadipogenic

MiR-143 ERK5 (MAPK signalling
pathway) Human preadipocytes [135]

MiR 17-92 RB2/P130 3T3-L1 cells [138]
MiR-125b-5p Smad 4 3T3-L1 cells [139]

MiR 30 a and d Runx2 HASCs [140]
MiR-204 and MiR-211 Runx2 C3H10T1/2 [141]

MiR-124 Dlx4 3T3-L1 cells [136]
MiR-210 Tcf712 (Wnt signalling pathway) 3T3-L1 cells [69]
MiR-146 Sirt 1/FOXO1 3T3-L1 cells [144]

Antiadipogenic

MiR-130 PPARγ 3T3-L1 cells [142]
MiR-27a and b PPARγ and C/EBPα 3T3-L1 cells [143]

MiR-93 Sirt 7 and Tbx3 miR-25-93-106b–/– mice [145]

6. Transcriptional Regulation of Adipogenesis

The process of adipogenesis has been extensively studied and decades of research have reported
over a dozen transcription factors to be involved in regulating this process, both in vitro and
in vivo [146,147] (Figure 2). The transcription factor Zfp423 plays an essential role in regulating MSC
commitment to preadipocytes and its expression remains unchanged during adipogenesis [148,149].
Ectopic expression of Zfp423 in non-adipogenic NIH-3T3 fibroblasts activates PPARγ expression in
undifferentiated cells, which allows them to undergo adipogenesis, hence suggesting that Zfp423
is an important transcriptional regulator of preadipocyte determination [149]. Zinc finger protein
B-cell lymphoma 6 (Bcl6) promotes preadipocyte commitment and differentiation in vitro and ex
vivo, such that Bcl6 knockdown in C3H10T1/2 cells suppresses their adipogenic potential while its
overexpression enhances adipogenesis by activating STAT1 downstream. Impaired adipogenic
commitment and differentiation of Bcl6 knockdown C3H10T1/2 cells was rescued by STAT1
overexpression, making STAT1 a direct downstream target of Bcl6 [150]. Intra-tibial injection of
cells transduced with Zfp467 into C57Bl/6 mice doubles the number of adipocytes found in the bone
marrow compared to vector control-transduced cells, suggesting a potential role for Zfp467 in the
commitment of precursor cells to the adipogenic lineage [151]. Early B-cell factor 1 plays a role in
adipogenic lineage commitment in mice as shown by the lack of adipocyte precursor cells in Ebf1 null
mice [152]. Overexpression of Ebf1 in fibroblasts promotes adipogenic differentiation through the
direct activation of the PPARγ promoter [147,153]. STAT5 promotes adipogenesis in vitro and in vivo



Int. J. Mol. Sci. 2020, 21, 4283 16 of 27

in murine and human preadipocyte and non-precursor cells [147,154–157]. Studies in both 3T3-L1 cells
and C3H10T1/2 cells show that STAT5 promotes adipogenesis by inducing PPARγ expression [158].
Nude mice injected with a vector expressing STAT5A developed adipose tissue at the site of injection
after 6 weeks, while mice receiving control vector failed to develop adipose tissue, suggesting STAT5A
promotes adipocyte development [159]. RUNX1 inhibits C3H10T1/2 cell commitment to preadipocytes
and its expression in BMP4-treated cells was found to be very low. Forced expression of RUNX1 in
BMP4-treated C3H10T1/2 cells inhibited their commitment to the adipocyte lineage, which suggests
that downregulation of RUNX1 is needed for C3H10T1/2 adipocyte commitment [160].
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Figure 2. Transcriptional regulation of adipogenesis. Transcription factors Zfp423, Zfp467, EBF1
and BCL6 promote preadipocyte commitment into the adipogenic lineage, while RUNX1T1 inhibits
this process. Expression of PPARγ and C/EBPα is central to preadipocyte commitment and terminal
differentiation, and several other transcription factors are known to regulate PPARγ and C/EBPα
expression downstream. Activation of either PPARγ or C/EBPα transactivates the other. Krox20,
ZNF638, KLF 4 and 9 activate C/EBPβ expression, which in turn activates PPARγ and thus promotes
adipogenesis. SOX9 on the other hand binds to and suppresses C/EBPβ promoter activity and inhibits
adipogenesis. KLF 5, 6 and 9, SOX6, EBF1, STAT5, C/EBPδ activate PPARγ expression thereby promoting
adipogenesis. GATA2 and KLF2 inhibit PPARγ activation and suppress adipogenesis. STAT3, KLF15,
AP-1, LMO3, FOXO1 and ZBTB16 are other transcription factors are reported to promote preadipocyte
differentiation, while GATA3, ZFP521, SMAD 2 and 3, KLF 3 and 7 are reported to suppress it.

A large body of evidence indicates that PPARγ and C/EBPα are the master regulators of adipocyte
development and adipogenesis. PPARγ and C/EBPα knockout in murine adipocytes during embryonic
and adult development showed that PPARγ was important for adipocyte development in both
embryonic and adult stages, while C/EBPα was crucial for adult murine WAT adipogenesis but not in
embryonic WAT adipogenesis [161]. The expression of functional PPARγ is an absolute requirement
for adipogenesis both in vitro and in vivo [162,163]. C/EBPβ, C/EBPδ, and Kruppel-like factors
5, 6 and 9 are implicated in adipogenesis, and have all been shown to induce PPARγ expression
in vitro, while GATA binding protein 2 (GATA2) and KLF2 inhibit PPARγ expression [147,164,165].
Expression of C/EBPβ and C/EBPδ occurs early during adipocyte differentiation to trans-activate
C/EBPα and PPARγ [147,166,167]. Krox20 and ZNF638 activate C/EBPβ, thereby modulating adipocyte
differentiation. Krox20 stimulates adipogenesis in vitro either through a C/EBPα dependent or
independent mechanism [168], while stimulation of adipogenesis by ZNF638 only occurs through the
C/EBPs [169].

The expression of STAT 1, 3 5A, and 5B has been shown to increase during adipogenic differentiation
in 3T3-L1 cells [147,154]; conversely, in human preadipocytes, STAT1 expression decreases during
adipogenesis [154]. It is not clear why the expression of STAT1 differs between murine and human
preadipocytes with respect to its role in adipogenesis; however, it is unlikely that STAT1 plays a critical
role in adipogenesis in vivo, as STAT1 knockout mice do not show abnormalities in body weight or
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adiposity phenotypes [170]. KLF 4, and 15 promote adipogenesis, while KLF 3 and 7 inhibit it [147].
KLF4 is expressed very early in adipogenesis and induces C/EBPβ expression, while knockdown
of KLF4 inhibits adipogenesis [171]. KLF5 is also expressed early in adipogenesis, and KLF5+/−

mice show a significant reduction in WAT [172]. KLF15 was shown to be highly expressed only
in mature 3T3-L1 adipocytes [173]; however, we have observed that KLF15 is constantly expressed
throughout adipogenesis in vitro using a human preadipocyte model [174]. Nonetheless, both studies
suggest a proadipogenic role for KLF15. Overexpression of both KLF 2 and 3 inhibit adipogenesis,
with KLF2 directly inhibiting PPARγ2 promoter activity while KLF3 attenuates C/EBPα promoter
activity [175,176]. The zinc finger E-box binding homeobox 1 (ZEB1) transcription factor promotes
adipocyte differentiation both in vitro and in vivo [177]. Overexpression of another transcription
factor, SREBP-1c, in non-precursor cells, enables them to undergo adipogenesis, suggesting a role
in adipogenesis in vitro [178]. In vivo studies have revealed a less compelling role for SREBP-1c
in adipogenesis, as SREBP-1 knockout mice showed no change in adipose tissue development
or the expression of key adipogenic genes when compared to wild-type mice [179]. This may
indicate that SREBP-1c expression is not critical for adipogenesis and adipose tissue development.
WAT preadipocytes express GATA 2 and 3, and their expression is suppressed during adipogenic
differentiation. Enhanced adipogenic differentiation is seen in embryonic stem cells lacking GATA2,
while ectopic expression of GATA2 suppresses adipogenesis through direct binding to and deactivation
of PPARγ promoter [180]. Sex Determining Region Y-Box 6 and SOX9 have opposite effects on
adipogenesis: while SOX6 is proadipogenic, SOX9 inhibits adipogenesis [147]. SOX6 mediates its
proadipogenic effect by activating PPARγ and C/EBPα as well as through the inhibition of Wnt/β-catenin
signalling [181]. Conversely, SOX9 binds to the promoters of C/EBPβ and C/EBPδ to suppress their
activity, thereby inhibiting adipogenic differentiation. Overexpression of SOX9 in cells suppressed
while its knockdown increased adipogenesis [182]. The transcription factor activator protein 1 (AP-1)
promotes adipogenesis by inducing FABP4 promoter activity [183]. Other transcription factors such as
LIM only domain protein 3 (LMO3), FOXO1 and zinc finger and BTB domain containing 16 (ZBTB16),
have been shown to be highly expressed during human adipogenesis in vitro, suggesting a possible
role in promoting this process [174]. In silico analysis of genes that were differentially expressed during
human adipogenesis in vitro [174] has identified several other transcription factors with possible roles
in adipocyte differentiation [146].

It is evident that many studies over the past few decades have reported many new transcription
factors with roles in adipogenesis in vitro; however, for some, their functions in vivo remain to be
fully investigated. For those that have been shown to play a role in adipocyte formation in vivo, their
clinical translation has been very limited. Hence, more studies are needed to carefully understand
the mechanistic role of each transcription factor in order to advance our knowledge on how best to
interfere with adipocyte formation for potential health benefits.

7. Conclusions

Adipogenesis in WAT is a complex molecular process in which the expression of PPARγ and
C/EBPα is key to the formation of a mature white adipocyte. Several molecular factors including
signalling pathways, epigenetic modifiers and other transcription factors regulate the expression of
these two transcription factors during adipogenesis (Figure 1), which together, regulate the expression
of key adipogenic genes that characterize the adipocyte phenotype. PPARγ and C/EBPα expression
is inhibited by the canonical Wnt/β-catenin, hedgehog, TGF-β1 and 2, and Rb signalling pathways,
while GC, cAMP and BMPs signalling stimulate PPARγ and C/EBPα expression. PRC2 and Ezh2 as
well as MiR-210 suppress Wnt genes of the β-catenin pathway thereby promoting PPARγ and C/EBPα
expression. BRD4 binds to MLL3/4 to activate PPARγ and C/EBPα transcription. Gcn5 and PCAF
acetylate H3K9 while CBP/p300 acetylates H3K27 and H3K18 on the PPARγ promoter to activate
transcription. CARM1 acts as a coactivator for PPARγ transcription while SWI/SNF is recruited to
PPARγ to activate transcription. Sirt 2 deacetylates FOXO1 causing it to bind to and suppress PPARγ
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promoter activity. Dnmt1, on the other hand, methylates the CpG5 island on the PPARγ promoter
to suppress its expression and allow cells to undergo clonal expansion during the early phase of
adipogenesis. Tet 2 demethylates the PPARγ promoter allowing for transcription. miR-130 directly
targets PPARγ to suppress its expression, while miR-125b-5p indirectly favours PPARγ expression.
PRMT5 promotes PPARγ binding to promoters of its downstream target genes. C/EBPβ is an activator
of PPARγ expression. The expression of G9a and H3K9me2 prevent chromatin opening of C/EBPβ,
thereby preventing PPARγ transcription. H3K4me3 as well as the acetylation of H3K9/K14 on the
C/EBPβ promoter activate transcription. Krox20, ZNF638, KLF4, and KLF9 are transcription factors
that promote C/EBPβ expression while SOX9 inhibits it. C/EBPδ, STAT5, EBF1, SOX6, KLF5, KLF6,
and KLF9 are transcription factors that promote PPARγ expression, while GATA2 and KLF2 inhibit
PPARγ expression. Sirt1 decreases PPARγ and C/EBPα expression while miR-27a directly targets
PPARγ and C/EBPα to suppress their expression. On the other hand, MiR-146 and Sirt 7 suppress
Sirt1 activity, thereby promoting adipogenesis by allowing for the expression of PPARγ and C/EBPα.
MiR-93 directly inhibits the activity of Sirt7 and negatively affects PPARγ and C/EBPα expression.
HDAC 9 decreases C/EBPα expression while H3K4me2 increases transcription at the C/EBPα promoter.
LSD1 can either increase H3K4me2 or decrease H3K9me2 at the C/EBPα promoter to promote or
suppress transcription, respectively.

To date, PPARγ is the only modulator of adipogenesis that has shown clinical relevance in
addressing an obesity associated comorbid condition like diabetes [184,185]. This demonstrates that
our understanding of the complex multistep process of WAT adipogenesis and its key modulators is
still limited. Increased understanding of the function of the key determinants in adipogenesis and how
they relate to adipose tissue functioning, will provide knowledge on how to target them for anti-obesity
drug development without compromising metabolic health.
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