Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2,6,6-Trimethylcyclohex-2-enecarboxylic acid

#### Rajasekaran Parthasarathy,<sup>a</sup> Samson Jegan Jenniefer,<sup>b</sup> Packianathan Thomas Muthiah<sup>b\*</sup> and Nagarajan **Sulochana**<sup>c</sup>

<sup>a</sup>Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, <sup>b</sup>School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and <sup>c</sup>Department of Chemistry, National Institute of Technology, Karaikal 609 605, India

Correspondence e-mail: tommtrichy@yahoo.co.in

Received 15 January 2012; accepted 21 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.134; data-to-parameter ratio = 18.0.

In the title crystal structure, C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>, inversion-related molecules are linked by pairs of O-H···O hydrogen bonds involving carboxyl groups to form  $R_2^2(8)$  dimers. The cyclohexene ring displays a half-chair conformation.

#### **Related literature**

For information on the title compound as used as a key intermediate in chemical synthesis, see: Eugster et al. (1969); Naef & Decorzant (1986); Snowden et al. (1982); Fehr & Galindo (1986, 1995); Heather et al. (1976). For hydrogenbond graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).



#### **Experimental**

#### Crystal data $C_{10}H_{16}O_2$ $M_r = 168.23$ Monoclinic, $P2_1/c$ a = 7.6817 (1) Åb = 10.4137 (2) Å c = 13.4421 (2) Å $\beta = 112.924 \ (1)^{\circ}$

V = 990.38 (3) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K0.09  $\times$  0.08  $\times$  0.05 mm

#### Data collection

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.134$               | independent and constrained                                |
| S = 1.03                        | refinement                                                 |
| 2158 reflections                | $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 120 parameters                  | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

10045 measured reflections

 $R_{\rm int} = 0.026$ 

2158 independent reflections 1560 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O2-H2A\cdots O1^{i}$       | 1.01 (4) | 1.64 (4)                | 2.646 (2)    | 178 (4)                              |

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

PTM and SJJ thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5406).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Eugster, C. H., Buchecker, R., Tscharner, C., Uhde, G. & Ohloff, G. (1969).
- Helv. Chim. Acta. 52, 1729-1731.
- Fehr, C. & Galindo, J. (1986). Helv. Chim. Acta, 69, 228-235.
- Fehr, C. & Galindo, J. (1995). Helv. Chim. Acta, 78, 539-552.
- Heather, J. B., Mittal, R. S. D. & Sih, C. J. (1976). J. Am. Chem. Soc. 98, 3661-3669.
- Naef, F. & Decorzant, R. (1986). Tetrahedron, 42, 3245-3250.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Snowden, R. L., Muller, B. L. & Schulte-Elte, K. H. (1982). Tetrahedron Lett. 23. 335–338.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o536 [doi:10.1107/S1600536812002668]

# 2,6,6-Trimethylcyclohex-2-enecarboxylic acid

# R. Parthasarathy, S. J. Jenniefer, P. Thomas Muthiah and N. Sulochana

#### Comment

The title compound is a key intermediate for the synthesis of aroma compounds such as alpha, beta methyl *cyclo* geranate (Eugster *et al.*, 1969), alpha damascone (Naef & Decorzant, 1986; Snowden *et al.*, 1982), beta damascone (Fehr & Galindo, 1986), gamma damascone (Fehr & Galindo, 1995) and strigol which is a highly potent stimulant for the germination of seeds of parasitic weeds striga and orobanche (Heather *et al.*, 1976). Moreover, the 2,6,6-tri methyl*cyclo*hexenyl moiety is a basic moiety for natural product of carotenoid, which is a naturally occurring organic pigment in the chloroplasts and chromoplasts of plants. Herein, we report the crystal and molecular structure of the title compound (Fig. 1). In the crystal, inversion-related molecules are connected via a pair of O—H···O hydrogen bonds, (Table 1) forming a cyclic dimer [graph-set  $R^2_2(8)$  (Etter *et al.*, 1990; Bernstein *et al.*, 1995)] (Fig. 2). This type of cyclic donor···acceptor···acceptor···donor interaction involving O—H···O hydrogen bonds is frequently observed in carboxylic acids

### Experimental

A solution of 8 g (0.07 mol) of 80% sodium chlorite in 70 ml H<sub>2</sub>O was added drop wise for 2 h at room temperature to a stirred mixture of 6.6 g (0.05 mol) of *cyclo* citral in 50 ml Me<sub>2</sub>SO and of 1.6 g NaH<sub>2</sub>PO<sub>4</sub> in 20 ml of water. The mixture was left overnight at room temperature, then 100 ml of water was added to the reaction mixture. The solid geranic acid was collected and crystallized from hexane.

#### Refinement

The H atom attached to O2 was located in a difference Fourier map and refined freely. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.97 Å, and with  $U_{iso}(H)$  set at  $1.2U_{eq}(C)$ , except for the methyl hydrogen atoms which were refined with  $U_{iso}(H)$  set at  $1.5U_{eq}(C)$ .

## Figures



Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level.



Fig. 2. A centrosymmetric  $R_2^2(8)$  hydrogen-bonded dimer unit, with hydrogen bonds shown as dashed lines. For symmetry code (i), see Table 1.

F(000) = 368

 $\theta = 2.9 - 25.1^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

Prism, colourless

 $0.09 \times 0.08 \times 0.05 \text{ mm}$ 

T = 296 K

 $D_{\rm x} = 1.128 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3232 reflections

#### 2,6,6-Trimethylcyclohex-2-enecarboxylic acid

C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>  $M_r = 168.23$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 7.6817 (1) Å b = 10.4137 (2) Å c = 13.4421 (2) Å  $\beta = 112.924$  (1)° V = 990.38 (3) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART APEXII CCD<br>diffractometer                            | 2158 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 1560 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.026$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008) | $h = -9 \rightarrow 8$                                                    |
| $T_{\min} = 0.993, T_{\max} = 0.996$                                 | $k = -13 \rightarrow 8$                                                   |
| 10045 measured reflections                                           | $l = -17 \rightarrow 17$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.134$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.03                 | $w = 1/[\sigma^2(F_o^2) + (0.0541P)^2 + 0.2979P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 2158 reflections                | $(\Delta/\sigma)_{\rm max} = 0.003$                                                 |
| 120 parameters                  | $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$                                 |
|                                 |                                                                                     |

 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ 

#### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x          | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|--------------|--------------|---------------------------|
| 01  | 0.5749 (2) | 0.54166 (13) | 0.40375 (11) | 0.0729 (6)                |
| 02  | 0.4766 (2) | 0.35104 (14) | 0.43135 (12) | 0.0793 (6)                |
| C1  | 0.5737 (2) | 0.36939 (16) | 0.28421 (12) | 0.0432 (5)                |
| C2  | 0.4543 (2) | 0.44209 (16) | 0.18282 (12) | 0.0464 (5)                |
| C3  | 0.5312 (3) | 0.52452 (17) | 0.13678 (13) | 0.0531 (6)                |
| C4  | 0.7364 (3) | 0.5534 (2)   | 0.17489 (16) | 0.0612 (7)                |
| C5  | 0.8506 (2) | 0.49910 (18) | 0.28571 (15) | 0.0548 (6)                |
| C6  | 0.7857 (2) | 0.36479 (17) | 0.30219 (13) | 0.0495 (5)                |
| C7  | 0.2461 (3) | 0.4137 (2)   | 0.13917 (17) | 0.0723 (8)                |
| C8  | 0.9058 (3) | 0.3161 (2)   | 0.41584 (17) | 0.0770 (8)                |
| С9  | 0.8045 (3) | 0.2706 (2)   | 0.21865 (18) | 0.0676 (7)                |
| C10 | 0.5421 (2) | 0.42734 (16) | 0.37950 (12) | 0.0467 (5)                |
| H1  | 0.527 (2)  | 0.2818 (16)  | 0.2775 (12)  | 0.042 (4)*                |
| H2A | 0.459 (5)  | 0.394 (4)    | 0.494 (3)    | 0.167 (13)*               |
| Н3  | 0.45030    | 0.56780      | 0.07570      | 0.0640*                   |
| H4A | 0.75350    | 0.64580      | 0.17680      | 0.0730*                   |
| H4B | 0.78430    | 0.51850      | 0.12360      | 0.0730*                   |
| H5A | 0.84030    | 0.55630      | 0.34010      | 0.0660*                   |
| H5B | 0.98260    | 0.49550      | 0.29580      | 0.0660*                   |
| H7A | 0.19700    | 0.43390      | 0.19300      | 0.1080*                   |
| H7B | 0.22580    | 0.32430      | 0.12080      | 0.1080*                   |
| H7C | 0.18260    | 0.46470      | 0.07580      | 0.1080*                   |
| H8A | 0.85880    | 0.23430      | 0.42710      | 0.1160*                   |
| H8B | 0.89920    | 0.37630      | 0.46830      | 0.1160*                   |
| H8C | 1.03480    | 0.30720      | 0.42340      | 0.1160*                   |
| H9A | 0.72010    | 0.29590      | 0.14750      | 0.1010*                   |
| H9B | 0.77290    | 0.18550      | 0.23350      | 0.1010*                   |
| Н9С | 0.93220    | 0.27160      | 0.22290      | 0.1010*                   |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.1202 (12) | 0.0524 (8)  | 0.0696 (9)  | -0.0172 (8)  | 0.0626 (9)  | -0.0177 (6)  |
| O2  | 0.1320 (14) | 0.0630 (9)  | 0.0742 (9)  | -0.0294 (8)  | 0.0741 (10) | -0.0186 (7)  |
| C1  | 0.0504 (9)  | 0.0410 (9)  | 0.0432 (8)  | -0.0068 (7)  | 0.0238 (7)  | -0.0081 (6)  |
| C2  | 0.0455 (9)  | 0.0551 (10) | 0.0408 (8)  | -0.0020(7)   | 0.0193 (7)  | -0.0111 (7)  |
| C3  | 0.0575 (10) | 0.0604 (11) | 0.0418 (8)  | 0.0047 (8)   | 0.0199 (8)  | 0.0005 (7)   |
| C4  | 0.0651 (12) | 0.0624 (12) | 0.0653 (11) | -0.0064 (9)  | 0.0354 (10) | 0.0043 (9)   |
| C5  | 0.0451 (9)  | 0.0597 (11) | 0.0611 (10) | -0.0083 (8)  | 0.0222 (8)  | -0.0074 (8)  |
| C6  | 0.0454 (9)  | 0.0515 (10) | 0.0516 (9)  | 0.0014 (7)   | 0.0190 (7)  | -0.0027 (7)  |
| C7  | 0.0501 (11) | 0.0970 (16) | 0.0650 (12) | -0.0081 (10) | 0.0172 (9)  | -0.0101 (11) |
| C8  | 0.0661 (13) | 0.0828 (15) | 0.0682 (12) | 0.0081 (11)  | 0.0110 (10) | 0.0130 (11)  |
| C9  | 0.0648 (12) | 0.0620 (12) | 0.0864 (14) | 0.0074 (9)   | 0.0408 (11) | -0.0119 (10) |
| C10 | 0.0563 (10) | 0.0460 (10) | 0.0424 (8)  | -0.0067 (8)  | 0.0244 (7)  | -0.0056 (7)  |

Geometric parameters (Å, °)

| O1—C10                 | 1.234 (2)  | С3—Н3                  | 0.9300   |
|------------------------|------------|------------------------|----------|
| O2—C10                 | 1.282 (2)  | C4—H4A                 | 0.9700   |
| O2—H2A                 | 1.01 (4)   | C4—H4B                 | 0.9700   |
| C1—C6                  | 1.551 (2)  | С5—Н5А                 | 0.9700   |
| C1—C10                 | 1.519 (2)  | С5—Н5В                 | 0.9700   |
| C1—C2                  | 1.516 (2)  | С7—Н7А                 | 0.9600   |
| C2—C7                  | 1.503 (3)  | С7—Н7В                 | 0.9600   |
| С2—С3                  | 1.324 (3)  | С7—Н7С                 | 0.9600   |
| C3—C4                  | 1.486 (3)  | C8—H8A                 | 0.9600   |
| C4—C5                  | 1.513 (3)  | C8—H8B                 | 0.9600   |
| C5—C6                  | 1.530 (3)  | C8—H8C                 | 0.9600   |
| C6—C8                  | 1.531 (3)  | С9—Н9А                 | 0.9600   |
| C6—C9                  | 1.540 (3)  | С9—Н9В                 | 0.9600   |
| C1—H1                  | 0.971 (17) | С9—Н9С                 | 0.9600   |
| O1…C5                  | 3.133 (2)  | H2A…O1 <sup>i</sup>    | 1.64 (4) |
| O1…C8                  | 3.418 (3)  | H2A…O2 <sup>i</sup>    | 2.81 (4) |
| O1···C10 <sup>i</sup>  | 3.382 (2)  | H2A…C10 <sup>i</sup>   | 2.52 (4) |
| O1…O2 <sup>i</sup>     | 2.646 (2)  | H2A…H2A <sup>i</sup>   | 2.28 (6) |
| O2…O1 <sup>i</sup>     | 2.646 (2)  | H3…H7C                 | 2.3200   |
| O2…C8                  | 3.403 (3)  | H3···C3 <sup>iii</sup> | 3.0700   |
| O1…H8B                 | 2.8700     | H4A…O2 <sup>iv</sup>   | 2.7900   |
| O1···H2A <sup>i</sup>  | 1.64 (4)   | H4B…C9                 | 2.8600   |
| O1…H5A                 | 2.5000     | H4B…H9A                | 2.4200   |
| O2…H4A <sup>ii</sup>   | 2.7900     | H5A…O1                 | 2.5000   |
| O2…H2A <sup>i</sup>    | 2.81 (4)   | H5A…C10                | 2.8800   |
| C3…C9                  | 3.288 (3)  | H5A…H8B                | 2.4700   |
| C3···C3 <sup>iii</sup> | 3.555 (2)  | H5B…H8C                | 2.5300   |

| C5…O1                  | 3.133 (2)   | Н5В…Н9С      | 2.5000      |
|------------------------|-------------|--------------|-------------|
| C8…O2                  | 3.403 (3)   | H7A…C10      | 2.8500      |
| C8…O1                  | 3.418 (3)   | H7B…H1       | 2.4900      |
| C9…C3                  | 3.288 (3)   | Н7С…Н3       | 2.3200      |
| C10····O1 <sup>i</sup> | 3.382 (2)   | H8A…C10      | 3.0300      |
| С2…Н9А                 | 2.7300      | Н8А…Н9В      | 2.4800      |
| C3···H3 <sup>iii</sup> | 3.0700      | H8B…O1       | 2.8700      |
| C3…H1 <sup>iv</sup>    | 3.018 (17)  | H8B…C10      | 2.5800      |
| СЗ…Н9А                 | 2.7600      | Н8В…Н5А      | 2.4700      |
| С4…Н9А                 | 2.7000      | H8C…H5B      | 2.5300      |
| С9…Н4В                 | 2.8600      | Н8С…Н9С      | 2.5200      |
| C10…H5A                | 2.8800      | Н9А…С2       | 2.7300      |
| C10…H8A                | 3.0300      | Н9А…С3       | 2.7600      |
| C10…H8B                | 2.5800      | Н9А…С4       | 2.7000      |
| C10…H7A                | 2.8500      | H9A…H4B      | 2.4200      |
| C10···H2A <sup>i</sup> | 2.52 (4)    | H9B…H1       | 2.4100      |
| H1···H7B               | 2.4900      | Н9В…Н8А      | 2.4800      |
| H1…H9B                 | 2.4100      | Н9С…Н5В      | 2.5000      |
| H1···C3 <sup>ii</sup>  | 3.018 (17)  | Н9С…Н8С      | 2.5200      |
| C10—O2—H2A             | 113 (2)     | С5—С4—Н4А    | 109.00      |
| C2-C1-C10              | 108.68 (13) | C5—C4—H4B    | 109.00      |
| C6—C1—C10              | 112.58 (13) | H4A—C4—H4B   | 108.00      |
| C2—C1—C6               | 112.73 (13) | C4—C5—H5A    | 109.00      |
| C1—C2—C7               | 115.59 (15) | C4—C5—H5B    | 109.00      |
| C3—C2—C7               | 123.07 (16) | С6—С5—Н5А    | 109.00      |
| C1—C2—C3               | 121.34 (16) | С6—С5—Н5В    | 109.00      |
| C2—C3—C4               | 125.20 (16) | H5A—C5—H5B   | 108.00      |
| C3—C4—C5               | 113.21 (17) | С2—С7—Н7А    | 109.00      |
| C4—C5—C6               | 112.80 (15) | С2—С7—Н7В    | 109.00      |
| C1—C6—C5               | 109.32 (14) | С2—С7—Н7С    | 109.00      |
| C1—C6—C8               | 110.71 (15) | H7A—C7—H7B   | 110.00      |
| C5—C6—C8               | 110.10 (15) | H7A—C7—H7C   | 110.00      |
| C5—C6—C9               | 110.39 (15) | H7B—C7—H7C   | 109.00      |
| C8—C6—C9               | 109.00 (16) | С6—С8—Н8А    | 109.00      |
| C1—C6—C9               | 107.28 (15) | C6—C8—H8B    | 109.00      |
| O1-C10-C1              | 121.53 (15) | С6—С8—Н8С    | 109.00      |
| O2—C10—C1              | 115.97 (15) | H8A—C8—H8B   | 109.00      |
| O1—C10—O2              | 122.50 (16) | H8A—C8—H8C   | 109.00      |
| C2-C1-H1               | 108.3 (9)   | H8B—C8—H8C   | 109.00      |
| С6—С1—Н1               | 108.2 (10)  | С6—С9—Н9А    | 109.00      |
| C10-C1-H1              | 106.1 (9)   | С6—С9—Н9В    | 109.00      |
| С2—С3—Н3               | 117.00      | С6—С9—Н9С    | 109.00      |
| С4—С3—Н3               | 117.00      | Н9А—С9—Н9В   | 109.00      |
| C3—C4—H4A              | 109.00      | Н9А—С9—Н9С   | 110.00      |
| C3—C4—H4B              | 109.00      | Н9В—С9—Н9С   | 109.00      |
| C6-C1-C2-C3            | -20.0 (2)   | C2-C1-C10-O2 | 120.32 (16) |
| C6—C1—C2—C7            | 159.84 (15) | C6-C1-C10-O1 | 67.1 (2)    |

# supplementary materials

| C10—C1—C2—C3 | 105.55 (18)         | C6-C1-C10-O2 | -114.07 (17) |
|--------------|---------------------|--------------|--------------|
| C10—C1—C2—C7 | -74.64 (18)         | C1—C2—C3—C4  | 1.5 (3)      |
| C2—C1—C6—C5  | 46.66 (18)          | C7—C2—C3—C4  | -178.26 (18) |
| C2—C1—C6—C8  | 168.11 (14)         | C2—C3—C4—C5  | -11.4 (3)    |
| C2—C1—C6—C9  | -73.06 (18)         | C3—C4—C5—C6  | 39.9 (2)     |
| C10—C1—C6—C5 | -76.73 (17)         | C4—C5—C6—C1  | -57.77 (19)  |
| C10-C1-C6-C8 | 44.72 (19)          | C4—C5—C6—C8  | -179.60 (17) |
| C10—C1—C6—C9 | 163.55 (14)         | C4—C5—C6—C9  | 60.0 (2)     |
| C2-C1-C10-O1 | -58.5 (2)           |              |              |
|              | 1 1 1 (") 1 1/0 1/0 |              | 1/0 1/0      |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) -x+1, y+1/2, -z+1/2.

# *Hydrogen-bond geometry* (Å, °)

| D—H···A                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------------------|-------------|--------------|--------------|---------|
| O2—H2A···O1 <sup>i</sup>                 | 1.01 (4)    | 1.64 (4)     | 2.646 (2)    | 178 (4) |
| C5—H5A···O1                              | 0.97        | 2.50         | 3.133 (2)    | 122.    |
| Symmetry codes: (i) $-x+1, -y+1, -z+1$ . |             |              |              |         |







