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Abstract: Non-nucleosidase reverse transcriptase inhibitors (NNRTIs) are highly promising agents
for use in highly effective antiretroviral therapy. We implemented a rational approach for the
identification of promising NNRTIs based on the validated ligand- and structure-based approaches.
In view of our state-of-the-art techniques in drug design and discovery utilizing multiple modeling
approaches, we report here, for the first time, quantitative pharmacophore modeling (HypoGen),
docking, and in-house database screening approaches in the identification of potential NNRTTs. The
validated pharmacophore model with three hydrophobic groups, one aromatic ring group, and a
hydrogen-bond acceptor explains the interactions at the active site by the inhibitors. The model
was implemented in pharmacophore-based virtual screening (in-house and commercially available
databases) and molecular docking for prioritizing the potential compounds as NNRTI. The identified
leads are in good corroboration with binding affinities and interactions as compared to standard
ligands. The model can be utilized for designing and identifying the potential leads in the area
of NNRTIs.

Keywords: reverse transcriptase; pharmacophore; virtual screening; ligand mapping

1. Introduction

Reverse transcriptase (RT) inhibitors are among the main targets in contemporary
drug discovery efforts against HIV infection. The RT is an important target for viral repli-
cation [1]. In the present scenario, where no effective vaccine against HIV is available, the
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RT inhibitors are up-and-coming agents for use in highly effective antiretroviral therapy
(HAART), which is typically a combination of three or four antiretroviral drugs [2-6]. The
HAART has significantly reduced the morbidity and mortality of HIV-infected people [7].
Two categories of RT inhibitors are currently in use, including non-nucleoside reverse tran-
scriptase inhibitors (NNRTIs, e.g., Efavirenz, Nevirapine, #-anilinophenylacetamide-APA,
Delavirdine) [8] and nucleosidase reverse transcriptase inhibitors (NRTIs, e.g., Zidovu-
dine, Didanosine, Zalcitabine). The NNRTIs act by binding to an allosteric binding site

located 10A away from the polymerase active site in the NNRTI Binding Pocket (NNRT-
IBP) [9,10]. The USFDAhave also approved three NNRTIs for HIV-RT for sale in the
United States: Nevirapine [11], Delavirdine (a BHAP derivative, BHAP U-90152) [12-14],
and Efavirenz [15],while some other promising NNRTIs have also been developed, in-
cluding DABO derivatives [16-20], HEPT derivatives [18,21,22], TIBO derivatives [23],
TSAO derivatives [24,25], oxathiincarboxanilide derivatives [26-28], quinoxaline deriva-
tives [4,29], thiadiazole derivatives [30], and PETT derivatives [31].

In recent years, drug discovery approaches, including advanced computer-aided
drug design-guided structure-activity relationship studies, have facilitated many NCE
drug discoveries and innovation in the diverse classes of diseases, such as Alzheimer’s
disease (AD), cancer, anddiabetes [32-36]. The ligand-based drug design can possibly be
performedwith the software programs such asSYBYL /comparative molecular field analysis
(CoMFA) [37], comparative molecular similarity indices analysis (CoMSIA) [38], and
Catalyst/HypoGen (quantitative) and HipHop (qualitative) [39]. Both of these techniques
have suffered from few limitations. Pharmacophore query-based virtual screening methods
are well-documented, accepted, and found superior in their screening ability on extensive
databases, being faster and able toretrieve more structurally diverse leads than structure-
based methods, CoMFA, and CoMSIA [40-42].

The reverse transcriptase enzyme is the significant target for pharmacophore design
as NNRTIBP is known to be flexible and tomoveto accommodate inhibitors, acquiring
different shapes depending on the bound inhibitor [43]. Therefore, in such a condition,
a ligand-based drug design approach where the 3D structural features of ligands are
considered to develop pharmacophores, which may provide vital information for the
design of new ligands, can be developed. The non-nucleoside binding site (NNBS) may
be considered a rigid pocket in developing such a pharmacophore. A 3D arrangement of
chemical features in the molecules is essential for important binding interactions with the
RT enzyme. Based onthe above and considering the limitations of structure- and ligand-
based approaches, we have devised a hybrid approach utilizing both approaches” mutual
strengths, simultaneously compensating for their limitations. Due to their high antiviral
potency, in previously published work, we carried out HypoGen pharmacophore model-
ing of 4-Benzoyl-3-dimethylamino pyridine-2 (1H) [22] as a potent reverse transcriptase
inhibitor, followed by its implementation in virtual screening with the focused library as
well as commercial databases, which were finally validated by structure-based modeling
using known protein structures both for the wild-type HIV-RT and mutant PDBs. The
pharmacophore-based virtual screening (PBVS) and the docking-based virtual screening
(DBVS) have been recently implemented and reported by our group to discover novel
PTP1B, AchE, and Caspase-3 inhibitors for diabetes and Alzheimer’s disease [44—46]. The
state-of-the-art techniques in scaffold hopping, focused library design and its synthesis,
followed by HIV-RT inhibitory activity, are reported in this work.

2. Methodology
2.1. Computational Details
2.1.1. Data Selection

The most critical aspect in the generation of the pharmacophore hypothesis using the
Catalyst program is selecting the training set. Some basic guidelines have been suggested
for the selection of the training set, e.g., a minimum of 16 diverse compounds to avoid
any chance correlation, the activity data should have a range of 4-5 orders of magnitude,
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the compounds should be selected to provide clear and concise information to avoid
redundancy or bias in terms of both structural features and activity range, and most of the
highly active compounds should be included so that they provide information on the most
critical features required for a reliable/rational pharmacophore model [24]. In view of the
above, the series of NNRTIs reported by Benjahad et al. [23] consisting of 103 compounds
were chosen for the present study. It is important to note that some compounds in this
series are even more potent than the known drugs (Efavirenz and TIBO, etc.).

2.1.2. Generation of Pharmacophore Hypothesis

The structures of all the compounds were built and geometry-optimized using Catalyst
4.11. All the compounds were minimized to the closest local minimum using the Charm-
M-like force field incorporated in the Catalyst program. As a prerequisite to the hypothesis
generation by Catalyst, diverse conformations were generated for the compounds (255
for each) using the poling algorithm [47] (BEST) to cover the conformational space within
the energy threshold of 20.0 Kcal/mol above the global energy minimum. This method
will penalize any newly generated conformer which is too close to any already found
conformers. This method ensures maximum coverage in conformational space. All other
parameters were set to the default settings. The conformations generated by using the
procedure described above were used for the hypothesis generation using the default
uncertainty value of 3. Before generating the quantitative model for HIV-RT inhibitors,
the common feature hypothesis was carried outto identify the requisite features for anti-
reverse transcriptase activity. The best HIP-HOP model generated (not provided here)
contains five types of chemical features, namely, hydrogen-bond donor (D), hydrogen-bond
acceptor (A), two hydrophobic aliphatic (Z), and ring aromatic (R) features. Based on this
information, the initial quantitative hypothesis suggested thathydrogen-bond acceptor
lipid (HBAL), hydrophobic (HY), and aromatic ring features can map essential features of
all of the compounds in the dataset. These features were used to generate 10 predictive
hypotheses (HypoGen) using the training set compounds. The minimum and maximum
count of features for HY were0 and 5 respectively, whereas for HBAL, the values were
0 and 3, respectively. Pharmacophore generation was carried out by using the default
parameters and the setting implemented in the HypoGen generation procedure of the
Catalyst program, except for the inter-feature distance, where a default value (2.97 A) was
reduced to 2 A due to the small molecular size of the active compounds used in the training
set. The choice and number of features used in the hypothesis construction were hydrogen-
bond acceptor lipid (HBAL), hydrophobic (HY), and ring aromatic. A default activity
uncertainty value of 3 has been used in the pharmacophore generation. The specifications
regarding the pharmacophore generation have been well-documented by Kristam et al. to
perform the reproducibility of the pharmacophore [32].

2.1.3. Cat Scramble Validation (Fisher Test)

The model was evaluated for statistical relevance by Fisher’s randomization test.
This test involves thorough randomization of the training set to validate and derive the
significance of the generated best model. Consequently, the pharmacophore model corre-
sponding to the Hypo-1 was evaluated for statistical significance using a randomization
trial procedure derived from the Fisher method [24]. These randomized spreadsheets
should yield hypotheses with lesser statistical significance than the original model to
suggest that the original hypothesis represents a true correlation. The number of such
random trials depends on what level of statistical significance is to be achieved. For a 95%
confidence level, 19 spreadsheets are created, while for 98% and 99% confidence levels, 49
and 99 spreadsheets are created, respectively. Our model was found to be 99% significant
in the F-randomization test, which substantiates the significance of the model.
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2.2. Molecular Modeling and Docking Studies

MolDock is a docking module of Molegro Virtual Docker (MVD) software (Thomsen
et al., 2006). It is based on a new hybrid search algorithm, called guided differential evolu-
tion (DE). The guided DE algorithm combines the DE optimization techniques with a cavity
prediction algorithm. DEwas introduced by Storn and Price in 1995 and has previously
been successfully applied to molecular docking [33]. The use of predicted cavities during
the search process allows for fast and accurate identification of potential binding modes
(poses). The docking scoring function of MolDock is based on a piecewise linear potential
(PLP) introduced by Gehlhaar et al. [34,35]. In MolDock, the docking scoring function is
extended with a new term, taking hydrogen-bond directionality into account.

Moreover, a re-ranking procedure was applied to the highest-ranked poses to further
increase docking accuracy. The reported crystal structures of 1JKH and 1DTQ were ob-
tained from Brookhaven Protein Data Bank (PDB). Initially, the protein was considered
without ligand and water molecules. The backbone was fixed, the Charm-M force field
and minimization using a steep descent algorithm were applied for protein structures, and
all the inhibitor structures were prepared using the Charm-M force fields and minimized
up to agradient of 0.01 kcal/(mol A) with the help of Discovery Studio 2.0 software (Telesis
Court, San Diego, CA, USA). Due to the availability of the co-crystallized structure of HIV-1
reverse transcriptase in complex with DMP-266 andPETT-1, we used the template docking
available in the MolegroVirtual Docker and evaluated the MolDock, re-rank, and protein—
ligand interaction scores from MolDock(GRID) options. Template docking is based on
extracting the chemical properties, such asthe pharmacophore elements, of a ligandbound
in the active site. This information is utilized in the docking of structurally similar analogs.
TheDMP-266 andPETT-1 models from 1JKH and 1DTQ [4,29] wereused as the template
with the default settings, including a grid resolution of 0.30, for grid generation, and a1l A
radius from the template as the binding site. MolDock SEwas used as a search algorithm,
and the number of runs was set to 10. Apopulation size of 50 and a maximum iteration of
1500 were used for parameter settings. The maximum number of poses generated was 10.
Since theMolegroVirtual Docker works by an evolutionary algorithm, consecutive docking
runs do not yieldthe same poses and interactions. To address this inherent randomness,
three consecutive runs were performed, and the top three poses were used to visualize the
interactions of HIV-RT inhibitors.

3. Results
Pharmacophore Generation

The pharmacophore studies were performed using the series of NNRTIs reported by
Benjahad et al. [23], consisting of 103 compounds, which resulted in the critical features
required for a reliable/rational pharmacophore model (Table 1). The biological activity data
spanning over 5 orders of magnitude (0.0004-100 uM) and various molecular features make
this dataset highly suitable for the development of predictive pharmacophore model(s)
with the Catalyst HypoGen algorithm. The training set (30 compounds) was selected
considering the above guidelines, while the rest of the compounds were kept aside as a test
set (73 compounds) for the validation of the pharmacophore models (Table 1). The initially
generated hypothesis suggested thathydrogen-bond acceptor lipid (HBAL), hydrophobic
(HY), and ring aromatic (RA) (Figure 1) were able to map important features of all of the
compounds in the dataset. These features were used to generate 10 predictive hypotheses
(HypoGen) using the training set compounds. The null, fixed, and configuration costs were
found to be 203.238, 115.403, and 13.075, respectively. The total cost ranged from 146.254 to
180.362 for the 10 hypotheses. In comparison, the difference between total and null cost
was found to be >40 for the first 7 hypotheses out of the 10 generated, indicating that these
hypotheses (first 7) have at least a 75-90% probability of representing true correlation in the
data (Table 2). The lowest RMS deviation and the best correlation coefficient were found
to be 1.43 and 0.836, respectively. The cost values, correlation coefficients, and different
pharmacophoric features for generating the hypothesis are reported in Table 2.
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Table 1. Structures of compounds used for pharmacophore model development.

R. ./
&
2 4
\ N—H
—N @]
\
Structure No.-1-27 Basic Ring Structure No.-28-59 basic ring

Comp. R ICs Comp. R ICs
1 3,5-CHj 0.008 28 3-CHj; 0.002
2 H 0.004 29 3-Br 0.002
3 2-CHj 0.025 30 3-CN 0.002
4 3-CHj; 0.002 31 4-CN 3.162
5 4-CHj; 0.316 32 3-NO, 0.002
6 3-CF; 0.01 33 3,5-CHj3 0.004
7 4-CF; 1.585 34 3,5-Cl 0.002
8 4-C¢Hs 3.98 35 2,6-F 0.05
9 2-Cl 0.006 36 3-F-5-CF;3 0.003
10 2-Br 0.006 37 3-CH3-4-OCHj3 0.079
11 3-F 0.002 38 3-N(CH3), 0.398
12 3-Cl 0.005 39 3-NH, 0.012
13 3-Br 0.004 40 3-N (C,Hs) 1.995
14 4-Cl1 0.199 41 3-NHCOCH;3 0.126
15 4-Br 1.585 42 3-NHSO,CHj3; 1
16 3-OCHj; 0.004 43 3-NHCONHC,Hj 1.995
17 3-OC,yH5 0.013 44 3-(1-pyrrolidinyl-2-one) 0.04
18 4-N(CHj3), 1.259 45 3-(1-pyrrolyl) 0.079
19 2,3-CHj3 0.1 46 3-CH,NH, 0.398
20 2,5-CHj 0.04 47 3-CH,NHCOCHj3 0.398
21 3,4-CHj 0.04 48 3-C¢Hs 0.398
22 2,4-CHjz 10 49 3-(2-furyl) 0.063
23 2,4,6-CHjz 10 50 3-(2-thiazolyl) 0.251
24 3,5-F 0.013 51 3-(3-pyridyl) 0.006
25 3,5-Cl 0.008 52 3-phenylethinyl 0.158
26 3-CHj3-4-OCHj; 0.398 53 3-CHO 0.008
27 3-CH=CHCN (E) 0.0004 54 3-CH,OH 0.05

55 3-COCHj3; 0.01

56 3-CH,CN 0.001

57 3-CH (CH3) CN 0.003

58 3-CH20Ph 0.039

59 3-CH (OH) CHj; 0.05
Geometric ci)somers (continued).

Comp. R(E/Z Form) ICsg R(E/Z Form) | (@)
60 CN (2) 0.004 67 PhCH, (Z2) 1.585
61 CN (E) 0.001 68 Ce¢Hs (2) 1.258
62 -COOQOEt (E) 0.003 69 C¢Hs (E) 0.251

N
63 COOFt 0.005 70 @(Z) 1.585
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N
64 H 0.002 71 @ 0.079
= (E)
N
65 CH; (E) 0.005 72 @(Z) 0.079
66 CH;CH, (E) 0.050
RGeometric isomers (continued).
\ N—-H
—N 0
\
Comp. R (E/Z Form) ICsp Comp. R (E/Z form) ICsp
—N
73 CH 0.001 78 {) 0.063
’ N (z)
74 CN 0.012 79 H (E) 0.001
75 COOC,H;5 (2) 0.158 80 CHj; 0.006
76 CeHs (2) 1 81 H 0.003
77 l/ >\ 0.199 82 CH; 0.008
S (B)
Y \ N—-H
—N 0
\
Comp. Heterocycle Y ICs Comp. Heterocycle Y ICs
YN
83 SJ CH, 0.063 87 | \N CH, 5.012
\(/N S
84 V) CH, 100 88 @7 co 0.016
HsC”
Y S
85 . CH,  0.039 89 ) coO 0003
/ B
HsC r
SN 0
86 | CH, 0.015 90 | ) Cco 0.010
Geometric gsomers (continued).
Comp. R (E/Z Form) ICsg R(E/Z Form) ICsp
N S
91 ~@ 0.003 98 /[/) 0.100
=/ (E) (E)
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92 ‘CN 0.061 99 /N 0.063
\ ") (P~ @)
N |\
93 ‘@ (E) 0.010 100 Q\ ) 0.02
N:> —
94 4& N/ 0.199 101 O (E) 0.079
. 2)
= N
95 p 0.020 102 g 0.158
— (E) 1) @
/ N
9 N 0.316 103 \V/J 0.032
|/ S—7 (E)
(E)
O
97 | 0.079
7 (§)
Table 2. Results of pharmacophore hypothesis for reverse transcriptase inhibitors.
Hypo Total Cost (?\?jltl?if"lfo t(zﬁ; RMS Deviation Error Correlation Features P
1 146.154 55.084 1.432 131.65 0.836 HBAL, HY, HY, HY, RA
2 146.512 54.726 1.422 131.23 0.833 HBAL, HY, HY, HY, RA
3 147.116 54.122 1.453 132.2 0.827 HBD, HY, HY, HY, RA
4 147.381 52.857 1.453 132.58 0.827 HBAL, HY, HY, HY, RA
5 148.361 52.877 1.452 132.54 0.828 HBAL, HY, HY, HY, RA
6 158.591 42.647 1.694 143.98 0.756 HBD, HY, HY, HY, RA
7 159.501 41.737 1.712 144.88 0.75 HBD, HY, HY, HY, RA

2 Null cost = 201.238, fixed cost = 115.403, configuration cost = 13.075. All units are in bits. b HBAL, hydrogen-bond acceptor lipid; HY,
hydrophobic feature; RA, ring aromatic.

7.716

9.586

Figure 1. The best hypothesis = Hypo-1. Pharmacophore features: Green—HBAL, Orange—RA,
blue—HY. Distance between pharmacophore features is indicated in angstrom (A).

The first seven hypotheses which have a cost difference of >40 can be further classified
into two distinct groups, i.e., group one consisting of hypotheses having HBAL, HY, HY,
HY, and RA features (hypotheses 1, 2, 4, and 5), while the second group is characterized by
HBD, HY, HY, HY, and RA features (hypotheses 3, 6, and 7). The first 5 hypotheses have
the best overall results in terms of cost difference (>50) and higher correlation coefficient
(>0.80). The first hypothesis showed the cost difference (A = 55.084), correlation coefficient
(r = 0.84), and consists of five features, including one HBA-lipid, three hydrophobic, and
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a ring aromatic feature (Figure 1). Since this hypothesis has the highest cost difference,
therefore, it was taken as a representative hypothesis for the first group; similarly, hypothe-
sis 3 was chosen as a representative hypothesis for the second group. Hypothesis 1 was
found to rank the compounds in a better manner and hence it is discussed in detail below
(Supplementary Table S1).

To test the ranking efficiency of the hypotheses, the compounds of the training and
test sets were classified as HA (highly active, +++, 0.0004-0.01), MA (moderately active,
++, 0.01-5), and LA (least active, +, 5-100) according to their reported biological activity
(Supplementary Table S2). The training set compounds along with their fit values and
mappings to the pharmacophore are providedin Supplementary Table S1. Hypothesis 1
was found to rank all the compounds of the training set correctly into their respective
classes (HA, MA, and LA).

4. Discussion

A close examination of the mappings reveals that the compounds of the training set
map four functions (HBAL, RA, and HY A, B and C, Figure 2). Therefore, it appears that
these four features are essential for anti-RT activity. The LA compounds in the series such
as 83 (fit value 6.97) have an imidazole ring in the place of a benzene ring and the dimethy]l
group on the parent aromatic benzene ring. This imidazole ring cannot map the RA feature
of the hypothesis and is not capable of making hydrophobic interactions as strong as the
phenyl ring; thus, the compounds withthe imidazole ring generally have a lower fit value
than the compounds witha phenyl ring. In the case of 84, the -CHj3 group of the imidazole
ring is in close proximity to 2-dimethyl groups on tertiary nitrogen, which create steric
hindrance due to proximity and thus offer less surface area to access as compared to 27
(Figure 2), which is highly active. The compound 89 in the training set was predicted as
HA as the substitution by Br present on the ring system in place of -CH3 may provide
more hydrophobicity and thus maps the pharmacophore better. Additionally, the presence
of bromine assures less steric hindrance with the C=0 group and offers additional stability.
The most active compound has a fitness score of 13.45 (27), while the second-best (61) has a
fitness of 12.18 and both of the compounds are ranked correctly as HA.

Figure 2. Pharmacophore mapping of the most active (27) compound from the training set predicted
correctly. The figure indicates the mapping of all groups essential for receptor binding. Reported
activity: 0.0004 M, estimated: 0.0009 uM, and fit value: 13.45.
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4.1. Cat Scramble Validation (Fisher Test)

The model was evaluated for statistical relevance by Fisher’s randomization test.
This test involves thorough randomization of the training set to validate and derive the
significance of the generated best model. Consequently, the pharmacophore model corre-
sponding to the Hypo-1 was evaluated for statistical significance using a randomization
trial procedure derived from the Fisher method. These randomized spreadsheets should
yield hypotheses with lesser statistical significance than the original model to suggest
that the original hypothesis represents a true correlation. The number of such random
trials depends on what level of statistical significance is to be achieved. For a 95% confi-
dence level, 19 spreadsheets are created, while for 98% and 99% confidence levels, 49 and
99 spreadsheets are created, respectively. Our model was found to be 99% significant in the
F-randomization test, which substantiates the significance of the model (Figure 3).

180

170

150

Pharmacophore cost values

130

Pharmacophore Hypotheses

Figure 3. The cost difference between Hypo-1 (sky-blue color) and the scrambled runs (other colors).

4.2. Validation by Test Set

The most critical objective of pharmacophore generation in virtual screening studies
is to classify the molecules as active and inactive with high accuracy. Therefore, a large test
set (73 compounds) was used to test the predictive power of the generated pharmacophore
model. The best pharmacophore was chosen to estimate the activity of the test set. The
activity value of test set compounds was estimated using the best fit procedure as implied
in Catalyst. Out of 32 highly active compounds, 29 were predicted correctly as HA, while
the other 3 were predicted as MA. However, out of 40 moderately active compounds (MA),
28 were predicted as HA while 12 were predicted as MA, and none were predicted as LA
(Supplementary Table S2). Therefore, it can be said that the generated pharmacophore
model is highly capable of accurately classifying molecules as active or inactive NNRTIs
and can be used for virtual screening purposes.

4.3. Further Validation and Mapping Studies Using Standard Compounds

Since the model was able to classify most of the compounds correctly in their respective
classes, it appeared of interest to test whether it can identify other compounds which
are active against HIV-RTase, since this may indicate the true utility of the generated
pharmacophore model. In this endeavor, the pharmacophore model was tested against
well-known potent HIV-RTase inhibitors such as Efavirenz and HETDP, etc., (Supplementary
Table S3). The pharmacophore model correctly classified these compounds as active,
and none of the molecules wereclassified as inactive, establishing confidence and broad
applicability of the generated model. In the case of the Efavirenz, the features HBAL,
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RA, and hydrophobic map well, as is the case with HETP. This indicates the high 3D
similarity along with important inter-feature distances among these compounds (HIV-
RTase inhibitors).

The mapping clearly shows that the bridged side chain needs further modification to
map correctly onto the ring aromatic feature, and this information may help in designing
compounds with improved activity. The fit values of these compounds to Hypo-1 along
with experimentally derived ICsy values are providedin Supplementary Table S3. The
pharmacophore so developed in this case was found to map all six compounds well, which
are known HIV-RTase inhibitors. In the case of the mapping of the LA compound (83) from
the series, it was found that the molecule lacks some of the features of the model derived
frommapping in this way, and wascorrectly predicted asleast active (Figure 4).

Figure 4. Pharmacophore mapping of the least active compound (83) from the training set, predicted
correctly. Figure indicates the miss of one hydrophobic group essential for receptor binding. Reported
activity: 100 pM, estimated: 36 uM, and fit value: 6.97.

4.4. Comparison of Generated Pharmacophore Vis-a-Vis Interactions at the Active Site

To study the SAR and the binding patterns, interactions, and pharmacophore mapping
of Nevirapine in both wild-type HIV-RT as well as mutant organisms, the molecular
docking of Nevirapine in the wild-type HIV-RT PDB ID 1IKW [48] was carried out and
compared with the Nevirapine in the X-ray crystal structure (PDB ID: 151U) [25], asshown
in Figure 5A,B. In both of the structures (wild- and mutant-type), the ring aromatic feature
of the hypothesis indicates the interaction between the ligand and the phenyl ring of Tyr181.
The two hydrophobic features of the hypothesis, which are mapped on Nevirapine with
one at the cyclopropyl ring and the other one at the methyl group, can be seen matching
very well at the active site. The cyclopropyl ring of Nevirapine is situated in the vicinity of
amino acids Leu100 and Val106 for wild-type and Ile100 and Val189 for the mutant-type,
which is hydrophobic in nature; similarly, the methyl group of Nevirapine in both the
wild- and mutant-types is surrounded by Trp229 and Tyr188, making good hydrophobic
interactions. The nitrogen of the right pyridyl ring is situated close to Lys103, which is
a positively charged amino acid with a strong capability of making hydrogen-bonding
interactions, thus the HBAL feature is also detected very well on the compound. It is
pertinent to note that both of the pyridyl rings of Nevirapine have nitrogen at similar
positions, however, only the one which is near Lys103 can make HB interactions, while the
other one cannot because of the surrounding hydrophobic residues. This is a very small
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but subtle difference that was correctly identified by the generated pharmacophore model,
which strengthens it. It is to be noted that the pharmacophore was generated using ligand
information only; however, it matches the pharmacophoric feature at the HIV-RTase active
site very well, which demonstrates the strength of the pharmacophore modeling approach
in general.

Figure 5. (A) PDB ID:1IKW, the co-crystal structure of Nevirapine and theNNRTase active site with important binding
interactions [48]. (B) The co-crystal structure of Nevirapine and theNNRTase active site with important binding interactions,

PDB ID: 151U [25]. (C) Comparison of the pharmacophore mapping of Nevirapine on Hypo-1.

4.5. In-House Database-Based Virtual Screening

A virtual screening approach is an important approach to the identification of leads.
We employed this validated pharmacophore model in the screening of an in-house database
of compounds to identify and prioritize the probable lead candidates as HIV-RT inhibitors.
These databases were prepared by using the Charm-M force field and used for searching
new leads by employing validated pharmacophoric queries in the ligand pharmacophore
mapping protocol, employing the flexible fit method by using default settings. Twelve
compounds from three different cores were identified from this screening, andthe identi-
fied compounds were further prioritized for synthesis. The synthesized compounds were
further screened for invitro HIV-RT activity. The detailed synthetic scheme for the synthesis
of identified leads is not the part of this manuscript. The identified cores were synthesized
by using the protocols reported by our group. The pharmacophore mapping of these
compounds along with the predicted activity is shown in Figure 6. The pharmacophore
mapping of these compounds reveals that the most active compounds, 112, 114, 115, and
128,were capable of mapping all the required features of Hypo-1. The basic aromatic
ring of the 4-Chloro-1,8-naphthalic acid part of compound 112 serves the requirement of
one hydrophobic function of the pharmacophore model. The one -COOH group of the
1-naphthoic acid part of compound 112 maps the one HBA functionality of the pharma-
cophore model. The indole ring of the tryptophan moiety maps the RA function of the
pharmacophore model. The two aromatic rings of the 2-(benzylamino)-1-phenylethanol
compensate for the two HY functions of the pharmacophore model (Figure 6A). The other
identified molecules from the above screening also map the pharmacophore model, as
represented in Figure 6A-D.

4.6. Structure-Based Analysis of the Coresl, II, and III

In continuation of the ligand-based screening to further confirm the binding affinity
and the binding interactions of these ligands, the docking studies were carried out. The
docking studies were validated using the two PDB IDs (1JKH [4] and 1DTQ [29]) and the
template docking protocol of MolegroVirtual Docker 4.0. The docking analysis of three top-
ranking compounds from pharmacophore mapping on 1DTQ is discussed in this section.
The top-ranked ligand from this study, compound 112, showed three important hydrogen-
bond interactions with the amino acids, Lys103, Lys101, and Lys-100. The 8~COOH group
of the napthoic acid showed additional hydrogen-bond interactions with Glu138 and
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Lys101. The ring aromatic feature of the hypothesis supported by the indole ring of the
tryptophan amino acid part of the molecule showed the interaction between the ligand and
the phenyl ring of Tyr181, and the -NH group of the indole ring showed the additional
hydrogen bond with Tyr188. Similarly, the aromatic ring moieties of thenapthoic acid part
along with the —CI group situated at the 5-position of the compound showed hydrophobic
interactions with Val179 andLys101 (Figure 7), while the indole moiety group is surrounded
by Trp229 and Tyr188 leading togood hydrophobic interactions. All these interactions were
in good correlation with the Nevirapine interactions studied in 1S1U3! (Figure 6A). The
other core II structure, compound 130, showed the same interaction pattern with three
hydrogen-bond interactions with amino acids, such as Lys101 and Lys-100, along with
one additional hydrogen bond with Pro236, while havinggood hydrophobic interactions
with Trp229 and Tyr188. The core III compound 129 also showed the interactions with
the important amino acid Lys101, along with two additional hydrogen-bond interactions
with Tyr319 and Ile135, while the aromatic ring leads tohydrophobic contacts with Tyr319,
Pro321, and Lys101.

Figure 6. (A,B) The pharmacophore mapping of each identified core I (Compound 112, fit value: 9.36382, and Compound
114, fit value: 8.11322). (C) Core II (Compound 128, fit value: 7.36382). (D) Core III (Compound 125, fit value: 9.12313).
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Figure 7. The molecular interactions of the (A,B) Core I compound 112, (C,D) core II compound 114, and (E,F) core III
compound 128 in the binding site of HIV-RT using the PDB ID: 1IKW.

5. Database Screening

The database (Zinc Natural Product and Across database) screening of the pharma-
cophore query along with template docking gives rise to several unknown compounds
which have not yet been documented for anti-HIV activity but were predicted active. The
structures of some of the compounds are shown in Table 3. The preliminary filtration by
Lipinski’s rule of five resulted in the selection of hits from the NIH and Interbio sciences
compound database [30]. The Efavirenz or DMP266 was docked as a reference ligand in
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the binding site of 1JKH using GOLD and Molegro docking protocols. The GOLD score,
MolDock score, and re-rank scores were employed for analysis of the various scores.

Table 3. Docking scores of reference compounds and the final hits obtained after the docking study.

Structure

Chemical Name Fit Value GOLD Score MolDock Score Re-Rank Score
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(NSC-21270 or

CID 228386) 9.059 59.82 —109.786 —81.861
Nevirapine 6.22 54.34 —80.422 —69.192
Efavirenz 7.35 60.34 —90.264 —63.537
ZINC09033850 7.855 50.50 —132.503 —78.049

The major interactions of the screened ligands were found with Lys101, Leu100, Thr139,
Try383, Vall79, Argl172, and Glu28 (Figure 8). Similarly, the leads screened from the dataset
were docked in the same binding site using both GOLD and Molegro docking protocols [31,32].
Table 3 enlists the ligands retrieved after the docking along with their GOLD, MolDock,
binding affinity, and mapping scores with the pharmacophore model, respectively. The top
49 leads with a GOLD score and MolDock scoreshigher than the reference were identified.
All the selected ligands show important binding interactions with Lys101 and Leul03.
The docking analysis clearly shows the important interaction of first-generation NNRTIs
with an allosteric hydrophobic pocket (non-nucleoside binding site, NNBS) and binging
ofthe enzyme in a “butterfly-like” mode. One wing of this butterfly is comprised of an
electron-rich (phenyl or allyl substituents) moiety and the other interacts through n—m
stacking interactions with a hydrophobic pocket formed mainly by the side chains of
aromatic amino acids (Tyr181, Tyr188, Phe227, Trp229, and Tyr318). The top screened leads
(Table 3) validated by two docking software programs showed similar interactions with
the hydrophobic pocket. The other wing is generally heteroaromatic/aromatic, capable of
donating or accepting the hydrogen bonds with Lys101 and Lys103 (Figure 8). The remaining
amino acids, such as Lys103, Val106, and Val179, affordadditional hydrophobicity to the
butterfly body.

The core of both structures involves butterfly conformation in the binding site, and
the hydrophobic and electronegative interactions due to the cyclopropyl ring are well-
supported by phenyl ring and carboxylic acid substitution. The better scores in terms
of docking for these ligands were due to additional interactions of leads which tend to
stabilize binding additions to important core interactions. Thus, these potential leads
compriseimportant pharmacophore features required for selective reverse transcriptase
inhibition. The comparable docking figures (Figure 8) show the interactions of Nevirapine
and the top screened lead with important interactions, and the respective binding scores in
terms of GOLD score, MolDock score, and re-rank scores are presented in Table 3.
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Figure 8. (A,B). The comparative docking of screened (A) ligand (NCI-21270) and (B) Nevirapine as a standard drug shows
butterfly conformation and important hydrophobic interactions, along with hydrogen-bond interactions with Lys101 and
other important residues in the NNRTI'’s binding site.

The database screening resulted in the identification of 54 compounds as potential
NNRTIs. The identified leads were analyzed for their binding interactions with amino acids
such as Lys101, Leu100, Thr139, Try383, Val179, Arg172, and Glu28. These ligands were also
checked for their affinity in terms of MolDock and re-rank scores. The detailed scores and
the top two ligands with their interactions are represented in Figure 9. The two top-scoring
compounds from the database screening, ZINC02146330 (MolDockscore:—148.393, re-
rank score:—105.048) and ZINC19286543 (MolDockscore:—137.85, re-rank score: —102.759)
showed good binding interactions with amino acids such as Lys101, Cys181, Gly190, and
Tyr318 (Figure 9A,B). The molecule also showed the stearic and hydrophobic interactions
with amino acids, as described in previous sections.

Trp 22, \b \
o
s al 179 \
- , vl 189
.\/ N 7 ]

Phe 227 18u 34
—— \

4 ’\’e&?
S
/]

A

l Leu 234 Trp 229

(A) (B)

Figure 9. The comparative docking of screened ligands (A) ZINC19286543 and (B) ZINC02146330 showed butterfly
conformation and important hydrophobic interactions, along with hydrogen-bond interactions with Lys101 and other
important residues in the NNRTI's binding site.
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The screening resulted in the identification of the following leads (Table 4) as potential
inhibitors of NNRTIs.

Table 4. The binding scores of identified leads from PBVS.

Ligand MolDock Score ~ Re-Rank Score Docking Score  Similarity Score
ZINC00118327 —94.3105 —68.3936 —537.27 —442.8
ZINC02145802 —135.01 —46.6255 —523.953 —388.385
ZINC02146330 —148.393 —105.048 —572.967 —428.346
ZINCO03882136 —106.935 —89.9424 —505.056 —397.593
ZINC03999710 —99.4136 —89.1023 —468.8 —365.662
ZINC04042111 —103.784 —86.9628 —558.144 —456.27
ZINC04042113 —97.2975 —85.2139 —492.057 —434.711
ZINC04042592 —133.52 —115.917 —530.436 —393.823
ZINC04042644 —110.695 —83.6879 —540.142 —430.804
ZINC04044269 —102.001 —88.9174 —529.073 —428.531
ZINC08590027 —85.4343 —76.061 —499.522 —410.26
ZINC08606304 —117.548 —85.374 —599.476 —478.438
ZINC08964648 —84.2768 —88.907 —582.527 —501.149
ZINC08964651 —103.4529 —104.479 —584.946 —493.032
ZINC08964652 —96.8387 —90.599 —545.242 —452.769
ZINC08964664 —102.029 —129.786 —566.44 —468.224
ZINC09033565 —97.1431 —85.9664 —435.762 —329.149
ZINC09033687 —82.9655 —77.765 —524.96 —440.625
ZINC09514115 —109.965 —90.9183 —569.119 —456.021
ZINC12661581 —101.547 —127.691 —692.064 —579.885
ZINC12661651 —66.9044 —119.657 —548.942 —483.748
ZINC12661660 —130.781 —95.7949 —573.955 —445.823
ZINC12661665 —125.599 —94.9555 —569.362 —446.274
ZINC12661671 —96.574 —85.7076 —568.056 —475.063
ZINC12661673 —94.3644 —81.02 —499.607 —401.587

6. Conclusions

The pharmacophoric model was generated by using 30 diverse training dataset
molecules out of 103. The validity of the pharmacophore model was ascertained by:
(a) Fisher’s validation, (b) test set prediction, (c) validation by an external dataset of stan-
dard molecules, (d) compared validation of pharmacophores with binding site interactions,
(e) the in-house database-based screening for identification of the probable hits, (f) design
and synthesis and biological evaluation of the identified leads (the data of the invitro
studies arenot part of this manuscript), and (e) final applications of the validated phar-
macophore model in virtual screening comprised of NCI, Across, Zinc Natural Products,
and Inter-Biosciences databases for identification of different NCEs. The well-validated
protocol of PBVS resulted in the prioritization of NCEs that tested positive for invitro
analysis, and three molecules were analyzed for their selectivity index determination,
and compounds 112 and 128 were good RT inhibitors as compared to the marketed drug
Nevirapine (the data of the invitro studies arenot part of this manuscript). Atotal of 26 com-
pounds from the Zinc database were curated from a commercial source. This study thus
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depicted the potential of these compounds to be possible lead compounds and anti-HIV
drug candidates.

Supplementary Materials: Figure S1. The ligand pharmacophore mapping of the external test set of
compounds on the pharmacophore model. Table S1. Scores and data related to training set. Table S2.
Test set prediction on training set pharmacophore. Table S3. Mapping of standard compounds and
estimated activities using hypothesis 1.
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