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Abstract: The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine
and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR)
bacterial infections. There are a number of methods available and in development to address AR
infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to
kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides
(AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections.
Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of
life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by
responding to pathogens. Despite progress over the last four decades, there are only a few AMPs
approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral
Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on
cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural
and synthetic AMPs, as well as observed microbial resistance.

Keywords: antibiotic resistance; anti-microbial peptides; AMPs; microbiome; oral infections

1. Introduction to Oral Microbiome and Oral Infections

The oral cavity is the entrance to the digestive track, with each region, including
the mouth, having its own unique niche and thus microbial signature [1,2]. Well over
700 distinct microbial species have been identified in the human oral microbiome, with
every person having their own combination of these microorganisms [3,4]. An individual’s
unique oral microbiome was historically thought to form from a sterile environment at
birth, though recent clinical data has shown that there is exposure to microbes in utero
without overt infection [5–10]. The oral cavity is then inoculated by the microorganisms
that will make up that individual’s oral microbiome, starting with their first feeding and
gradually continuing with specific events, such as tooth eruption, that allow particular
species to colonize specific tissue niches [11,12]. As the mouth develops and the types of
tissues available for bacterial attachment increase, the diversity of bacterial species in the
oral cavity increases [3]. The microorganisms biogeography in their respective niches in the
oral cavity are very specific to the tissue type, location, and presence of other microbes [13].

Of the many tissue types in the oral cavity, teeth are one of the only exposed non-
shedding surfaces in the body that allows regular colonization by microorganisms, forming
biofilms that protect the colony, allowing bacteria to flourish and proliferate [14,15]. This
allows the mouth to act as a reservoir for harmful bacteria that, when shed from their
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biofilm colony, can travel to other areas of the body to cause second site infections [16–18],
making it critical to treat infections in the oral cavity.

The oral bacteria generally form a multispecies biofilm on the hard and soft tissue
referred to as plaque. Biofilms consist of bacterial cells enmeshed in an extracellular
matrix containing extracellular polysaccharides (EPS), proteins, and extracellular-bacterial
DNA [19,20] (Figure 1). Competitive as well as cooperative interspecies interactions shape
the microbial community in plaque where some species secrete factors that are toxic to
others and where metabolic byproducts of one species may be vital nutrients for other
organisms [21–23]. Along with available oxygen, the cooperative metabolism results in
not a homogenous biogeography but a complex species–specific cell–cell architecture and
organization [24,25].
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in biofilms afford the bacteria, as many of these tests are performed on planktonically 
grown cells [28–30]. Other methods, such as minimum biofilm eliminating concentration 
(MBEC) and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 
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Figure 1. Progression of biofilm formation in the oral cavity. In the attachment stage (Step 1),
planktonic cells begin to adhere to a surface. A monolayer of planktonic cells accumulates on the
surface during the adhesion stage (Step 2). During the growth stage (Step 3), sessile cells begin to
excrete an exopolysaccharide matrix containing proteins, polysaccharides (carbohydrates) and nucleic
acids that surround the cells. The EPS matrix assumes a mushroom cloud shape in the maturation
state (Step 4). Finally, planktonic cells are released from the EPS matrix during the detachment stage
(Step 5), allowing for dispersal and colonization of new sites. (Created with BioRender, accessed on
1 August 2022).

Bacteria that form or participate in a biofilm are protected from the toxic effects of
antimicrobials and antibiotics [26,27]. This is particularly true of organisms situated deep
within the biofilm. Minimum inhibitory concentration (MIC), disk diffusion assay or other
tests of antibiotic performance do not always reflect the protective properties that growth in
biofilms afford the bacteria, as many of these tests are performed on planktonically grown
cells [28–30]. Other methods, such as minimum biofilm eliminating concentration (MBEC)
and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) as-
says, should be used instead [31–33]. The issue of measuring antibiotic performance is
particularly true of organisms situated deep within the biofilm, for which a minimum
biofilm inhibitory concentration (MBIC) assay will be most applicable, given a diffusion
gradient exists within the biofilms. Numerous studies have shown that when exposed
to antibiotics and antimicrobials, organisms grown in biofilms have a lower antimicro-
bial sensitivity and many organisms will experience concentrations below the planktonic
MIC [34,35]. This can encourage the selection of resistant organisms in the population
through a number of different mechanisms. This selection has been shown to enhance the
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expression of biofilm-formation genes in the surviving organisms [36]. Another mechanism
is the ability of bacteria to exchange genes within species and between species, which
allows resistant biofilms to be an important source of antibiotic resistant organisms that
can endanger human and animal populations [37].

Dental biofilms are influenced by our physiology, behavior and diet [14,38]. Although
the exact contribution of many oral hygiene practices to the occurrence of dental diseases
is unclear, what is undisputed is that the accumulation of plaque can cause a shift in
the microbial population favoring Gram-negative anaerobic pathobiont species that are
present at low levels in health [39,40]. This shift in the plaque composition that favors
disease-associated bacteria is called dysbiosis [41]. In contrast, maintaining a thin plaque
will promote colonization of those bacteria that first colonize exposed tooth surfaces, which
are generally considered commensals except that they can sometimes be associated with
particular diseases, such as infective endocarditis.

Dysbiosis is a hallmark of periodontal disease. Porphyromonas gingivalis (Pg), Fusobac-
terium nucleatum (Fn) and other bacteria associated with periodontal disease can be recovered
at low levels from patients with periodontal health [42,43]. Many Gram-negative anaerobic
species, such as Pg, present virulence factors that cause the bacteria to be inflammophilic,
driving the progression of gingivitis to periodontitis [44]. The inflammatory process that
follows when dysbiosis has occurred can eventually trigger bone loss. This bone loss
weakening the support of the teeth is the defining feature of periodontal disease [45,46]. In
addition, these periodontal related oral infections can lead to secondary systemic effects,
such as cardiovascular disease, respiratory infections, or infective endocarditis [17,47].

Dental caries is also a disease marked by localized biofilm dysbiosis. The physical
manifestation of this disease is caused by acid dissolution of the outer tooth mineral,
enamel (Figure 2) [48]. Early colonizers associated with dental caries such as Streptococcus
mutans and Neisseria bacilliformis are acid producing and acid tolerant [48–50]. Sugars are
the substrate these bacteria use for acid production by fermentation, creating an acidic
environment more suited to these acidogenic and aciduric bacteria. Diets rich in simple
sugars favor these species since low pH levels in the plaque inhibit the growth of many
other bacteria that are considered members of the healthy flora [51]. Saliva buffers the
bacterially-generated acids restoring the plaque pH to normal levels following sugar
ingestion [52]. Persons who have low saliva flow are at great risk of caries since these
acids are not buffered [53]. This also plays a role in the plaque composition since the
maintained low pH environment favors Streptococcus mutans, Actinomyces naeslundii and
other acid tolerant organisms [54]. Since many medications that older individuals use
adversely affect saliva flow, caries particularly on susceptible root surfaces are common in
the elderly [55,56].

As carious lesions develop, cavitated lesions develop that invade the dentin, the deeper
less mineralized tissue of the tooth, and eventually the dental pulp, the small area of soft
tissue inside the tooth (Figure 2) [39]. The dental pulp contains nerves, blood vessels and
cells active in the host defense. The pulp space is referred to as the root canal. Deep caries
has a diverse bacterial population which can contain Lactobacillus, Prevotella, and Treponema
species as well as several types of anaerobes, such as Porphyromonas gingivalis (Pg), which
is also associated with periodontal disease [42,57,58]. Infections of the root canal results
from deep caries, trauma to the tooth and poorly performed dental procedures that injure
the pulp. If a root canal infection is not treated, it can lead to periapical abscesses causing
systemic health issues that require hospitalization [59,60]. These endodontic infections
of the root canal space and dental pulp tissue can lead to apical periodontitis, periapical
abscesses and eventually tooth loss, which can be easily visualized using cone-beam
computed tomography or standard intraoral and panoramic radiographs (Figure 3) [58].
Root canal treatment (endodontic therapy) cleans and sterilizes the root canal space and
fills it with an inert material. Occasionally infection persist despite root canal treatment.
Enterococcus faecalis has been observed to be a species commonly cultured in persistent root
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canal infections [58,61,62]. Because of this, Oral health is intricately connected to systemic
health [63–65].
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Figure 2. Localization of bacterial oral pathogenesis. (1) Dental Caries: tooth enamel dissolved by
acid produced by specific bacteria (e.g., Mutans streptococci, Lactobacilli). (2) Dental Pulp Infection:
necrotic pulp tissues infected by microorganisms causing pulp inflammation and eventual necrosis.
(3) Plaque and Calculus: biofilms form on non-shedding surfaces of the teeth; formation leads to caries
and periodontal inflammation. (4) Periodontitis: dysbiotic bacterial infections cause inflammation
that destroys periodontal ligament and bone. (5) Abscess: periodontal and periapical abscesses are
pockets of pus caused by bacterial infection.
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Figure 3. Cone beam computed tomography (CBCT) images detect the presence of apical inflam-
matory lesions. This type of empirical evidence for oral infections is used as a method of deciding
treatment course by dentists. (A) CBCT sagittal image shows an apical inflammatory lesion as a
darker grey pocket surrounding the apex of tooth. (B) CBCT images show dental caries from sagittal
and cross-sectional views. (C) Sagittal CBCT image shows large apical inflammatory lesion between
the apices of adjacent teeth. From the author’s collection.

In addition to the bacterial presence, various fungi are commonly present in the oral
cavity. Candida albicans is the principal cause of fungal infection in the oral cavity. In general,
clinical manifestations of Candida infections in the human host range from irritating red
and white lesions on mucosal surfaces to opportunistic invasive or even life-threatening
systemic infections in the immunosuppressed. Candida can grow on mucosal surfaces as
yeast or produce hyphae and invade tissue. Hyphae formation and the production of
various proteolytic enzymes are important virulence factors [66]. Dysbiosis also plays an
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important role in Candida infection [67]. Reducing the resident commensal protective
bacterial population with antibiotic use predisposes the mucosal surfaces to Candida over-
growth, such as what is seen thrush [68]. A commonly problem seen in oral cavity is driven
by lack of adequate denture hygiene measures, which provides an ideal environment for
Candida growth in the space between dentures and the oral mucosa [69]. In addition,
patients whose bite has collapsed due to tooth loss, Candida can grow in the moist environ-
ment in the corners of the mouth. Since Candida albicans, is an acid tolerant organism [70]
like Streptococcus mutans, current research has examined the possible relationship between
these phylogenetically diverse organisms in the ecology of severe caries [71,72].

Antibiotics are used by clinicians to treat bacterial infections in the oral cavity: dental
abscesses, sinusitis causing tooth pain, pericoronitis and acute gingivitis and periodon-
titis [73–76]. In general practice, clinicians do not identify the bacterium or bacteria re-
sponsible for the oral infection by culturing the pus or exudate. Because of this, most
antibiotics prescribed by dentists are broad spectrum as they do not target the specific
bacteria responsible for the infection [77]. There has been an increase in strains of bacteria in
the oral cavity that are resistant to antibiotics used by clinicians [78]. As antibiotic resistance
increases, existing antibiotics become less effective. In dentistry specifically, more careful
prescription of antibiotics is needed, which critically impacts systemic health and antibiotic
resistance (AR) [79,80].

What is apparent in this brief overview of oral bacterial and fungal infection is the
importance of environmental and host factors and the microbial ecology in causing dys-
biosis. Antibiotics target specific pathogens with the aim of eliminating them from sites
of infection. Since antibiotics have many undesirable actions, including indiscriminate
microbial killing favoring the growth of resistant organisms, their use is largely restricted
to the treatment of severe infection. Technologies that are more selective can be used to
reverse dysbiosis and restore a healthy microbial balance.

2. Traditional Antibiotics and Alternatives

Antibiotics have saved millions of lives since their discovery by Alexander Fleming
in 1928; however, their effectiveness is in jeopardy due to the development of antibiotic
resistant bacterial strains [81]. As of 2022, antibiotic resistant bacterial infections killed
more people annually than malaria or HIV/AIDS [82]. The over prescription of antibiotics
in unnecessary circumstances in the healthcare setting is seen as a main cause for the
increase in the prevalence of antibiotic resistant bacterial strains [83]. This over-prescription
has been noted especially in the dental field, where antibiotics are routinely prescribed
for many treatment forms, such as chronic apical inflammation [84], pulpitis [85] and
periodontal infection [86,87]. In addition, antibiotic prophylaxis in the absence of infection
contributes to the issue of antibiotic resistance [88,89]. Regulatory groups and several
studies recommend that, as a field, dentists prescribe antibiotics more carefully as well as
looking into alternative treatment methods [79,85,90–92].

2.1. Overview of Mechanism of Action and Resistance

Antibiotics prescribed for dental infections function using one of a few key target
mechanisms: inhibiting the bacterial cell’s ability to synthesize the cell wall, nucleic acids
or proteins [93]. Antibiotics such as penicillin target the cell wall by removing available
material used for cell wall construction, causing a disruption leading to bacterial lysis.
Antibiotics such as clindamycin and tetracyclines inhibit protein synthesis using specific
targeting of either the 50 S or 30 S ribosomal subunit found only in bacteria and not
in eukaryotic cells. Sulfonamides and quinolones function by disrupting nucleic acid
synthesis [94].

Resistance in bacteria can develop against these antibiotics that target nucleic acid,
protein or cell wall synthesis. The bacterial cell wall can become less penetrable to these
antibiotics by decreasing the amount of porin channels through the outer membrane that
allow the antibiotic to enter the cell [94], or the bacterial cell wall may develop reduced
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uptake or active extrusion of the drug, causing a less effective response to the antibiotic by
failure of the antibiotic to reach the target site [95]. Penicillin binding proteins (PBPs) are a
common target of antibiotics that disrupt cell wall synthesis. Bacteria develop resistance to
the antibiotics that target these PBPs by developing an altered protein that fails to bind to
penicillin [96]. PBPs are essential to the production of the bacterial cell wall. They allow the
bacteria to increase or replace its existing cell wall or divide into daughter cells by cross
linking cell wall peptidoglycans. Antibiotics targeting PBPs disrupt this process [94,97].
Antibiotics that alter or halt protein translation can lose their effectiveness as bacteria
develop resistance when the bacterial ribosome is altered either in the 50 S or the 30 S
subunit. Decreased penetration and uptake of the antibiotic in the resistant bacteria make
the drug less effective over time, and specific mutations of the effective binding site occur
in the resistant strains [94].

2.2. Opportunities for Alternative Approaches

Fortunately, the oral tissues are accessible and various antimicrobial agents can be
applied either by the dentist as part of treatment or by the patient at home. Dentists
have employed local delivery systems to administer antibiotics and other agents to the
periodontium [98]. The advantage to this approach is that the diseased site can be exposed
to high concentrations of an agent without high systemic exposure. Below, we will review
two of the many agents described for the purpose of combatting infection.

2.3. Chlorohexidine

Chlorhexidine is an antimicrobial rinse used to control bacteria in the oral cavity [99].
It is a broad spectrum antimicrobial biguanide compound that works by disrupting the
bacterial cell membrane [99–101]. It is a positively charged molecule that destroys the
integrity of the negatively charged bacterial cell wall causing cell death [102]. In dentistry,
it is commonly used in the form of a mouthwash that patients can use at home, but it can
also be used in aerosol, gel or spray form [101]. It is often used in the treatment of gingivitis
as it is active against both Gram-positive and Gram-negative bacteria [103,104]. However,
chlorhexidine does not act as effectively against already formed biofilms and plaques
because of the protective EPS layer preventing the chemical from reaching the bacterial
cell membrane [105,106]. Though chlorohexidine is effective at reducing gingival plaque
and gingivitis, prolonged use for longer than 4 weeks results in extrinsic staining [106,107].
Chlorohexidine is also known to have a temporary effect on taste perception as it blocks
the ability to taste salt and is bitter tasting [108,109]. In addition, allergic reactions to
chlorhexidine are possible though infrequent [110].

2.4. Calcium Hydroxide

Calcium hydroxide is used in endodontics and other areas of dentistry for its ability to
induce hard tissue deposition [111,112]. Importantly, it can have an antimicrobial effect,
which can help disinfect the root canal system and prevent reinfection of the treated space,
which is especially important in the inter-visit timeframe [113]. Calcium hydroxide is also
used as a cavity liner when dentists remove deep decay from teeth. Calcium hydroxide
creates an alkaline environment that produces its antibacterial effect. The hydroxyl group
on calcium hydroxide is responsible for the high pH (12.5), which creates an alkaline
environment in the root canal space. The high pH causes a superficial layer of necrotic
pulp to form, which protects the tissue beyond from a strong inflammatory response [113].
This high pH environment is also thought to contribute to other biological responses in
the pulp cavity space, such as cell differentiation and dentin formation [113–115]. Calcium
hydroxide paste is injected into the root canal space in paste form with radiopacifiers.
While toxic to mammalian cells, it is limited to spaces that have limited contact with living
tissue such as the infected/extirpated root canal space.



Pharmaceutics 2022, 14, 1679 7 of 22

3. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are a structurally diverse class of small peptides that
are active against invasive pathogens [116,117]. Genetically encoded as inactive precursor
proteins, AMPs have been isolated from neutrophils and epithelial tissue [118] in a variety
of organisms (Figure 4). Many naturally derived AMPs are referred to as host defense
peptides (HDPs) for their role in regulating the innate immune response in host cells,
particularly in those lacking adaptive immunity [119]. AMPs also display anti-tumor
properties in addition to their antibacterial, antifungal and antiviral activity. Due to their
nonspecific mechanisms of action with pathogens, AMPs show promise in controlling
infections, leading to decreased antibiotic use.

Many AMPs exist as a propeptide before being activated by cleavage of a nonfunctional
region, such as buforin II [120]. Glycosylation, phosphorylation, C-terminal amidation and
amino acid isomerization are among other post-translational modifications (PTMs) that
convert AMPs into fully functional forms [121,122]. With the exception of proteolytically
cleaved peptides, low sequence conservation is observed across species, which contributes
to their diverse function and activity. Table 1 describes AMPs found in diverse members of
the animal kingdom.
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Example Primary Structure Secondary 
Structure 

Origin * Net 
Charge 

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 α-helix Apis mellifera +6 
Buforin II TRSSRAGLQFPVGRVHRLLRK α-helix Bufo gargarizans +6 

LL-37 
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DFLRNLVPRTES α-helix Homo sapiens +6 

Protegrin-1 RGGRLCYCRRRFCVCVGR β-sheet Sus domesticus +6 

Figure 4. Sources of AMPs from each of the six kingdoms, as of 18 October 2021, and secondary
structures of representative AMPs. Data compiled from the Antimicrobial Peptide Database
(https://aps.unmc.edu/, accessed on 1 August 2022). Basic residues are shown as orange, dark
green represents aromatic residues, light green represents nonpolar residues and proline is shown
in yellow. All structures were modeled using UniProt and predicted through either NMR, X-ray,
or AlphaFold.

https://aps.unmc.edu/
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Table 1. Representative examples of naturally occurring AMPs. Secondary structure refers to the
observed structure in membrane-mimetic environments. * Net charge calculated at physiological pH
(pH = 7.4). While some of the AMPs contain anionic residues, they display a net positive charge.

Example Primary Structure Secondary Structure Origin * Net Charge

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 α-helix Apis mellifera +6

Buforin II TRSSRAGLQFPVGRVHRLLRK α-helix Bufo gargarizans +6

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES α-helix Homo sapiens +6

Protegrin-1 RGGRLCYCRRRFCVCVGR β-sheet Sus domesticus +6

Tachyplesin-1 KWCFRVCYRGICYRRCR β-sheet Tachypleus tridentatus +6

Human neutrophil
peptide-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC β-sheet Homo sapiens +3

Indolicidin ILPWKWPWWPWRR-NH2 Random coil Bos taurus +4

Histatin-5 DSHAKRHHGYKRKFHEKHHSHRGY Random coil Homo sapiens +6

Through the inhibition or activation of immune cells [116], some AMPs participate
in immunomodulation. By interacting with signaling pathways, they can affect cell pro-
liferation through interference with key aspects of cell division, as well as exhibit pro-
and anti-inflammatory properties [123]. This section will include a summary of AMP
characteristics and properties. A review of natural and synthetic cationic AMPs will be
discussed, as well as patterns of microbial resistance.

3.1. Characteristics
3.1.1. Charge

Charge is an important characteristic affecting the activity of cationic AMPs. Through
non-specific electrostatic interactions, positively-charged residues associate with the anionic
head groups of membrane phospholipids [124]. Compared to eukaryotic cell membranes,
bacterial membranes contain charged phospholipid head groups. The coulombic attraction
between cationic peptides and anionic phosphate groups results in higher binding speci-
ficity for both Gram-positive and Gram-negative bacteria compared to the neutral surface
of eukaryotic membranes [125]. The prevalence of cationic amino acids such as arginine
and lysine are observed in many AMPs [126]. Additionally, positively charged residues
located near the carboxy-terminus may aid AMP insertion into the outer membrane surface.
Arg residues in particular have been implicated in increased membrane insertion and
translocation, relative to Lys or His, due in part to the ability of guanidinium groups to
form hydrogen bonds with the hydrophobic core of the lipid bilayer [127].

3.1.2. Hydrophobicity

The inclusion of specific amino acids is related to a peptide’s hydrophobicity, which de-
termines the ability to partition from the aqueous extracellular matrix into the lipid bilayer
of the cell membrane [128]. Partitioning across the membrane interface, a dynamic juncture
without a sharp separation between the aqueous extracellular space and hydrocarbon core,
is a complex phenomenon that relies on hydrophobic effects, which are characterized in
terms of enthalpy and entropy [128,129].

The insertion of AMPs into the inner core of the membrane’s lipid bilayer is influenced
heavily by hydrophobic interactions between residues such as proline and tryptophan with
hydrocarbon phospholipid tails. The positioning of these residues near the inner section
of an AMP can lead to further insertion into the nonpolar core of the membrane [130,131].
This spontaneous phenomenon is a result of entropic effects and further stabilizes peptide
secondary structure through hydrogen bonds between charged side groups of residues
with surrounding water molecules [132].

The hydrophobicity of a peptide is directly correlated to its activity. A more positive
value on hydrophobicity scales, such as the statistical-based Zviling [133] or Wimley–
White [134] scales, is observed with higher membrane permeabilization. However, it comes
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at a cost—namely, increased cytotoxicity to host cells due to nonspecific interactions of
insoluble, highly hydrophobic AMPs with membranes, regardless of composition [135–137].

Hydrophobicity is also impacted by the initial electrostatic binding of AMPs. Mem-
brane studies on indolicidin derivatives [138] suggest that permeabilization of the bilayer
is not simply a combination of electrostatic and hydrophobic interactions. Instead, the
influence of electrostatics has an inverse correlation on membrane insertion, with observed
effects on AMP solvation.

3.1.3. Amphiphilicity

While the hydrophobicity of AMPs is an important factor in its ability to permeabilize
cell membranes, the placement of these hydrophobic regions is integral to the connec-
tion between AMP structure and activity. Amphiphilicity, the presence of separate polar
and nonpolar regions [139], is key to antimicrobial activity. The hydrophobic moment
(µH) [140] of a peptide is the vector sum of hydrophobicity and provides a way to measure
amphiphilicity in α-helices. Its significance can be thought of as a combination of the
impact of net charge and hydrophobicity—a careful balance between each of these measure-
ments is necessary for the efficacy of an AMP. To study the effects of amphiphilicity and
hydrophobicity on membrane partitioning, Fernández-Vidal et al. measured the Gibbs free
energy of AMPs, transitioning from their unfolded state in aqueous solutions to an α-helix
at the membrane interface [141]. Using non-charged residues in the design of 6 synthetic
AMPs, peptide amphiphilicity was varied while hydrophobicity was kept constant. µH
was observed to be inversely proportional to the free energy of partitioning, suggesting
that an increase in this parameter would correlate to higher membrane interactions. Inter-
estingly, asymmetrical amphiphilicity is observed in AMPs with high antimicrobial activity
and low host toxicity [142], reinforcing the inverse relationship between cell selectivity
and hydrophobicity.

3.1.4. Structure

The secondary structure of AMPs depends upon interactions in the peptide backbone,
as well as partitioning–folding coupling [143]. AMPs are disordered in aqueous solutions
and most adopt an α-helical or folded conformation (containing antiparallel β-sheets)
in membrane-mimetic environments. Relative to β-sheet-containing AMPs, there are
little to no cysteine residues found in α-helical peptides, such as magainins [144]. The
disulfide bridges present in β-sheet-containing AMPs are a fundamental architectural
element in peptide structure and are the only naturally occurring intra-peptide covalent
bond. Formed by the oxidation of thiol groups between two cysteine residues, disulfide
bridges stabilize peptide secondary and tertiary structure. Also referred to as cystine
residues, disulfides are often formed in vivo via thiol-disulfide exchange reactions, where a
disulfide bond is transferred from a linked pair of Cys to a reduced thiol [145]. Despite their
increased stability relative to other side-chain interactions, disulfide bridges are susceptible
to cleavage in the presence of reductants. It is interesting to note the prevalence of aromatic
amino acids near Cys residues [146].

3.2. Mechanisms of Action

The mechanisms of action of AMPs are concentration dependent. At low concentra-
tions, they are oriented parallel to the surface of the lipid bilayer. However, perpendicular
assembly within the hydrocarbon core of the bilayer is observed with high AMP concentra-
tion, forming transmembrane pores [147].

There are numerous models (Figure 5) used to describe the formation of these trans-
membrane pores [116,117]. The barrel-stave pore model [148] is the result of interactions
of the hydrophobic regions of the peptide with the hydrocarbon core of the lipid bilayer.
Toroidal pores [149], on the other hand, are formed through the attraction between the
hydrophilic region regions of the peptide with the charged phospholipid heads on the
surface of the membrane. The carpet model [150] is associated with the disruption of the
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cell membrane through the formation of micelles and is observed to be concentration-
dependent. Membrane depolarization describes the process of electroporation [151], where
pores are formed due to changes in the external electric field of the membrane.
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immunomodulation of host cells or a combination of both mechanisms are observed with AMPs.

These models may not fully account for microbial killing. Other phenomena observed
may provide a more accurate picture of the mechanisms of action, particularly with fungal
infections. For instance, buforin II has been observed to interact with cells via membrane
translocation [152]; in other words, cell penetrating. Tachyplesin also demonstrates cell-
penetrating properties and can deliver macromolecular cargo to nuclei via non-endocytic
modes [153].

Additionally, AMPs can stimulate or reduce host inflammatory response. Sublancin,
an AMP derived from Bacillus subtilis, promotes the methicillin-resistant Staphylococcus
aureus (MRSA)—induced production of interleukin-6 (IL-6) and monocyte chemoattract
protein-1 (MCP-1) at 24 h post—infection in murine peritoneal cells, while a lower concen-
tration of tumor necrosis factor-alpha (TNF-α) is seen with the addition of the AMP [154].
Neutrophils (polymorphonuclear leukocytes) are commonly observed to act in the innate
immune response to pathogens. This process involves adherence to pathogens followed by
phagocytosis or through the release of AMP-containing granules. Despite the ineffective-
ness of physiological concentrations of AMPs in antimicrobial killing in healthy human
gingiva, they are found in overabundance in the epithelia of patients with periodonti-
tis [155]. Interestingly, a locus near DEFA1A3 has been implicated in aggressive and, to
a lesser degree, severe chronic periodontitis in German, Dutch and Turkish samples in a
genome-wide association study (GWAS). Because the mechanisms involved in the immune
response to oral diseases are as diverse as the various disease phenotypes, the identification
of genetic risk factors is a significant step in further exploration of the role of AMPs in
signaling pathways [156]. Additionally, single nucleotide polymorphisms (SNPs) and the
overexpression of toll-like receptor (TLR) genes correlate to decreased hBD-2 production,
although the direct link between these processes remains unclear [157].

The lipid composition of the outer membranes of Gram-negative bacteria accounts for
the preferential targeting of AMPs [136]. Initial interaction depends upon the strength of
the binding between AMPs and outer surfaces (Figure 6). Negatively charged phospholipid
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heads and lipopolysaccharides (LPS) found on the outer membrane participate in electro-
static interactions with the hydrophobic regions of the peptides. These interactions are also
observed with the lipoteichoic acids (LTA) and peptidoglycans that comprise the cell wall
of Gram-positive bacteria. Weaker hydrophobic interactions are also observed between
AMPs and bacterial surfaces, albeit to a lesser extent than with eukaryotic membranes [158].
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Figure 6. Comparison of fungal and bacterial cells (created with BioRender.com, accessed on 1 August
2022). Gram-positive bacteria and fungi contain glycan layers on the extracellular side of the lipid
membrane, while a second membrane encapsulates the peptidoglycan layer in Gram-negative bacteria.

Furthermore, differences between the lipid structures that comprise bacterial and eu-
karyotic membranes may explain the specificity of AMPs. While both cells contain anionic
phosphate head groups, the prevalence of lipids with a specific geometry influences pep-
tide binding. For instance, bacterial membranes contain lipids such as phosphatidylserine
(PS) that have less bulky substituents than those primarily found in eukaryotes, such as
phosphatidylcholine (PC), which can interfere with AMP binding.

3.3. Classification Based on Source

Due to their diversity, AMPs can be categorized into various subclasses, based on
origin, structure, amino acid composition, mechanism of action and activity. Structure and
mechanisms of action have already been discussed in Sections 2 and 3, respectively; the
next subsections will focus on the remaining categories of classification.
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3.3.1. Origin

Antimicrobial peptides have been isolated from a multitude of species, including
prokaryotes and eukaryotes. The following sections will focus on animal-derived sources
of AMPs; comprehensive assessments of AMPs derived from other biological organisms
have been previously reviewed [124,125,158]. The three major classes of mammalian-
derived AMPs are cathelicidins, defensins and histatins, each of which are significant in
establishing and protecting oral health.

3.3.2. Cathelicidins

First isolated from bovine neutrophil lysates [159], cathelicidins comprise a class of
peptides that contain a conserved N-terminal region and a variable C-terminal region.
They are primarily stored in granulocytes and play an important role in the regulation
of innate immunity. Over 70% of cathelicidins’ N-terminal sequence is homologous with
cathelin, a cathepsin L inhibitor. Cathelicidin-encoding genes produce a precursor, e.g.,
human CAP-18 [118]. Cleavage of this propeptide yields cathelin and any of a number of
cathelicidin peptides [160,161]. The lack of homology among residues in the C-terminus
account for the structural diversity of cathelicidins, which includes helical, linear and
folded arrangements, depending on the residue composition. To date, only one cathelicidin
has been isolated in humans—LL-37. Molecular dynamic and crystallography studies
demonstrate that LL-37 forms a tetramer comprised of antiparallel dimers in the presence of
detergents and bacterial membranes [162] to form peptide-lined channels that are stabilized
by hydrogen-bond interactions between its interfaces and PE/PG structures. Despite its
success in inhibiting clinically relevant bacteria at low concentrations, LL-37 is unable to
disrupt any of the stages of biofilm formation up to concentrations of 25 µM [163].

3.3.3. Defensins

Defensins are cysteine-rich peptides characterized by the presence of two to three
disulfide bonds that form β-sheets. They are primarily classified based on their disulfide
bond orientation. These superfamilies, cis- and trans-defensins, are evolutionarily divergent
from each other and participate in both direct microbial killing and immunomodulatory
pathways. The presence of disulfide bonds imparts defensins with increased resistance
to proteolysis. Trans-defensins are mostly found in vertebrates and contain β-sheets that
connect to two structural motifs due to antiparallel disulfide bridge pairs [164]. AMPs that
comprise this superfamily are classified as either α-, β- or θ-defensins. Unlike the structure
of the others, θ-defensins are cyclic peptides with a β-hairpin motif. Cis-defensins, on the
other hand, are found in plants, fungi and invertebrate animals across many phyla. They
contain parallel disulfide bonds that link β-strands to one other structural motif.

3.3.4. Histatins

Histatins, named for prevalence of histidine residues, play a significant role in wound
healing. Primarily found in human and simian saliva, these AMPs are either encoded
by HIS1 and HIS2 (histatin 1 and histatin 3, respectively [165]), proteolytically cleaved or
otherwise modified following translation. Histatin 5, processed from histatin 3, displays
the strongest antimicrobial activity [166] and is effective in treating oral candidiasis [167]
and inhibiting C. albicans biofilm adherence in mucosal epithelia [168]. Conformational
studies reveal that Hst-5 is stabilized through the binding of histidine residues to zinc and
copper [169], which is also correlated to increased antimicrobial activity.

3.4. De Novo Peptides

Strategies to improve upon the antimicrobial activity of these peptides have included
the design of de novo AMPs. The purpose of the rational design process focuses on further
elucidation of mechanisms of action, such as the extent of membrane disruption, or probing
the relationship between structural elements of the peptide and its activity. This is even
more necessary given the relative cost of solid phase peptide synthesis as compared to
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other antimicrobial drugs [170] and occasional need for high concentrations in natural
forms [155]. Common synthetic strategies include:

1. Cyclization of linear regions;
2. D-amino acid substitution to take advantage of enzyme-substrate specificity to evade

protease recognition and subsequent degradation;
3. Replacing hydrophobic residues studies the effects of hydrophobicity and amphiphilic-

ity on cytotoxicity.

Melittin, a well-studied AMP derived from bee venom, has served as a starting point
for many of these studies. Compared to other AMPs, melittin displays antimicrobial activity
across a broad spectrum of pathogenic bacteria and fungi. However, high hemolysis has
also been observed, prompting investigation into how this peptide can be modified to
inhibit microbes with low cytotoxicity to host cells. In one study, researchers analyzed the
overall hydrophobicity of melittin through comparison to analogues [171]. Lower hemolytic
activity and comparable MIC/MBC (minimum inhibitory concentration/minimum bacteri-
cidal concentration) values against S. aureus, E. coli and P. aeruginosa were observed with
substitution and/or deletion of hydrophobic residues for tryptophan.

Derivatives of indolicidin, found in bovine neutrophils, have also been studied in vitro.
Comparison of two novel peptides demonstrate that a decrease in hydrophobicity and
increase in hydrophobic moment and net charge correlate to higher antibacterial activity
and lower cytotoxicity. However, differences in the membrane permeabilization between
Gram-positive and Gram-negative bacteria may result from electrostatic interactions from
cell wall [172].

Modifications to the 3D assembly of AMPs have been explored recently. Structurally
nanoengineered antimicrobial peptide polymers (SNAPPs) are antimicrobial micelles or
vesicles that share many characteristics with natural AMPs, most notably the inclusion
of cationic residues [173]. However, the peptide “arms” of SNAPPs allows for enhanced
interaction between with bacterial membranes. The formation of these structures typically
relies on self-assembly through ring-opening polymerization (ROP) strategies. Although
they demonstrate antimicrobial activity in bacterial models, their efficacy in biomimetic
environments is altered. The presence of divalent cations disrupted the activity of SNAPPs
prepared by Lam et al., although the addition of a chelating agent mitigated this effect [174].
On the other hand, the presence of serum proteins reduces cytotoxicity, which is correlated
to decreased interaction with host immune cells [175]. Additionally, dimerization, or the
process of linking two monomers to form a dimer, is associated with increased antimicrobial
activity against MDR clinical pathogens [176].

To create novel alternatives to antibiotics, some design strategies have been influenced
by another class of microbe: viruses. Recently, the structure of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) has been adapted to create a lipopeptide delivery
system, called SNALs (surface-nanoengineered antimicrobial liposomes) [177]. Mimick-
ing the SARS-CoV-2 spike protein, SNALs are able to fuse to bacterial surface receptors.
Observed mechanisms include perturbation of the cell membrane and intracellular tar-
geting. Unique peptide scaffolds, such as β-hairpin hydrogels, have also been investi-
gated for wound healing properties [178]. Additionally, biomimetic polymers synthesized
by Tsukamoto et al. have demonstrated disruption of unilamellar vesicles [179]. These
methacrylate-backed polymers, with a net positive charge, contain a combination of ammo-
nium and hydrophobic groups as side chains and display MIC and hemolytic values to
natural AMPs.

3.5. AMP Resistance

The rise in multidrug resistance (MDR) among opportunistic pathogens is intrinsically
related to overexposure to traditional antibiotics, both in nosocomial and agricultural envi-
ronments. Simply put, resistance is the ability of a microbe to tolerate treatments designed
to inhibit or kill. Despite the moderate success of AMPs in inhibiting pathogenesis, resis-
tance to these peptides have also been observed. Common resistance mechanisms involve
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point mutations in bacterial genes encoding for proteins essential in lipid synthesis and
maintenance of membrane integrity. Resistance is typically observed following repeated
treatment, but application of selective pressure (pH, temperature, salt concentration) can
lead to decreased susceptibility.

MprF, or multiple peptide resistance factor, is an integral membrane-bound enzyme
with bifunctionality—it catalyzes the transfer of lysine and alanine residues to phosphatidyl-
glycerol (PG) and cardiolipin (CL) as well as translocates the lysl- and alalyl-modified lipid
structures from the cytosol-facing side of the lipid bilayer to the outer surface. Point mu-
tations in the binding site of the synthetic domain of MprF is related to the upregulation
of Lys- or Ala-PG [180]. This is associated with a decrease in AMP binding, due to the
introduction of positive charge by Lys and Ala to the outer membrane. Additionally, resis-
tance to polymyxin B, an AMP that binds to lipopolysaccharides (LPS) on Gram-negative
bacteria, has been observed in Enterobacteriaceae (e.g., Salmonella enterica [181,182]) and
Pseudomonas aeruginosa [183].

In addition to target mutations and upregulation of efflux pumps, an increase in
protease activity is also observed in resistance mechanisms. For example, studies conducted
on gingival and subgingival tissue indicate an inverse correlation between human β-
defensin 2 (hBD-2) and P. gingivalis-associated protease activity in periodontitis patients,
emphasizing the importance of peptide design strategies that are resistant to microbial
proteases [184]. Furthermore, epithelia from different physiological regions induce hBD-2
through various signaling pathways. LPS in bacterial extracellular matrices stimulate
mRNA transcription of hBD-2 in the trachea, while it was not observed to significantly
affect hBD-2 production in oral epithelia [185]. This could be explained by the prevalence
of commensal bacteria in the oral cavity, where the use of LPS as a stimulant would result
in an overabundance of hBD-2 and loss of viable cells. A more thorough understanding
of the various distinct pathways used to regulate hBD-2 production can inform a more
targeted approach to the design of synthetic AMPs for treating oral diseases.

Recently, modifications in metabolism-associated genes have been detected in clinical
pathogens that have been treated with traditional antibiotics [186]. Changes in the metabolic
activity of AMP-treated microbes may provide further insight into the resistance pathways
that pathogens use to avoid inhibition. Cell death is associated with accumulation of
reactive oxygen species (ROS) after treatment with traditional antibiotics [187], so AMPs
that result in ROS accumulation that may lead to decreased resistance.

4. Conclusions and Future Directions

A major impediment in screening for undiscovered natural or synthetic AMPs is
fully understanding how microbial pathogens interact with their hosts’ cells. To this end,
machine learning has been employed to allow researchers to investigate the contributing
factors behind virulence, pathogenicity and host-immune response. SweetTalk, a language-
based model that utilizes a bidirectional recurrent neural network (RNN), has recently been
developed to study glycan-mediated interactions between bacteria and host cells [188].
Through the modeling of glycan assembly patterns, bacterial virulence and its effect on
host immune response can be predicted.

Another obstacle in making more AMPs clinically approved is their low bioavailability.
Compared to small molecule drugs, AMPs are relatively larger and require higher concen-
trations in order to have an appreciable effect. Wang et al. recently used gene sequencing to
discover a novel small molecule antimicrobial, macolacin, identified through biosynthetic
gene clusters in colistin-resistant bacteria [189].

Simulation-based approaches such as atomic detail molecular dynamic modeling [190]
can provide information about key structural motifs for peptide folding and activity that
are found in naturally occurring AMPs. De novo syntheses can also utilize molecular
grafting techniques, where small biomolecules act as substrates for AMP functionalization.
Plant-based cyclotides have been used as a scaffold for a short synthetic AMP, with low MIC
values observed for clinically relevant Gram-positive and Gram-negative bacteria [191].
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Furthermore, a combination of peptide sequencing and electron-transfer dissociation (ETD)
mass spectrometry can be used to analyze post-translational modifications (PTMs) in
natural AMPs that are applicable to novel peptide design [192].

AMPs and other novel antimicrobials can fulfil two important functions in controlling
oral diseases:

1. Modify the composition of biofilms on tooth, soft tissue and prosthetic surfaces,
the goal being to reverse dysbiosis without destroying the commensal flora. Novel
AMP-inspired antimicrobials have also been investigated as ways to reduce Candida
growth on denture surfaces [193]. It is conceivable that a healthy individual can use
biofilm-modifying AMPs as part of a preventive regimen.

2. Treat endodontic infections and deep caries by eliminating bacterial populations from the
normally sterile interior of the tooth (dentin and pulp space). In this application, AMPs
would be applied as part of the professional treatment of dental infections [194,195].
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