
MINI REVIEW
published: 19 May 2022

doi: 10.3389/falgy.2022.864652

Frontiers in Allergy | www.frontiersin.org 1 May 2022 | Volume 3 | Article 864652

Edited by:

Rodrigo Jiménez-Saiz,

Hospital de la Princesa, Spain

Reviewed by:

Karin Hoffmann-Sommergruber,

Medical University of Vienna, Austria

Mattia Giovannini,

Meyer Children’s Hospital, Italy

*Correspondence:

Jaime Tome-Amat

jaime.tome@upm.es

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Food Allergy,

a section of the journal

Frontiers in Allergy

Received: 28 January 2022

Accepted: 29 April 2022

Published: 19 May 2022

Citation:

Gonzalez-Klein Z, Pazos-Castro D,

Hernandez-Ramirez G,

Garrido-Arandia M, Diaz-Perales A

and Tome-Amat J (2022) Lipid

Ligands and Allergenic LTPs:

Redefining the Paradigm of the

Protein-Centered Vision in Allergy.

Front. Allergy 3:864652.

doi: 10.3389/falgy.2022.864652

Lipid Ligands and Allergenic LTPs:
Redefining the Paradigm of the
Protein-Centered Vision in Allergy

Zulema Gonzalez-Klein 1,2†, Diego Pazos-Castro 1,2†, Guadalupe Hernandez-Ramirez 1,2,

Maria Garrido-Arandia 1,2, Araceli Diaz-Perales 1,2 and Jaime Tome-Amat 1*

1Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain,
2Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de

Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain

Lipid Transfer Proteins (LTPs) have been described as one of the most prevalent and

cross-reactive allergen families in the general population. They are widely distributed

among the plant kingdom, as well as in different plant organs ranging from pollen to fruits.

Thus, they can initiate allergic reactions with very different outcomes, such as asthma and

food allergy. Several mousemodels have been developed to unravel themechanisms that

lead LTPs to promote such strong sensitization patterns. Interestingly, the union of certain

ligands can strengthen the allergenic capacity of LTPs, suggesting that not only is the

protein relevant in the sensitization process, but also the ligands that LTPs carry in their

cavity. In fact, different LTPs with pro-allergenic capacity have been shown to transport

similar ligands, thus positioning lipids in a central role during the first stages of the allergic

response. Here, we offer the latest advances in the use of experimental animals to study

the topic, remarking differences among them and providing future researchers a tool to

choose the most suitable model to achieve their goals. Also, recent results derived from

metabolomic studies in humans are included, highlighting how allergic diseases alter

the lipidic metabolism toward a pathogenic state in the individual. Altogether, this review

offers a comprehensive body of work that sums up the background evidence supporting

the role of lipids as modulators of allergic diseases. Studying the role of lipids during

allergic sensitization might broaden our understanding of the molecular events leading

to tolerance breakdown in the epithelium, thus helping us to understand how allergy is

initiated and established in the individuals.
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INTRODUCTION

Prevalence of allergic diseases has been constantly rising along this decade, with clinical reports
establishing that up to 3.8% of European and 2.5% of Canadian children are sensitized to at least one
food allergen (1, 2). This trend can also be observed in other allergic pathologies, such as asthma,
although in this case controversies arise depending on the cohort studied (3). Although allergen
specific immunotherapy (AIT) seems a promising tool to manage these diseases in the future,
nowadaysmost allergies are still lacking from a definitive treatment that reverses the sensitized state
of the patient (4–6). This results in significant socioeconomical burdens (7), as well as non-allergic
comorbidities which range from obesity to mental health disorders (8).
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Lipid binding is a characteristic shared by many allergen
families, such as Lipid Transfer Proteins (LTPs), Bet v 1-like
proteins, 2S albumins, lipocalins, and oleosins among others (9).
These bound lipids have been described to have an important role
in allergy development; e.g., the lipids of pollen extract induce
mast cell chemotaxis, interleukin (IL) 6 release, immunoglobulin
E (IgE)-dependent degranulation, and the upregulation of CD1d
in dendritic cells (10). Also, the lipids extracted from peanuts
can directly activate primary keratinocytes and induce a pro-
inflammatory response, showing an increase of IL6, IL8, TNFA,
and IL1BmRNA levels, which is maintained by the allergen (11).

This review focuses on the lipid-binding capacity of LTPs and,
in addition, how this binding capacity affects the allergenicity
of said protein family. When looking at the bibliography not
much information is found, but we will discuss about different
studies in vitro and in vivo that support the idea that the
ligands transported by allergenic LTPs are key factors in the
sensitization process (12), what might explain why these proteins
are associated with severe and potentially lethal anaphylactic
reactions (13).

LTPs AS LIPID BINDING PROTEINS

LTPs constitute an important family of food and respiratory
allergens. They are defined as small, basic, and thermostable
proteins, with a highly conserved structure across the plant
kingdom, characterized by a motif of eight residues of cysteine
forming four disulfide bonds, and a cavity that allows them to
harbor lipids (14). In total, 46 LTPs have been listed as allergens
by the World Health Organization (15), being characterized by
both their severity and high sensitization rates, especially in the
Mediterranean region (16), but also in other countries, such
as the UK (17). LTPs are ubiquitously distributed and present
cross-reactivity between some members of the protein family,
mainly belonging to Rosaceae fruits and nuts, thus resulting in
elevated numbers of life-threatening reactions due to accidental
exposures (18).

Although different classification systems have been proposed,
LTPs can be divided in a simple way based on their molecular
weight in LTP1s (9-10 kDa) and LTP2s (6-7 kDa) (19, 20). Both
have a highly plastic tunnel that can bind a wide range of ligands
in vitro, such as fatty acids (oleic, linoleic, elaidic or lauric, among
others) (21, 22).

ALLERGENIC LTPs TRANSPORT A UNIQUE
KIND OF LIGAND WHEN STUDIED IN VIVO

Nevertheless, when the ligands from several allergenic LTPs
purified from natural sources have been studied, it has been
proved that all of them share a common characteristic: the native
ligand of allergenic LTPs is composed of a camptothecin (CPT)-
like polar head bound to a phytosphingosine (PHS) tail: the
so-called CPT-PHS ligand. The CPT-PHS ligand was found to
be the major molecule complexed to allergenic LTPs in vivo.
When different LTPs were purified from natural sources, the

isolated ligand extracted from their cavities was always the CPT-
PHS ligand, except for the case of wheat LTP1 (Tri a 14),
for which 2 other different molecules where also found to be
bound (12). The mechanism by which the CPT-PHS ligand
enters inside the cavity of LTPs needs to be clarified but the
actual hypothesis and studies related have been recently reviewed
(14). This CPT-PHS ligand has been described to inhibit cell
division in the plant and to avoid both pollination and the
attack from herbivores (23). Furthermore, the adjuvant activity
of the ligand was demonstrated in a mouse model. As it has
been previously described for other lipids, the immunogenicity
of the CPT-PHS ligand was described to be mediated by CD1d
recognition (24, 25).

Interestingly, it has been recently discovered that the
CPT-PHS ligand can be also metabolized by human cells,
converting the PHS tail into phytosphingosine-1-phosphate by
human sphingosine kinases. This phytosphingosine-1-phosphate
has been demonstrated to mimic some functions of the
sphingosine-1-phosphate (S1P) immune mediator, as promoting
the migration of immune cells (12). These results are in line with
the importance of sphingolipid metabolism in the development
of allergic diseases (26) (Figure 1).

THE IMPORTANCE OF LIPIDS IN LTP
SENSITIZATION: CONCLUSIONS FROM
MOUSE MODELS

Given all the pro-allergenic properties that LTPs can acquire due
to lipid binding, as well as the proinflammatory effects exerted
by their associated CPT-PHS ligand in human peripheral blood
mononuclear cells (PBMCs) (12, 24), it is interesting to assess
the conclusions derived from the use of LTPs to induce allergic
sensitization in vivo, in murine models of the disease. In this
context, we will pay special attention to the role played by lipids
during the sensitization phase of the allergic response. In vivo
studies with LTPs are especially relevant, since these proteins are
naturally binding lipids (15).

Nevertheless, we have been able to find only two models
which take into consideration the lipid binding nature of the
allergen (in these cases, peach’s Pru p 3), studying the differences
in the immune response elicited by the protein alone or in
complex with its native ligand, the CPT-PHS ligand (24, 27)
(Table 1). Both reports show that Pru p 3 is able to induce
anaphylaxis after a skin-based sensitization protocol in mice,
both as a protein alone and as a complex with its CPT-PHS
ligand. However, when the lipid is present during sensitization,
the levels of serological α-Pru p 3 sIgE are significantly higher
in C3He/OuJ mice, presumably due to a mechanism involving
iNKTs and CD1d-mediated antigen presentation (24). In BALB/c
rodents, anaphylaxis was significantly stronger if the lipid ligand
was present, although activation of the NLRP3 pathway in the
skin was needed prior to allergen addition to induce the allergic
phenotype in this strain (27).

These studies suggest that the immunological properties of
LTPs, as in the case of other allergenic proteins such as Bet
v 1 (41, 42) or Ber e 1 (43), should not be disengaged from
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FIGURE 1 | Proposed mechanism of allergic sensitization mediated by LTPs and its associated CPT-PHS ligand in vivo. When the complex crosses the epithelium,

the CPT-PHS ligand can be both presented by CD1d in dendritic cells to iNKTs, leading to the production of inflammatory cytokines; or converted in

phytosphingosine-1-phosphate (PSH1P) inside the epithelial cells, which then promotes the migration of immune cells to the tissue. This explains the adjuvant role of

the CPT-PHS ligand, leading to a pro-inflammatory environment in which the protein becomes recognized by the mucosal immune system, promoting the systemic

sensitization against it through the production of IgE. CPT, camptothecin; IL, interleukin; iNKT, invariant natural killer T; LTP, lipid transfer protein; MHCII, major

histocompatibility complex II; PHS, phytosphingosine; PHS1P, phytosphingosine-1-phosphate; SphK1, sphingosine kinase 1; S1PR, sphingosine-1-phosphate

receptor; TSLP, thymic stromal lymphopoietin.

the immunological properties of their physiological ligands,
since the contribution of the latter can completely change
the landscape of the established response in the organism.
Supporting this hypothesis, another report has shown that
intranasal sensitization of BALB/c mice to Pru p 3 cannot be
achieved with the protein alone, but anaphylaxis is significantly
reached when Pru p 3 is co-administered with LPS (32). However,
it would be interesting to see if these results could be replicated
with the natural ligand of Pru p 3, as well as with other allergenic
LTPs frequently reported in food allergy.

In another report, sensitization with whole extracts of blue
lupin (major allergen: the LTP Lup an 3) without the use
of exogenous adjuvants was not sufficient to induce neither
antibody nor anaphylactic responses in C3H/HeJ mice (30,
31), which might contradict the hypothesis that lipid ligands
transported by allergenic LTPs have enough adjuvant capacity to
induce sensitization against these proteins. However, the route
of exposure should be taken into account. In the mentioned
article, the lupine allergen alone is delivered via gastrointestinal
route, which makes sensitization very difficult. In fact, when
attempts have been made to produce food allergy models via the

gastrointestinal route in the absence of adjuvants, they have been
generally unsuccessful. It is very likely that this pathway is highly
polarized toward tolerance. Other models of food allergy use the
skin, or even the respiratory tract, as a route of sensitization.

Regarding reports involving mice and LTPs in respiratory
allergy, it is also important to address the need to conduct more
studies in which sensitization is performed not only against the
protein alone, but in conjunction with the lipid it transports,
since all the reports that have been published up to now used
recombinant allergens to perform the sensitization protocols
(Table 1). As a result, the contribution of lipids in the reported
responses is dismissed. Still, the studies highlight the relevance
that the environment surrounding the protein has in LTP allergy.
In the case of Par j 1, Parietaria judaica’s major allergen, it
is shown that it presents an LPS-binding region that plays an
important role in promoting antibody responses against it. As
shown by Bonura et al. when BALB/c mice are immunized with
a Par j 1 isoform lacking this region, the amount of anti-Par j 1
sIgG1 and sIgG2a produced is significantly lower when compared
to whole Par j 1-immunized rodents. Besides, this region seems to
be important to antibody binding as well, since mice immunized
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TABLE 1 | Murine models of sensitization to LTPs.

Allergen Source Mouse

strain

Sensitization Adjuvant Challenge Ab response Other observations References

Food allergy

Api g 2 (LTP1) Celery BALB/c rApi g 2 (10 µg s.c.;

once every 2 weeks, for

a duration of 8 weeks)

Alum (50 µL

Alugel-S)

– α-Api g 2 sIgE &

sIgG

(cross-reactive

with Art v 3)

– (28)

Jug r 3 (LTP1) English

walnut

BALB/c Defatted walnut extract

(3mg i.g.; twice per

week, for a duration of

3 weeks)

Cholera toxin

(10 µg)

Defatted

walnut extract

(3mg i.g.)

α-walnut IgE – (29)

Lup an 3 (LTP1) Blue lupin C3H/HeJ Lupin extract (5.7mg

i.g.; days 0, 1, 2, 7, 21

and 28)

Cholera toxin

(10 µg)

Lupin extract

(5.7mg i.p.)

α-lupin IgG1 (total

IgE was also

elevated)

Colonic microbiome

composition was

heavily modified by

lupin allergy

(30)

No adjuvant No α-lupin sIgG1

nor total IgE were

elevated

Anaphylaxis was not

reached under these

experimental conditions

(31)

trypCry1Ab

(10 µg)

Pru p 3 (LTP1) Peach C3H/HeJ rPru p 3 (100 µg e.c.;

once per week, for a

duration of 6 weeks)

No adjuvant rPru p 3 (5 µg

i.p.)

α-Pru p 3 sIgG1 Strong anaphylactic

response

post-challenge

(24)

rPru p 3 (100 µg e.c.)

+ its natural ligand (10

µg); once per week for

a duration of 6 weeks

α-Pru p 3 sIgE &

sIgG1

BALB/c rPru p 3 (100

µg i.p.)

No antibody

response was

observed by

ELISA

NLRP3 activation due

to skin abrassion prior

to allergen addition was

needed to achieve the

allergic phenotype

(27)

Pru p 3 (20 µg i.n.;

once per week for a

duration of 6 weeks)

Pru p 3 (100

µg i.p.)

α-Pru p 3 sIgE No anaphylactic

response

post-challenge

(32–34)

LPS (20 ng) α-Pru p 3 sIgE &

sIgG1

Strong anaphylactic

response

post-challenge

Asthma

Art v 3 (LTP1) Mugwort BALB/c rArt v 3 (10 µg s.c.; 6

total immunizations)

Alum

(Alugel-S;

n.a.)

– α-Art v 3 sIgG1 – (35)

Par j 1 (LTP1) Wall

pellitory

rPar j 1 (2 µg i.p.; days

0 and 21)

Alum (2.5mg

Al(OH)3)

– α-Par j 1 sIgE,

sIgG1 & sIgG2a

Par j 1 presents an

LPS-binding region

(Par37) which

enhances the antibody

response against the

allergen

(36)

Par j 1/2 (LTP1s) rPar j 1 (2 µg) + rPar j

2 (1.65 µg i.p.); days 0

and 21

– α-Par j 1/2 sIgE,

sIgG1 & sIgG2a

– (37, 38)

Pla a 3 (LTP1) London

plane

rPla a 3 (200 µg i.p.;

once per week for a

duration of 3 weeks)

Freund’s

complete

adjuvant (n.a.)

Atomized

pollen extract

(30min every

day for a

week)

α-Pla a 3 sIgE &

sIgG

– (39)

Tri a 14 (LTP1) Wheat Tri a 14 (10 µg i.p.;

days 0, 10, 20 and 30)

Alum

(Alhydrogel

3%)

Tri a 14 (10

µg i.n.)

α-Tri a 14 sIgE T2 cytokine profile and

eosinophil infiltration in

BALF

(40)

e.c., epicutaneous; i.g., intragastric; i.n., intranasal; i.p., intraperitoneal; n.a., quantity not available; r, recombinant; s.c., subcutaneous.
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with whole Par j 1 present significantly lower levels of antibodies
against the truncated isoform than to the whole allergen itself
(36). Nevertheless, it would be interesting to confirm if these
results can be replicated in the presence of Parietaria’s Par j 1
native ligand, which has been recently described to have a similar
structure to the aforementioned CPT-PHS compound (12).

FROM MICE TO HUMANS: THE IMPACT OF
LIPID METABOLISM IN LTP ALLERGY
DEVELOPMENT

It has become clear that lipids play a fundamental role in the
development of allergies, especially to LTPs, but how do they
affect the metabolism of allergic patients? Is the lipid metabolism
altered in allergic patients from the beginning or are the ligands
carried by LTPs able to modify the homeostasis of human
lipid metabolism?

Despite themetabolomic information found for other allergies
(44–47), there are few studies published in the field regarding
specifically LTP allergy. In fact, to date, only two related to the
topic can be found. In the first one, the study was performed
with food allergic patients in general, but more than 30% of them
presented LTP allergy, being one LTP allergic patient the only one
who presented severe symptoms. In these food allergic patients,
73metabolites were significantly altered, including phospholipid-
related metabolites. Among them, cortisol, glucose, and some
unsaturated lipids were associated with severity (48). On the
other hand, the second study directly included the comparison
between LTP allergic patients and the control group, but it
was based on transcriptome analysis using whole blood cell
RNA, and not on metabolomics or lipidomics. Results revealed
different expressions in genes related to inflammatory diseases
and pathways related to immune regulation. Also, genes related
to S1P signaling pathway were exclusively affected in patients
with LTP allergy (49).

This is aligned with the important role of sphingolipids in the
regulation of mast cells, with S1P as a positive regulator secreted
by mast cells after antigen-specific cross-linking of the high-
affinity IgE receptor, and sphingomyelin and ceramide acting as
negative regulators of mast cell activation (50). Furthermore, S1P
is a bioactive signaling molecule with a wide range of functions
apart from those related to mast cells, as the regulation of cell
proliferation, migration and inflammation (51). These activities
and functions are regulated by the S1P receptor signaling system,
in which 5 different subtypes of S1P receptors (S1PR1-5) regulate
the pathways activated in each case by the S1P, depending also in
the tissues or cells implicated, as it has been previously reviewed
(52, 53).

These data could also be linked to the recent discovery of
the ability of sphingosine kinase human enzyme to metabolize
the native CPT-PHS ligand of LTPs and convert the lipid
tail of phytosphingosine into phytosphingosine-1-phosphate.
Interestingly, phytosphingosine-1-phosphate could mimic the
S1P functions and further promote the imbalance of sphingolipid
metabolism that seems already altered in allergic patients. This
ligand characteristic of LTPs, and the metabolites resulting

from its processing, could explain the severity of allergic
reactions to LTPs in comparison with other allergenic proteins.
However, a more detailed and directed lipidomic analysis of
patients allergic to LTPs should be carried out to confirm
this hypothesis, since the evidence currently presented is
quite indirect. In addition, it would be interesting to make
a distinction between the alterations that arose during the
first phase of allergic sensitization and the ones occurring
during the disease phase, with the aim of discovering new
biomarkers that predict in advance the potential development of
an allergic response that, especially in the case of LTPs, can have
fatal results.

CONCLUSIONS

Although allergy has been classically studied as a protein-
centered pathology, few allergens have been described to present
intrinsic characteristics that make them more prone to induce
type 2 (T2) responses. With allergic diseases increasing in
prevalence for the last two decades, there is a growing trend
to study allergy as a multifactorial disease (54). In this context,
the patients’ genetic background and their lifestyle, but also the
environmental conditions in which the allergens are found and
exposed [such as during an infection (55) or as accompanied
by other epithelial stressors (27)] are important variables that
must be studied in detail to understand why sensitization ends
up happening. LTPs are relevant in this line of study because they
are naturally bound to lipidic molecules in the plant (14), thus
conditioning that patients are typically co-exposed to both the
protein and the lipid when getting in contact with the allergenic
source. Hence, LTPs offer a good chance to understand how
lipids can modulate the immunological state of the patient,
working in conjunction with the allergen itself to induce the
atopic phenotype in the organism.

Several mechanisms have been proposed to explain how
lipids transported by LTPs can promote allergic sensitization
to the protein, including alterations of epithelial barriers
integrity and conformational changes that expose IgE
epitopes in the protein’s surface. However, apart from
these indirect effects, it has also been demonstrated that
allergenic LTPs share a common CPT-PHS ligand that
directly shapes the immunological landscape of the tissue,
both in human cell cultures and in in vivo mouse models,
presumably by altering the sphingolipid metabolism. This
is in accordance with recent results obtained by lipidomic
techniques to study samples from allergic patients, where clear
alterations of phospholipid and sphingolipid homeostasis have
been identified.

Nevertheless, despite all the advances accomplished, there
is still a great body of work to be done to fully understand
how lipids transported by LTPs determine the fate of the
immunological response that is going to be initiated toward
the protein. Although promising, the number of murine models
published up to now regarding this topic is too low. In addition,
in the vast majority of them, the use of natural LTP ligands
is substituted by exogenous adjuvants, so the contribution
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of lipid ligands during the sensitization process is dismissed.
Similarly, studies derived from lipidomics in profilin allergy
and atopic dermatitis suggest that imbalance of lipid metabolic
pathways in plasma and skin samples, respectively, are tightly
related to allergy pathology and disease severity. However,
studies involving LTP allergic subjects are limited, despite the
promising results derived from the ones that have already been
published in recent years, which highlight the relevance of
phospholipids and sphingolipids in the deregulation surrounding
the allergic response.

In light of the above, we believe that it is important to
design new murine models that can shed some light to the
questions that remain unsolved up to this point. Also, we
think it could be interesting to encourage LTP patients to
participate in lipidomic studies that can help to compare LTP
allergy to already well-known similar pathologies, such as profilin
sensitization. Globally, results derived from studies about the
molecular basis of the LTP allergies could help to understand
better the clinical outcomes observed in the patients, as well as
to design new therapeutic strategies directed to specific targets
to reverse their pathogenic profiles and improve their quality
of life.
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