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Abstract

TGF-b family members play a relevant role in tumorigenic processes, including hepatocellular carcinoma (HCC), but a
specific implication of the Bone Morphogenetic Protein (BMP) subfamily is still unknown. Although originally isolated from
fetal liver, little is known about BMP9, a BMP family member, and its role in liver physiology and pathology. Our results show
that BMP9 promotes growth in HCC cells, but not in immortalized human hepatocytes. In the liver cancer cell line HepG2,
BMP9 triggers Smad1,5,8 phosphorylation and inhibitor of DNA binding 1 (Id1) expression up- regulation. Importantly, by
using chemical inhibitors, ligand trap and gene silencing approaches we demonstrate that HepG2 cells autocrinely produce
BMP9 that supports their proliferation and anchorage independent growth. Additionally, our data reveal that in HepG2 cells
BMP9 triggers cell cycle progression, and strikingly, completely abolishes the increase in the percentage of apoptotic cells
induced by long-term incubation in low serum. Collectively, our data unveil a dual role for BMP9, both promoting a
proliferative response and exerting a remarkable anti-apoptotic function in HepG2 cells, which result in a robust BMP9 effect
on liver cancer cell growth. Finally, we show that BMP9 expression is increased in 40% of human HCC tissues compared with
normal human liver as revealed by immunohistochemistry analysis, suggesting that BMP9 signaling may be relevant during
hepatocarcinogenesis in vivo. Our findings provide new clues for a better understanding of BMPs contribution, and in
particular BMP9, in HCC pathogenesis that may result in the development of effective and targeted therapeutic
interventions.
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Introduction

Aberrant Transforming Growth Factor–beta (TGF-b) signaling

has been associated with many human diseases, including cancer

[1]. During the tumorigenic process, TGF-b acts as a double edge-

sword: on one hand, in normal and pre-malignant cells, TGF-b is

a cytostatic, pro-apoptotic factor. On the other hand, in cancer

cells, TGF-b promotes tumor growth, immune evasion and a

migratory/invasive phenotype. What roles other TGF-b super-

family members, such as the Bone Morphogenetic Protein (BMP)

subfamily play in cancer, has only been started to be addressed in

the past few years.

BMPs were discovered about 50 years ago for their capacity to

regulate bone and cartilage formation [2,3], but our current

knowledge indicates BMPs have a much broader role than

originally thought [4]. In fact, their relevant function during

development is beyond any reasonable doubt [5], and in recent

years, it has become clear that BMPs also play a significant role in

adult tissue homeostasis by controlling many different cellular

processes such as proliferation, differentiation, migration, survival

and apoptosis [4,6]. BMPs exert their effects by binding to a

heterotetrameric transmembrane receptor complex formed by a

type I (Activin like kinase, ALK) and a type II serine/threonine

kinase receptor that once activated recruits and phosphorylates the

specific effector proteins, so-called R-Smads, Smad1, 5 and 8.

Phosphorylated Smad1,5,8 bind to co-Smad Smad4 and accumu-

late in the nucleus, where together with specific binding partners

modulate gene transcription [7]. It has been described that BMPs

could also trigger non-canonical or non-Smad signaling pathways

that in certain contexts are key for the biological effects of BMPs

[8].

Dysregulation of BMP signaling can have pathological conse-

quences in many different diseases [9]. Among them, BMP

contribution in cancer is a matter of intense investigation as both

pro- and anti-tumorigenic activities for different members of the

family have been reported [10,11,12]. BMP ligands are overex-

pressed in several tumor types, including prostate, melanoma,

non-small cell lung carcinoma, ovarian and gastric cancer [12].

Besides, aberrant expression of BMP receptors has been associated

with the tumorigenic process [11]. Pro-tumorigenic activity of the

BMPs not only includes promotion of proliferation, migration/

invasion, epithelial to mesenchymal transition (EMT) and survival,
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but recently their role in tumor dormancy and recurrence has

been described [13].

Hepatocelullar carcinoma (HCC) is a devastating cancer type,

ranking sixth in incidence and the third leading cause of cancer

death worldwide, yet molecular mechanisms driving hepatocar-

cinogenesis remain largely unknown [14]. In fact, the role of BMPs

in HCC has only began to be addressed [15]. Aplying the systems

biology approach, in hepatitis B virus X antigen transgenic mouse,

BMP7 and BMP4 have been found to be up-regulated in cirrhosis

and liver cancer [16]. Furthermore, BMP4 and BMP6 are

overexpressed in both human HCC cell lines and tissues and

importantly, BMP4 expression strongly correlates with high tumor

grade [17,18] having recently being proposed as marker for the

prediction of HCC recurrence and prognosis [19]. BMP4

produced by HCC cells has an autocrine effect promoting

invasion and anchorage independent growth, together with a

paracrine effect increasing tube formation in endothelial cells, thus

promoting tumor vasculogenesis. BMP antagonists, Noggin and

Chordin, which are capable of sequestering BMP ligands in the

extracellular space, impaired HCC cell migration and invasion

confirming the BMP signaling involvement in these cellular

processes [20]. BMP9 was first isolated in fetal mouse liver [21],

and it is also expressed in adult healthy liver [22]. Although it is

known to be overexpressed in Hep3B and PLC/PRF/5 HCC cells

[20], its precise contribution to the hepatocarcinogenesis process

has just began to be explored. In a recent work, Li and coworkers

have found that BMP9 induces EMT and increased migration in

HCC cells [23]. Here, we have investigated BMP9 role in HCC

cell growth. Our results provide solid evidence for a role of BMP9

in the promotion of HCC cell growth, effect that was not observed

in non-transformed hepatocytes. In HepG2 cells, we demonstrated

that BMP9 promotes survival and both anchorage dependent and

independent cell growth. Importantly, using different approaches

we also show that HepG2 cells presented an autocrine BMP9

production that might occur also in vivo. Altogether, our findings

provide new clues for a better understanding of BMP contribution

in HCC pathogenesis.

Materials and Methods

1. Materials
The following reagents were used: BMP9 and ALK1 extracel-

lular domain (ALK1ecd) were from R&D Systems (Minneapolis,

MN). Dorsomorphin was from Calbiochem (La Joya, CA) and

LDN193189 from Miltenyi Biotec (Pozuelo de Alarcón, Madrid).

AccuMax tissue microarrays of liver cancer tissues (A204II) and

ovary cancer tissues (A213II) were purchased from Stretton

Scientific Ltd. Bronchial Epithelial Cell Growth Medium (BEBM)

and BEGM bullet kit were purchased from Lonza Iberica

(Barcelona, Spain). Dulbecco’s modified Eagle’s medium

(DMEM), Minimum Essential Medium (MEM), fetal bovine

serum (FBS) and trypsin-EDTA were from Gibco-Invitrogen

(Barcelona, Spain). Penicillin, streptomycin, HEPES, bovine

serum albumin (fraction V, fatty-acid free), propidium iodide

and all buffer reagents were from Sigma-Aldrich. [3H]-thymidine

(25.0 Ci/mmol), Horseradish peroxidase-conjugated secondary

antibodies and ECL reagent, were from GE Healthcare Europe

(Barcelona, Spain). Antibodies against the following proteins were

used: Phospho-Smad1 (Ser463/465)/Smad5 (Ser463/465)/

Smad8 (Ser426/428) polyclonal antibody (#9511) and Smad1

polyclonal antibody (#9743) from Cell Signaling Technology

(Beverly, MA). Smad2/3 monoclonal antibody (#610842) was

from BD Biosciences (Madrid, Spain) and Inhibitor of DNA

binding1 (Id1) (C-20) polyclonal antibody (sc-488) from Santa

Cruz Biotechnology, Inc. (Paso Robles, CA). All of them were used

1:1000. Polyclonal anti human BMP9 antibody (AP2064a,

Abgent, San Diego, CA) was used in immunohistochemical

analysis.

2. Cell Culture
HepG2, Hep3B and Huh7 human HCC epithelial cells were

obtained from the European Collection of Cell Cultures

(ECACC), and non-tumoral human hepatocyte cell line THLE3

from the American Type Culture Collection (ATCC). For cell

culture, the following media were used: DMEM for HepG2 and

Huh7, MEM for Hep3B and BEBM supplemented with BEGM

Bullet kit for THLE3. THLE3 cells were cultured in coated plates

(0.01 mg/ml fibronectin, 0.03 mg/ml collagen I and 0.01 mg/ml

BSA). HepG2 cells stably expressing a reporter plasmid consisting

of BMP-responsive elements from the Id1 promoter fused to a

luciferase reporter gene (HepG2BRA) were kindly provided by Dr.

Rifkin, from New York University Langone School of Medicine

[24]. HepG2BRA cells were cultured in DMEM supplemented

with 700 mg/ml G418. Cell lines were grown in media supple-

mented with 10% FBS, 100 U of penicillin and streptomycin per

ml and maintained in a humidified incubator at 37uC and a 5%

CO2 atmosphere.

3. Proliferation Studies
10,000 or 20,000 cells/well in 12 well plates were plated and

serum starved prior to treatment with different factors. At various

time points, cells were harvested by trypsinization and cell number

was determined using a Casy cell counter (Roche).

4. DNA Synthesis Analysis
Cells were plated at a density of 17,500 cells/sq cm in DMEM

with 10% FBS. The following day, cells were serum starved and

incubated for 48 hours with or without BMP9. Incorporation of

[3H]-thymidine during the last 40 hours of culture was measured

in trichloroacetic acid-precipitable material as previously de-

scribed [25].

5. Analysis of Cell DNA Content by Flow Cytometry
Cells were harvested by trypsinization, fixed in 70% ethanol

(220uC) for 1 min, and treated with RNaseA (10 mg/ml) for

30 min at 37uC. After propidium iodide staining (0.05 mg/ml,

15 min at room temperature in the dark), the cellular DNA

content was analyzed in a FACScan flow cytometer (Becton-

Dickinson, San Jose, CA). For computer analysis, only signals from

single cells were considered (10,000 cells/assay).

6. Analysis of Apoptosis by Phosphatidylserine Exposure
Cells were harvested by trypsinization and washed once with

PBS. 500,000 cells were resuspended with 195 ml of binding buffer

(10 mM HEPES, pH 7.4, 2.5 mM CaCl2, 140 mM NaCl)

supplemented with 5 ml annexin V-FITC (BD Pharmingen) and

incubated for 10 min at room temperature. Samples were

centrifuged and resuspended with 300 ml of binding buffer

containing 1 mg/ml propidium iodide. Fluorescence intensity

was analyzed using a FACSCalibur flow cytometer. 10,000 cells

were recorded in each analysis.

7. Measurement of Apoptotic Index
Measurement of apoptotic index was performed as previously

described [26]. After staining with propidium iodide, cells

undergoing apoptosis were scored under inverted fluorescence

microscope (Eclipse TE300, Nikon) at high magnification (x60)
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following standard morphological criteria. Apoptotic indices were

calculated after counting a minimum of 1000 cells per treatment in

a blinded manner.

8. Western Blotting
Whole cell lysates and western blotting was performed as

described previously [27].

9. RNA Isolation and qRT-PCR
RNA was isolated using TRIZOL reagent (Invitrogen). cDNA

was prepared using the DyNAmo Sybr Green 2-step qRT-PCR kit

(Finnzymes). Quantitative RT-PCR was performed as described

[27]. Id1, BMP9 and 18S primers were obtained from Qiagen.

Amplified products were analyzed by a Chromo4 continuous

fluorescence detector (Biorad) and Opticon Monitor3 software.

10. Transcriptional Reporter Assay
20,000 HepG2BRA cells were plated in 24 well plates

containing DMEM plus 10% FBS and allowed to attach for 18

hours. Cells were incubated with DMEM 0.1% FBS for 8 hours

and BMP9 added. After 15 hours of treatment, cells were washed

with PBS and lysed using 100 ml of reporter lysis buffer (Promega,

Madison, USA). To measure luciferase activity, 40 ml of lysate

were added to 40 ml Luciferase Assay Reagent (Promega) and

luminescence was quantitated using a Fluostar Omega luminom-

eter (RMG Labtech). Luciferase units were normalized per cell

number.

11. Soft Agar Assays
Soft agar assays were performed as previously described [28].

Briefly, 20,000 cells/well in 6 well plates were plated in DMEM

supplemented with 5% FBS and 0.45% agarose on the top of

solidified agarose (0.9% in DMEM supplemented with 5% FBS).

300 ml DMEM with or without the treatment were added to each

well twice weekly. Colonies were counted 3 weeks after seeding.

Colonies of more than 50 mm in diameter were scored.

12. Retroviral Infection
Oligonucleotides targeting human BMP9 or non-silencing

oligos (Table S1 in File S1) were annealed and cloned into Xho-

1/Eco-RI digested MSCV/LTRmiR30-PIGDRI (LMP) (a kind gift

of Ross Dickins and Scott Lowe). All constructs were sequenced

prior to use and are referred to as non-silencing (LMP-NS), LMP-

shBMP9#1 and LMP-shBMP9#2. Retrovirus was generated as

described [27]. Stable cell pools were generated after outgrowth in

media containing 0.5 mg/ml puromycin.

13. Immunohistochemistry
Immunohistochemistry with BMP9 antibody was performed as

previously described [27].

14. Statistical Analysis
Statistical analysis was performed by Student’s t-test analysis.

Results

1. BMP9 Promotes Cell Growth in HCC Cell Lines but not
in Non-transformed Hepatocytes

Previous reports in the literature have indicated that BMP9 is

expressed mainly in fetal [21] and adult [22,29] liver where it was

shown to bind membrane receptors in non-parenchymal cells,

particularly liver endothelial cells and Kupffer cells [29]. The

HCC cell line HepG2 was also shown to respond to BMP9 with an

increased proliferation [30]. In order to extend these observations,

we first analyzed the response to BMP9 in terms of cell growth of

different liver cancer cell lines. The effect of BMP9 was checked in

low serum conditions (0.1% FBS) to avoid the bioactive

concentrations of BMPs (BMP4, BMP6 and importantly, BMP9)

in FBS [31]. Therefore, HepG2, Hep3B and Huh-7 human HCC

cells were incubated for 15 hours in 0.1% FBS media and then

treated with 5 ng/ml of BMP9 for 4 days. BMP9 triggered a

moderate but significant growth stimulatory effect in Huh7 and

Hep3B cells, while HepG2 cell number was doubled upon BMP9

treatment (figure 1A). Importantly, when non transformed

hepatocytes, such as primary adult mouse hepatocytes, immortal-

ized mouse neonatal hepatocytes or a human immortalized

hepatocyte cell line (THLE3) were treated with BMP9 in the

same conditions, the proliferative effect of BMP9 was not

observed, and even a decrease in cell number was found in

primary hepatocytes (figure 1A and figure S1 in File S1). To

further confirm these data, THLE3 cells were incubated with

different BMP9 concentrations and yet again, cell numbers were

similar in all conditions, whilst cells did respond to proliferative

stimulus like 10% FBS (figure 1B). We next assayed BMP9

treatment for different periods of time, in the presence of 10% FBS

or in low serum conditions (0.1% FBS), and THLE3 cells did not

respond to BMP9 in terms of growth in any of the conditions

tested (figure 1C). As HepG2 cells presented the best response to

BMP9-induced cell growth, we decided to use them for subsequent

experiments. In order to further optimize, if possible, our

experimental settings, we next performed a dose/response analysis

of the growth effect in HepG2 cells using two different approaches,

cell counting and the CellTiter-Glo luminescent cell viability assay.

BMP9 increased cell number in a dose-dependent manner, having

a maximal response at concentration of 5 ng/ml that was used

hereafter (figure 1D and figure S2A in File S1). Additionally, we

performed a time-course analysis of the BMP9 growth effect at

different time points. After 2 days of treatment, a significant

difference in cell number between non-treated and treated cells

was found, which was greater after longer treatment (4 to 8 days),

with a 2- to 4-fold increase in the number of cells (figure 1E and

figure S2B in File S1). To know the relevance of the BMP9 growth

effect in HepG2 cells, we compared it with other well-known liver

mitogens such as EGF, insulin and IGF1. Our data revealed that

BMP9-promoted HepG2 cell growth was comparable to that

observed with insulin, IGF1 and EGF at their respective optimal

concentrations (figure S3 in File S1). All together these data

suggest that BMP9 promotes cell growth of liver cancer cell lines,

an effect that is not observed in non-transformed hepatocytes.

2. BMP9 Activates the Canonical Pathway in HepG2 Cells
We next wanted to analyze the signaling pathway triggered by

BMP9 in HepG2 cells. BMP9 induced Smad1,5,8 phosphorylation

in a dose-dependent manner (figure 2A). Phosphorylation of

Smad1,5,8 occurred early, being already observed after 10–15

minutes of BMP9 treatment, and it was sustained for over at least

24 hours (figure 2B). To test the transcriptional response to BMP9,

we used HepG2 cells stably expressing a reporter construct

consisting of a BMP-responsive element (BRE) from the Id1

promoter fused to a luciferase reporter gene, named as

HepG2BRA cells [24]. These cells have been previously shown

to respond to several BMPs including BMP2, BMP4, BMP6 and

BMP7 by increasing the luciferase activity [24]. Here, HepG2-

BRA cells were challenged with different concentrations of BMP9

and the induction of luciferase expression was analyzed. Data

presented in figure 2C show that BMP9 treatment increased BRE-

luciferase reporter activity in a dose-dependent manner with a

Protumorigenic Role of BMP9 in HCC Cells
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maximal stimulation at a concentration of 5 ng/ml. Consistent

with these results, we found that BMP9 enhanced Id1 expression,

both at mRNA and protein levels (figure 2D and 2B, respectively).

Jointly, these data indicate that BMP9 triggers the canonical

Smad1,5,8 pathway in HepG2 cells.

3. Autocrine BMP9 Production Supports Anchorage
Dependent and Independent HepG2 Cell Growth

While studying the growth stimulatory effects of BMP9, we

found that HepG2 cells were capable of proliferating in low serum

(0.1% FBS) conditions (figure 1E and figure S2B in File S1). These

Figure 1. BMP9 increases cell number of HCC cell lines but not of immortalized human hepatocytes. A. Huh7, Hep3B and HepG2 liver
cancer cells and immortalized human hepatocytes (THLE3) were incubated in the absence or in the presence of 5 ng/ml BMP9 in 0.1% FBS media and
counted at day 4. Data from 3 independent experiments performed in triplicate (mean 6 S.E.M.) are shown. B. THLE3 cells were incubated with
different concentrations of BMP9 in 0.1% FBS media and counted after 4 days of treatment. Data from 3 independent experiments performed in
triplicate (mean 6 S.E.M.) are shown. C. Proliferation curve of THLE3 cells incubated for different periods of time 2/+ BMP9 (5 ng/ml) in 0.1% FBS or
in 10% FBS media. Data from one representative experiment (n = 3) out of 3 (mean 6 S.D.) are shown. D. HepG2 cells were incubated with different
concentrations of BMP9 in 0.1% FBS media and counted after 4 days of treatment. Data from 3 independent experiments performed in triplicate
(mean 6 S.E.M.). E. HepG2 cells were incubated for different periods of time 2/+ BMP9 (5 ng/ml) in 0.1% FBS media. Data from 6 independent
experiments performed in triplicate (mean 6 S.E.M.). Statistical analysis was carried out using the paired t-test and data were compared to untreated
samples, * = P,0.05, ** = P,0. 01, *** = P,0.001.
doi:10.1371/journal.pone.0069535.g001
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findings, together with the fact that human transformed and non-

transformed hepatocytes express BMP9 [20,22], prompted us to

speculate on a potential autocrine BMP9 effect in HepG2 cells.

We first assayed BMP9 production in HepG2 cells by using a

previously published sensitive bioassay for BMP9 [31], and we

found that bioactive BMP9 is secreted by HepG2 cells into the

culture media (data not shown). In a next step, we took advantage

of the BMP inhibitors and ligand traps that have become available

in recent years. Dorsomorphin (Dm) was discovered in a high

throughput small molecule screen in zebrafish embryos as an

inhibitor of the BMP type I receptors, i.e. ALK2, 3 and 6 [32].

LDN193189 is a BMP inhibitor that was developed using Dm as

template and that has been described to be more potent and

specific than Dm [33]. Both Dm (1 mM) and LDN193189

(100 nM) completely blocked phosphorylation of Smad1,5,8

triggered by BMP9 in HepG2 cells (figures 3A and 3B). In these

conditions, Dm and LDN193189 effectively impaired BMP9-

induced HepG2 cell growth (figures 3D and 3E). We then tested a

purified Fc-coupled extracellular domain of ALK1 (ALK1ecd),

which binds to BMP9 with high affinity [34], and has been used

before as a specific ligand trap for BMP9 [27,35,36]. Incubation

with ALK1ecd efficiently inhibited both BMP9-induced

Smad1,5,8 phosphorylation and increase in HepG2 cell number,

demonstrating that ALK1ecd acts as a potent inhibitor for BMP9

(figures 3C and 3F). Interestingly, we also observed that ALK1ecd

treatment of Huh7, Hep3B and HepG2 cells growing in presence

of 10% FBS resulted in reduced proliferation rates in these cell

lines, suggesting that serum-derived BMP9 functions as a

proliferative factor for them (figure S4 in File S1). On the other

hand, THLE3 cell growth was not altered when ALK1ecd was

added, further confirming that normal hepatocytes do not respond

to BMP9 by increasing their proliferation (figure S4 in File S1).

When HepG2 cells were incubated in low serum media and in the

presence of either Dm or LDN193189 or importantly, ALK1ecd,

we found a decrease in basal cell proliferation (figure 3G), data

that may imply that autocrine BMPs, and specifically BMP9,

contribute to basal HepG2 cell growth. Strikingly, when THLE3

were incubated in low serum media, cell number was not modified

regardless the presence of ALK1ecd, suggesting that non-

transformed hepatocytes do not respond to a putative autocrine

BMP9 loop in terms of proliferation (figure 3H). To further

confirm these data, we performed stable knockdown experiments:

a non-silencing control (LMP-NS) and BMP9 shRNA pMir-based

retroviral vectors (LMP-shBMP9#1 and #2) were used to

generate stable HepG2 cell lines with reduced BMP9 levels

(figure 4A). shBMP9 #1 and #2 HepG2 cell lines showed an

impaired basal proliferation in 0.1% FBS media when compared

to non-silencing control cells (LMP-NS) (figure 4B). Importantly,

recombinant BMP9 was able to rescue this effect and triggered a

strong growth response in cells expressing low levels of endogenous

BMP9 (figure 4B). In agreement with these data, transient

knockdown of BMP9 using siRNA yielded a 30% decrease in

Figure 2. BMP9 activates the Smad1,5,8 pathway in HepG2 cells. A. HepG2 cells were incubated for 1 hour with different concentrations of
BMP9 in 0.1% FBS media. Western blots were performed with antibodies that recognized activated (phosphorylated) Smad1, 5 and 8 (P-Smad1,5,8)
and Smad1 as loading control. A representative experiment of 2 is shown. B. HepG2 cells were incubated for different periods of time 2/+ BMP9
(5 ng/ml) in 0.1% FBS media. Western blots were performed with antibodies that recognize Id1, P-Smad1,5,8 and total Smad1 (loading control). A
representative experiment of 3 is shown. C. HepG2 stably expressing BRE-luciferase (HepG2-BRA) cells were plated and incubated with 0.1% FBS for
15 hours, and then treated with different concentrations of BMP9 for additional 15 hours. Luciferase activity was normalized to cell number. Data are
shown as fold induction (relative to untreated cells) and are from one representative experiment (n = 4) out of 3 performed (mean 6 S.D.). Statistical
analysis was carried out using the paired t-test and data were compared to untreated samples, *** = P,0.001. D. HepG2 cells were incubated 2/+
BMP9 (5 ng/ml) for different periods of time in 0.1% FBS media and Id1 levels were analyzed by qRT-PCR and normalized to 18S. Fold changes relative
to untreated samples were determined (mean 6 S.E.M, n = 3).
doi:10.1371/journal.pone.0069535.g002
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HepG2 cell number when cultured in low serum. Exogenously

added BMP9 had a marked growth effect in these cells,

highlighting once again a relevant role for BMP9 in HepG2

proliferation (figure S5 in File S1).

Since BMP signaling has been previously involved in anchorage

independent growth in cancer cells including HCC cells [17], we

next aimed to analyze the potential involvement of BMP9 in this

process. In order to do so, colony formation assays were performed

in HepG2 cells treated with BMP9. An increase in the number of

colonies was observed upon BMP9 treatment when compared

with the control condition (figure 4C). Conversely, when

dorsomorphin (Dm) was assayed, we found a reduction in the

number of colonies in Dm-treated cells as compared with non-

treated cells (figure 4C). Furthermore, previously generated

shBMP9 #1 and #2 stable HepG2 cell lines grown in anchorage

independent conditions gave rise to a significantly reduced colony

number compared with control (LMP-NS) cells (figure 4D). Taken

together, these findings indicate that HepG2 cells exhibit an

autocrine BMP9 signaling, which supports their growth, both in

anchorage dependent and independent conditions.

Figure 3. Effect of BMP receptor inhibitors and ALK1ecd treatment on HepG2 cell growth. A, B and C. HepG2 cells were incubated for 1
hour with A. dorsomorphin (1 mM, Dm), B. LDN193189 (100 nM) or C. ALK1ecd (16 fold molar excess, F.M.E.) and 2/+ BMP9 (5 ng/ml) in 0.1% FBS
media. Western blots were performed with antibodies that recognize P-Smad1,5,8 and Smad1 as loading control. A representative experiment of 2 is
shown in each case. D. HepG2 cells were incubated as in A and counted at day 4. Data from 2 independent experiments performed in triplicate
(mean 6 S.E.M.). E. HepG2 cells were incubated as in B and counted at day 4. Data from 3 independent experiments performed in triplicate (mean 6
S.E.M.). F. HepG2 cells were incubated as in C and counted at day 4. Data from 3 independent experiments performed in triplicate (mean 6 S.E.M.).
G. HepG2 cells were incubated without (C) or with dorsomorphin (Dm, 1 mM), LDN193189 (100 nM) or ALK1ecd (16 F.M.E) in 0.1% FBS media and
counted at day 4. Data from at least 3 independent experiments performed in triplicate, displayed as percentage of C0 samples (untreated cells,
day = 0) (mean 6 S.E.M). H. THLE3 cells were incubated with ALK1ecd (16 F.M.E) in 0.1% FBS media and counted at day 4. Data from 2 independent
experiments performed in triplicate, displayed as percentage of C0 (untreated cells, day = 0). Statistical analysis was carried out using paired t-test and
data were compared to untreated samples, * = P,0.05, ** = P,0. 01, *** = P,0.001 or as indicated. n.s. = not significant.
doi:10.1371/journal.pone.0069535.g003
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4. BMP9 Increases Proliferation and Impairs Low Serum
Triggered Apoptosis in HepG2 Cells

So far our data clearly demonstrated that exogenously added,

serum derived and autocrine derived BMP9 increases cell growth

in HepG2 cells. Both proliferative and anti-apoptotic properties

have been described for BMP signaling, and indeed BMP9 has

been shown to increase proliferation in a variety of cell types

[27,34,37], including liver cells [30]. In agreement with previous

reports we found that BMP9 increased cell proliferation, measured

by the [3H]-thymidine incorporation assay (figure 5A). We further

confirmed these data by performing flow cytometric analysis of

DNA content in HepG2 cells treated or not with BMP9 for 24

hours in 0.1% FBS media. Our data show that upon BMP9

treatment an increase in the percentage of HepG2 cells in S/G2/

M phases is observed concomitantly with a decrease in the

percentage of cells in G0/G1 phases. Indeed, cells incubated in

presence of serum (10%) and BMP9 treated cells (0.1% FBS)

present similar percentages of cells in each cell cycle phase,

indicating that BMP9-promoted cell proliferation is comparable to

that observed in cells incubated with 10% FBS (figure 5B). It is

noteworthy that at 24 hours of treatment, the percentage of

hypodiploid cells (sub-G1 peak) was very low and similar in all

conditions assayed (percentage of subG1 cells #1%) indicating the

absence of an apoptotic process in this early time point. It has been

previously described that serum starvation triggers an apoptotic

death in HepG2 cells [38,39], effect that was also observed in our

assay conditions (0.1% FBS). Indeed, after 4 days in low serum

media an important increase in apoptotic cells was observed,

measured by analysis of hypodiploid cells, by phosphatidylserine

exposure on the outer leaflet of the plasma membrane and by

quantification of apoptotic nuclei (figure 5C, 5D and 5E).

Strikingly, BMP9 treatment efficiently abolished the apoptotic cell

death in these conditions. In this line of evidence, we also found

that BMP9 partially rescued cell death induced by other apoptotic

stimuli such as TNF-a in HepG2 cells (figure S6 in File S1).

Collectively, data presented here indicate that BMP9 has a dual

role, both promoting a marked proliferative response and exerting

an anti-apoptotic function in HepG2 cells, which results in a

robust BMP9 effect on liver cancer cell growth.

5 BMP9 Expression is Increased over Normal Levels in
43% of HCC Human Samples

In order to explore BMP9 expression levels in human HCC

samples, an immunohistochemistry (IHC) analysis on a small

Figure 4. BMP9 production supports HepG2 anchorage dependent and independent cell growth. A. Independent stable cell lines
expressing non-silencing (N.S.) and two different shRNAs targeted against BMP9 were generated by retroviral infection of HepG2 cells. BMP9 mRNA
levels were determined by quantitative RT-PCR and normalized to 18S. Data expressed relative to N.S. cells (assigned an arbitrary value of 1) from 3
different experiments (mean 6 S.E.M). B. Non-silencing (NS), shBMP9#1 and #2 stable HepG2 cell lines were incubated in 0.5% FBS and 2/+ BMP9
(5 ng/ml) and counted at day 6. Data from 6 independent experiments performed in triplicate, displayed as percentage of N.S. untreated cells (mean
6 S.E.M). C. HepG2 cells were plated in soft agar and treated with BMP9 (5 ng/ml) or with dorsomorphin (Dm, 1 mM) for 3 weeks (added twice a
week) and the colony number was counted. Data (n = 4, BMP9; n = 8, Dm) are displayed as percentage of control cells (mean 6 S.E.M). D. Previously
generated non-silencing (N.S.), shBMP9#1 and #2 stable HepG2 cell lines were plated in soft agar and counted after 3 weeks. Data from 4
experiments, displayed as percentage of N.S. cells (mean 6 S.E.M). Statistical analysis was carried out using paired t-test and data were compared to
untreated N.S. or control samples or as indicated, * = P,0.05, ** = P,0. 01, *** = P,0.001.
doi:10.1371/journal.pone.0069535.g004
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commercial liver cancer tissue microarray (TMA) was performed.

The TMA contained 8 non-neoplastic and 35 HCC samples from

cancer patients. As a negative control for BMP9 staining we used

non-epithelial ovarian tumor samples, since we had previously

shown that BMP9 expression is specifically absent in this ovarian

cancer type [27] (figure S7 in File S1). Results presented in figure 6

show that BMP9 expression was detected in non-neoplastic liver

samples (figure 6A and data not shown). These data are in

agreement with previous data in the literature describing that

normal human liver parenchymal cells i.e. hepatocytes and

intrahepatic biliary epithelial cells express BMP9 [22]. When

BMP9 staining was analyzed in HCC samples, we could observe

different degrees in BMP9 expression, ranging from low expres-

sion (figures 6B and 6E) to high expression (figures 6C, 6D and

6F). We then classified HCC samples according to their BMP9

expression as compared to BMP9 expression levels in non-

neoplastic liver specimens as follows: BMP9 expression levels over

normal liver levels, BMP9 expression levels equal or lower than

normal liver (figure 6G). Using this approach, we found that 43%

(15 out of 35 HCC patients) presented increased BMP9 expression

levels as compared with non-neoplastic liver. These results are in

agreement with a recently published work that found that 39% of

human HCC samples analyzed presented a moderate to strong

BMP9 staining. Expression levels of BMP9 were positively

correlated with invasion [23]. The number of samples contained

in our TMA and their associated clinical data did not allow us to

establish further clinical correlations. It would be most interesting

to extend these observations with a more numerous TMA with

matching clinical parameters. Nevertheless, these data suggest that

BMP9 protein expression may be dysregulated during hepatocar-

Figure 5. BMP9 increases proliferation and impairs low serum triggered apoptosis in HepG2 cells. A. DNA synthesis as determined by
thymidine incorporation in HepG2 cells cultured for 24 hours in the absence or presence of BMP9 (5 ng/ml). Data are mean 6 S.E.M. of 4 independent
experiments and are displayed as percentage of untreated cells. B. HepG2 cells were incubated with or without BMP9 (5 ng/ml) in 0.1% FBS media or
in the presence on 10% FBS media for 24 hours and then nuclear DNA content was analyzed by flow cytometry. Percentages of cells corresponding to
the different cell cycle phases are shown. Data from 3 independent experiments performed in triplicate (mean 6 S.E.M.). Statistical analysis was
carried out using the paired t-test and data were compared to untreated samples (0.1% FBS), * = P,0.05, ** = P,0. 01, *** = P,0.001. C, D, E. HepG2
cells were treated as in B for 4 days. C–D. Cells were trypsinized and C. Nuclear DNA content was analyzed by flow cytometry. Percentages of
hypodiploid (apoptotic) cells are shown. Data from 3 independent experiments performed in triplicate (mean 6 S.E.M.). D. Cells were incubated with
annexin V and PI. Subsequently, fluorescence intensity was measured in a FACScan flow cytometer and the percentage of annexin V positive/PI
negative cells was calculated. Data from 3 independent experiments performed in triplicate (mean 6 S.E.M.). E. Apoptotic nuclei were visualized and
counted after PI staining under a fluorescence microscope. A minimum of 1000 nuclei was counted per condition. Data from 2 independent
experiments performed in triplicate (mean 6 S.E.M.). Statistical analysis was carried out using the paired t-test and data were compared to 10% FBS
media treated samples or as indicated, * = P,0.05, ** = P,0. 01, *** = P,0.001.
doi:10.1371/journal.pone.0069535.g005
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cinogenesis and that elevated BMP9 production together with a

differential response to this factor may constitute a strategy to

increase the tumor cell proliferation and survival.

Discussion

BMP9 regulates different cellular processes in a variety of cell

types, and in particular, the BMP9/ALK1 axis has been unveiled

as a major regulator of endothelial cell biology [35,40,41,42]. An

important role for BMP signaling in liver development is well

established. However, only in the past few years the involvement

of BMP signaling in adult liver homeostasis has been revealed [15].

In particular, the role of BMP9 in liver cells is only partially

understood. In this regard, just recently has been demonstrated

that BMP9 induces EMT that results in an increased migration of

HCC cells [23]. Here, we have investigated the relevance of BMP9

in liver tumor cell biology and have found that BMP9 has dual

pro-tumorigenic functions in HCC cells promoting both anchor-

age dependent and independent growth and survival.

The proliferative effect of BMP9 was only observed in

transformed hepatocytes. Neither the immortalized human adult

hepatocyte THLE3 cell line nor primary mouse adult or

immortalized mouse neonatal hepatocytes did respond to BMP9

in terms of cell growth. Differences at receptor expression level

could be the reason behind the different BMP9 response between

non-transformed and transformed hepatic cells. Although we have

not determined which type I receptor, ALK1 or ALK2, is

mediating BMP9 responses several evidences point towards

ALK2. Firstly, ALK1 expression is largely thought to be restricted

to endothelial cells [43], although some ovarian cancer cells [27],

chondrocytes [44] and interestingly, hepatic stellate cells [45] do

express it. ALK1 mRNA was not detected by RT-PCR in HepG2

cells [23] (Herrera and Inman, unpublished data). Importantly,

HepG2 cells do express ALK2 [23,24], and data from our

laboratory and others indicate that BMP9 is able to bind ALK2

receptor in non-endothelial cells, such as myoblasts, breast tumor

cells and ovarian surface epithelial and ovarian cancer cells

[27,35]. It is well established that Dm and LDN193189 are type I

BMP receptor (ALK2, ALK3 and ALK6) inhibitors, but no data

are available in the literature regarding their potential inhibitory

effect on ALK1. Data presented in this work indicate that both

Dm and LDN193189 completely block BMP9-triggered signaling

and proliferative effect in HepG2 cells, further suggesting ALK2

involvement in those events. Nevertheless, a detailed analysis of

BMP receptors and also co-receptor expression in normal and

transformed hepatocytes is required to fully clarify this point.

It is noteworthy that the differential response to BMP9 in

immortalized human hepatocytes and HepG2 cells is independent

of the BMP9 source. Our data indicate that exogenously added,

serum-derived and autocrine BMP9 promotes cell growth in

HepG2 cells but not in immortalized human hepatocytes. Both

pharmacological inhibition of BMPs (dorsomorphin and

LDN193189) and incubation of cells with ALK1ecd ligand trap

in low serum conditions decreased HepG2 cell growth, while

ALK1ecd treatment did not have any effect on THLE3 cell

growth. Importantly, these results were confirmed by siRNA and

shRNA-mediated BMP9 silencing, which further demonstrated

that BMP9 knockdown in HepG2 cells decreased both basal

proliferation and anchorage independent growth. Acquisition of

growth factor autocrine loops have been described in HCC cells

whose function is to enhance or support their tumorigenic

properties. Thus, ligands of the EGF family and their receptors

have been shown to play an active role not only in cell growth, but

also in the regulation of cell motility and invasion

[46,47,48,49,50]. HGF mRNA is not found in normal hepato-

cytes, but expressed in a high percentage of HCC, and in fact,

in vivo data support a role for the autocrine HGF/Met axis in

tumor promotion [51,52,53]. Along these lines, TGF-b inhibition

by different means impairs HCC cell proliferation and invasion,

suggesting a pro-tumorigenic role for autocrine TGF-b in HCC

cells [54]. Different cancer types have been described to present

BMP ligand autocrine loops, including BMP9 [12,27]. Important-

ly, HCC cells overexpress BMP4 and BMP6, which are required

for migration, invasion and anchorage independent growth

[17,18,20]. In line with these evidences, our in vitro and in vivo

data suggest that BMP9 production is increased in at least a subset

of HCC and this autocrine loop enhances cell growth. How cancer

cells acquire autocrine growth factors production is not completely

understood. In the case of BMP9, our IHC data and previous

reports indicate that healthy liver already produces BMP9 [22,29],

therefore, we hypothesize that HCC cells rather than acquire an

autocrine production of BMP9 itself, gain the capacity of

responding to BMP9 in terms of proliferation and cell survival.

Importantly, our data clearly show that BMP9 promotes cell

growth at the same level of well-established liver growth factors

such as EGF, IGF1 or insulin and is also involved in anchorage

independent growth in HepG2 cells. BMP9 is not only a strong

mitogen but it has also an important survival effect against low-

serum-induced apoptosis. Thus, consistent with previous results

[38,39] serum deprivation triggers an apoptotic cell death in

HepG2 cells that is significantly diminished when cells are treated

with BMP9. Our data also reveal that BMP9 could have a survival

effect in cell death induced by other apoptotic stimuli such as

TNF-a. Taken together, these data constitute the first evidence for

a role of BMP9 as an anti-apoptotic factor. The molecular

mechanisms underlying such effect are the current focus of our

studies.

In conclusion, awaiting further investigation to explore BMP9

function in non-transformed hepatocytes, we provide evidence to

propose BMP9 as a regulator of HCC cell growth, by promoting

proliferation and survival. Our data adds to the growing body of

evidence that suggest the BMPs may have pro-tumorigenic roles in

HCC and may be considered as potential therapeutic targets in

HCC therapy. In this regard, several drug companies are

developing ALK1 inhibitors on the basis of its antiangiogenic

properties [43] and clinical trials to assess ALK1 inhibitors effects

in advanced solid tumors have been launched. Giving the fact that

HCC is a hypervascularized tumor [55], and that ALK1 is highly

expressed in liver tumor blood vessels [56] HCC may be a good

candidate for ALK1 inhibition therapeutic strategy. Furthermore,

results presented in this work showing pro-tumorigenic functions

for BMP9 in HCC cells acting to promote both anchorage

dependent and independent growth and survival provide further

evidences for the use of ALK1-fusion protein in HCC treatment

considering that BMP9 withdrawal achieved by these drugs may

target the liver cancer cell itself.

Figure 6. BMP9 expression is increased over normal levels in 43% of human HCC samples. Sections of formalin fixed paraffin embedded
human liver tissues were stained with BMP9 antibody and counterstained with haematoxylin. Representative images of A. non neoplastic human
liver; B and C. human HCC japanese stage II; D, E, F. HCC japanese stage III. Scale bars represent 100 mm. G. Table summarizing BMP9 IHC of a
human liver cancer TMA. Staining was scored as stronger, equal and lower BMP9 staining than non-neoplastic tissue.
doi:10.1371/journal.pone.0069535.g006
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