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Abstract: The rapid development of ubiquitous mobile computing has enabled the collection of new
types of massive traffic data to understand collective movement patterns in social spaces. Contribut-
ing to the understanding of crowd formation and dispersal in populated areas, we developed a
model of visitors’ dynamic agglomeration patterns at a particular event using dynamic population
data. This information, a type of big data, comprised aggregate Global Positioning System (GPS)
location data automatically collected from mobile phones without users’ intervention over a grid
with a spatial resolution of 250 m. Herein, spatial autoregressive models with two-step adjacency
matrices are proposed to represent visitors’ movement between grids around the event site. We
confirmed that the proposed models had a higher goodness-of-fit than those without spatial or
temporal autocorrelations. The results also show a significant reduction in accuracy when applied to
prediction with estimated values of the endogenous variables of prior time periods.

Keywords: GPS; mobile phone data; spatiotemporal auto-regression model; adjacency matrix; travel
behavior

1. Introduction
1.1. Background

In recent years, several traffic accidents have occurred in the vicinity of certain public
events. In such cases, participants’ movements do not follow normal traffic patterns,
leading to an unexpected demand of transportation infrastructure. Thus, pedestrian or
automobile traffic jams frequently occur. For example, during the Akashi pedestrian bridge
accident of 2001, a stampede by a crowd of pedestrians caused a fatal accident [1]. It is likely
that the pedestrian bridge became a bottleneck and unexpected congestion developed.
Many accidents of pedestrian stampedes have also occurred outside Japan [2]. The Mina
stampede of 2015 remains fresh in memory. Many deaths were caused from this accident,
which occurred at an annual Haji pilgrimage.

To avoid such risks, visitors’ dynamic agglomeration patterns should be forecast in
areas surrounding gathering event sites. There are numerous approaches for estimating
pedestrians’ movement while at an event, and patterns of movement tend to differ before
and after an event, as participants naturally gather and disperse.

On the contrary, the number of mobile phone users in Japan has been explosively
increasing. According to the transition of contracts with mobile phone companies published
by the Ministry of Public Management, Home, Affairs, Posts, and Telecommunications,
the percentage of people with contracts reached 100% in 2012 [3]. Every mobile phone
sold after 2007 has included GPS. Therefore, we can gather location data from almost all
Japanese citizens by mobile phone rather than specialized GPS logger and IoT devices with
high initial costs.
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However, with respect to privacy, we can apply a coarse-grained modeling technique by
aggregating mobile phone location data. The Konzatsu-Tokei® dataset published by Zenrin
DataCom, Co. Ltd. Examples of applications of this dataset include “Density Map” [4]
and the “People Flow Project” [5]. In this study, we aim to understand unexpected traffic
demand and construct a spatial autoregressive model for estimating the flow of people near
event sites.

1.2. Literature Review and Problem Identification

Conventional travel demand analytics have typically utilized questionnaires or census
data. This kind of data does not represent travel behavior in detail, although it might be pos-
sible additionally to obtain travel behavior data regarding the time period when the survey
was conducted. In other words, this kind of data does not include real-time properties.

In response to these limitations, GPS data has often been used to understand real-
time travel behavior. When utilizing GPS data, it possible to acquire detailed position
and timestamp information of GPS devices, as well as information on the time the data
was acquired. This data basically contains location information (latitude, longitude) and
a timestamp. These contents are insufficient to analyze travel behavior, because some
attributes such as mode of travel and purpose are not included. Therefore, GPS data
usually used in combination with other data (ex. Census [6]).

On long-term time scales, the amount of GPS probe data available is generally too
large to process effectively in resource-constrained research settings, as analysis of this kind
of data requires substantial computational resources. Deep learning and machine learning
approaches to solving such problems have recently attracted considerable attention [7–10].

Acquisition of GPS probe data generally requires excessively expensive equipment,
often collected by moving vehicles. However, such data collection methodologies involve
well-understood limits in terms of size and bias. Thus, mobile phone data has attracted
research attention to avoid the limitations of other data collection methods. Mobile phones
generally include several sensors, and data can be acquired from them such as call detail
records(CDR) data, GPS data, and Bluetooth data.

Studies utilizing GPS data from mobile phone have examined origin-destination (OD)
estimation [11–13], tourist travel behavior [14], recognition of daily living patterns [15–18],
patten clustering of travel between home and work using GPS and CDR data [19], travel
mode classification using mobile phone GPS and accelerometer signal data [20], among
many others. GPS data is considered high-resolution information for accurately understand-
ing object movement. Therefore, when analyzing long-term and large-scale travel behavior,
one further pre-processing step (ex. map matching) is generally considered necessary.

CDR data is a transmission log between mobile phone and base stations. This data
includes device location information and a timestamp recording each instance in which a
mobile phone user performed a device action such as voice calls or data network access.
Moreover, CDR data is less precise, but also more compact, occupying less storage space
for a given time period compared to GPS data. Therefore, it is relatively more practical
to process CDR data in large-scale or long-term analyses. Studies using CDR data have
estimated OD information with Census data [21,22], as well as areas of congested traf-
fic [23], and counts of railway passengers [24], and has been used to conduct activity-based
analysis [25,26], and identify travel pattern by fusing CDR and Census data [27,28], among
many other diverse applications.

However, CDR data can be used to determine identifying personal information like
individuals’ home or work addresses if the head and tail of the acquired data is not
removed. Thus, CDR data not only is of lower resolution and more compact size than GPS
data, but also still involves significant privacy issues [29].

Aggregated population data which is preprocessed to address privacy issues has still
more compact size than either CDR or GPS data from mobile phones. This data is already
aggregated in a grid. Thus, this type of data is suitable for analyses of conducted over a
long period of time or a wide geographical area. However, the details of individual trips
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(ex. origin, destination, purpose, etc.) are unclear in such data, and it should be handled
carefully as a result. This type of data is often combined other data.

Many studies have been conducted concerning the characteristics of certain kinds
of big data, for instance focusing on population estimation in disaster situations [30–32],
or OD estimation [33]. Hayano et al. [30] analyzed aggregated population data during
the Fukushima Nuclear Power Plant accident resulting from the 2011 Tōhoku earthquake
and tsunami. This study clarified the public evacuation behavior. In order to understand
such an evacuation, direct interview or questionnaires were required. The authors then
visualized that behavior and estimated the population distribution in the area defined as an
evacuation zone [33] updated home and workplace related OD matrices using aggregated
population data, applying the entropy maximization principle to OD estimation. In Japan,
an investigation known as the Person Trip survey is conducted once every ten years for the
analysis of travel demand. The authors proposed a method for updating OD matrices using
aggregated population information from mobile phone GPS data because OD matrices
from the Person Trip survey were updated only with low frequency. However, few studies
have applied the aggregated population data to travel demand estimation at smaller
geographical spaces such as a crowd of participants in the vicinity of certain public events.

In contrast, research on travel behavior modeling focused on event participants at a
higher level of granularity is being actively conducted. As discussed above, numerous
studies have been conducted on analysis of travel behavior from a macro perspective.
Some representative examples examined visitor behavior analysis by combining GPS
and other data(survey data, questionnaire results, photo data) [34,35], identified activity
patterns of theme park visitors using GPS [36]. Therefore, approaches to understanding
recorded travel behavior using GPS data are beginning to attract attention. However, as yet,
few studies have been conducted on estimation of travel behavior using mobile phone
GPS data.

In terms of crowd behavior modeling (not only event participants), there are many
approaches; neural network/deep learning approach [37], image processing to video
monitoring data [38,39], indoor travel behavior analysis using Bluetooth tracking data [40],
and extracting travel behavior using Wi-Fi data [41,42]. A high initial cost is required to
acquire these data such as preparing cameras, receivers, and sensors. Also, the data are
obtained only around installed location. On the other hand, GPS data from mobile phone
is obtained more exhaustively, continuously, and at lower cost than those data. Therefore,
GPS data from mobile phone is attractive for observing the crowd mobility.

Thus, many studies have been conducted on crowd mobility in events and population
distribution estimation using mobile phone data such as CDR and GPS. To the best of our
knowledge, few studies have been conducted on estimation of population movement in
an area surrounding the event location using aggregated population data collected from
mobile phones. In this study, we extract characteristics of aggregated population data near
an event spot. Then, we develop and evaluate a spatial autoregressive model of population
movement in the designated area and time period.

2. Methodology
2.1. Data

The aggregated population data used in this study is known as congestion statistical
data and was collected by Zenrin DataCom, Co., Ltd. (Tokyo, Japan). This data was
gathered using the “AUTO GPS” function of phones operating on the network of NTT
DOCOMO Inc. (Tokyo, Japan), one of the largest mobile network companies in Japan.
This function automatically transmits the location data at every 5 min from the mobile
phones of those who allowed the company to collect the data. When mobile phones were
out of range for GPS signal, device location data from cell towers were interpolated via
GPS to estimate their position. The data collected in this process flow was then fit to a real
population map of a region separated into a mesh grid. Thus, it became difficult to identify
each individual user location due to the original and closed expansion coefficients.
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In this study, we utilize this data from Nagoya, Japan. Table 1 shows an overview
of the data used in this study. The research area is the whole of Nagoya city, which is
separated into a grid approximately 2000 meshes of 250 m square each. This mesh size was
set to ensure privacy and to reduce the effects of GPS-positioning errors.

Table 1. Overview of the data [43,44].

Data Item Date/Time/Mesh Code/Population

Acquisition Date 7 July 2012 (Sat.) 13 July 2012 (Fri.)
Time Slice 5 min
Time Zone 12:00–23:55
Aggregated Unit 250 m square mesh
Type of Event Baseball game
Event Spot Nagoya Dome
Time for Event 14:00–17:04 18:00–21:57
# of Spectator About 35,000 About 38,000

The events treated in this study were professional baseball matches held on 7 and
13 July 2012, which had durations from 14:00 to 17:04 and from 18:00 to 21:57, respectively.
The data was aggregated over a basic interval of 5 min. Therefore, data was collected from
14:00 to 17:00 for the first event, and from 18:00 to 21:55 for the second.

2.2. Descriptive Analysis
2.2.1. Descriptive Analysis of the Whole Research Area

The aggregated population in each mesh is estimated by expansion factor to fits
real population distribution. As mentioned above, this data was collected from mobile
phones allowed by users. Therefore, this data may contain a self-selection bias, but it is
not taken into consideration when expanded. To confirm the accuracy of this estimate,
we compared it to the nighttime population of the same area, which was obtained from
the national census held in 2010. However, zones of aggregation of nighttime population
and aggregated population data naturally differ. Herein, we converted the zoning of the
nighttime population and aggregated location data to the smaller zoning used by the
Person Trip survey.

Figure 1 shows the result of a comparison between nighttime population and aggre-
gated mobile device data. In Zone 602, the aggregated population was about 26 times
larger than its nighttime value from the census. Zone 602 is a bustling street in Nagoya city;
thus, there are many visitors even at night, so the aggregated population was much larger
than the recorded nighttime population, because the aggregated population data was not
limited only to the residents. On the other hand, in the suburban area (after Zone 1300),
the aggregated population from the GPS data was about 1/10 smaller than the recorded
nighttime value. It is possible that some users turned off their mobile phones when they
were at home, and some error might have resulted from unit conversions, or from the
possibility that children or elderly people without mobile phones were not counted in the
aggregated population data.

In order to understand the movement patterns of people in the area during the event,
we visualized the population in each mesh at 20:00, after a reasonable amount of time had
passed following the start of the event, on 13 July (Figure 2). In the figure, darker-colored
meshes indicate larger numbers of people. The people converged around the principal
train station in this area (Nagoya Station) and the site of the event (Nagoya Dome).
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Figure 1. Comparison between aggregated population and nighttime population.

Figure 2. Visualization of the aggregated population data (13 July: 20:00).

2.2.2. Descriptive Analysis around the Event Site

We limited our area of interest to the immediate vicinity of the event site and focused
on detailed effects. The zones chosen for analysis included No. 1 to 4 (Figure 3). No. 1
included the event site and No. 4 included the nearest subway station (Nagoya Dome
Mae Yada Station). Below, we present the results of the descriptive analysis conducted for
each zone.
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Figure 3. Four zones chosen for basic analysis near the event site (No. 1 includes the event site,
Nagoya Dome, and No. 4 includes the nearest station to the event site).

Figure 4 shows the estimated population in zone 1 at each hour. The blue and red
lines in Figure 4 show the estimated population on 7 and 13 July, respectively. The blue and
red dotted lines in this figure indicate the start and end times of each event. The transitions
at these lines indicate that before opening, the participants were gathering gradually at
the event site. During the event, the population at the event site remained largely in place,
and then decreased sharply after the event ended.

Figure 4. Time series of the observed population at the event site.

Next, Figure 5 shows that the time series of population location data of people en
route from the zones next to the event site to the nearest station (No. 2, No. 3, and No. 4) on
13 July. Around 10 p.m., a peak population moved to next mesh, with some time difference
between grids.
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Figure 5. Time series of population movement en route to the nearest station (13 July).

Finally, we determined the average speed of population movement between zones.
Table 2 shows a summary of peak movement times and estimated speeds population
movement speeds. This estimated speed was calculated based the distance (250 m) between
the centers of each zone. The farther the zone was from the event site, the faster the speed.
The speed observed was close to conventional values representing average walking speeds
(male: 4.75 km/h, female: 4.57 km/h) [45]. Therefore, the results indicate that the estimated
population speed declined as a result of heavy congestion around the event site.

Table 2. Peak time and estimated speed (13 July).

Mesh No. No. 1–No. 2 No. 2–No. 3 No. 3–No. 4

Peak Time 21:50→22:05 22:05→22:10 22:10→22:15
Time difference (min) 15 5 5

Estimated speed (km/h) 1.0 3.0 3.0

2.3. Modeling

According to basic analysis, the aggregated population data in the area surrounding
the event spot shows that the population moved with some time differences. Hence, we
constructed a spatial auto-regression model for estimation of visitors’ dynamic agglom-
eration pattern around the event site. In this study, we divided all data gathered on 7
and 13 July in half randomly. Then, we divided the dataset into periods before the event
opening and after closing. Half of dataset was used to construct the model; the other half
was then used to test it.

2.3.1. Overview of the Model

Spatial auto-regressive models are well known and have been used in several recent
studies [46–48]. We represented population movements within the target area over time as
spatial and temporal variables in a spatial autoregressive model. Moreover, the directed
adjacency matrix was assumed to have spatial dependence. In the employed spatial
autoregressive model, the population in each zone is given by the following equation.

Yt = {ρ0 + ρ1W1 + ρ2W2}P + β0 + βXt + εt (1)

εt ∼ N(0, σ2n)

where Yt denotes the population of each zone at time t, P denotes the observed population
of each zone at time t (excluding own mesh) or t − 1 (including own mesh), W1 and
W2 denote the 1st and 2nd adjacency matrices, respectively, ρ0, ρ1,and ρ2 are the spatial
lag parameters of zones A, B, and C, respectively (Figure 6), β0 and β are the regression
coefficients, Xt is explanatory variables, and εt is error term.
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Figure 6. The positional relationship of neighboring zones.

Usually, an adjacency matrix contains elements with values limited to “0” and “1”.
If an element is “1”, the zone neighbors the target zone; otherwise, it does not. Each such
matrix affects the others.

In this study, we utilized aggregated population data which was collected every 5 min.
In this 5 min interval, participants of an event by definition could not move outside of a
given mesh; the time resolution of the data was limited to this level of precision. Hence,
we considered only 2-step adjacency matrices.

Variations in behavior were expected to be observed between movement patterns
prior to the event and those collected afterwards. The difference was apparent based on the
direction of aggregate movement flow. Prior to the opening of event venue, almost all flow
was directed towards the event location. In contrast, after the event ended, the participants
moved away from the event location. Thus, the conventional adjacency matrix is limited in
its ability to describe these behaviors. Therefore, we propose a model separated by event
time using directed adjacency matrices; one representing the time before the opening of
the event venue and another after the closing of the event.

2.3.2. Directed Adjacency Matrices

Generally, adjacency matrices are symmetric, which is useful when effects between
neighborhoods are bidirectional. However, around the event spot, the flow of people
takes on significant directionality. When before the event opened, the movement flow was
directed towards the event spot. In contrast, after the event ended, the movement flow was
directed away from the event location. Thus, these matrices should be asymmetric to reflect
this changing directionality. Figure 7 shows the concept of a directed adjacency matrix.

Figure 7. Concept of directed adjacency matrix.

2.3.3. Area and Time Span for Model

Considering the effects of the event across the grid without focusing on the previous
section, the analytical area was set to about 2.5 km square, not including the event site itself,
because this model was designed to estimate the dynamics of the surrounding population.
However, the proposed method considers 2-step adjacency matrices, the areas of which are
padded by two blank rows and columns from the edge (Figure 8). In addition, the time
span of analysis was set as the period from 2 h before the event to 2 h after the event.
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Figure 8. Analytical area.

2.3.4. Explanatory Variables

Table 3 indicates the explanatory variables used in estimating values for the flow
model. The “Shop dummy”, which is “0” or “1”, is referred to as “ProAtlas facility point
data”. If there were some shops, restaurant, or the like in a certain zone, as determined by
local digital maps from the ProAtlas series (published by Alps Mapping Co. Ltd. of Nagoya,
Japan; currently unavailable), this dummy was set to “1”; otherwise, it was “0”. The dis-
tances to the event site and to the nearest station were defined as the straight-line distance
between zones. We used the observed population on 21 July as the normal condition.

Table 3. Overview of explanatory variables.

Explanatory Variable Unit Detail

Shop dummy -
In the target mesh,

there is at least one shop; the value is “1”.

Time Difference from Event min
Time difference from opening/closing time of event

(before opening, negative; after closing, positive)

Distance to Event Spot m The straight distance to the event spot.

Distance to Station m The straight distance to the nearest station.

Event Scale 10,000 people The number of spectators in an event.

Population in normal condition person The population in the target mesh on 21 July

3. Results

The variables of each model were estimated under various assumptions. The results
are shown in Tables 4 and 5.

Comparison between Models 0 and 1 shows that the Akaike’s information criterion
(AIC) was improved by spatial lags (ρ1 = ρ2). For Model 2, which considered the population
in the target mesh at time t− 1, AIC was further improved over its values in Models 0
and 1. Model 3, which described the spatial lag at time t− 1, was found to have more
interpretability than Model 1. Model 4 combined Models 2 and 3, allowing it to consider
the population in the target mesh at time t− 1 and the spatial lag of the neighboring meshes.
Finally, Model 5 divided the spatial lags of Model 4 into two steps, which are described as
ρ1 and ρ2. Model 5, which considered the population of the target zone at time t− 1 and
the 2-step spatial lags of the neighboring zones, had the best fit. In addition, Model 6 was
constructed by replacing general adjacency matrices with directivity matrices. AIC, Model
6 had the lowest AIC among the 6 models considered.
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The coefficients of population at t − 1 and spatial lag of population at t − 1 from
between zone A and B (Figure 6) were significant. Each coefficient was positive. Prior to
the opening of the event, people were gathering from around the event location. In the
proposed method, the time window of data utilized is 5 min. Therefore, population at t− 1
was highly correlated.

On the other hand, the coefficient of spatial lag of population at t− 1 from zone C to B
(Figure 6) was estimated to have a negative value (before event opening) and a positive
value (after event closing); however both pattern were not found to be significant. It may
be suspected that the population two zones away from the target zone gathered similarly
not only to the target zone, but also to the adjacent zones. The coefficient of “Population in
normal condition” was also significant and was estimated to be positive. Generally, popula-
tion distribution cannot suddenly change within a single month. Therefore, the population
was strongly influenced by population data representing normal conditions. Nevertheless,
some coefficients were not significant. Overall, the models progressively improved in
accuracy, although some parameters had to be reconsidered.

Table 4. Results of models (using data before event opening).

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

W: Not Directed W: Directed

ρ0 = 0 ρ0 6= 0 ρ0 = 0 ρ0 6= 0

ρ1 = ρ2 = 0 ρ1 = ρ2 ρ1 = ρ2 = 0 ρ1 = ρ2 ρ1 6= ρ2

ρ′1 = ρ′2 = 0

Coef. Coef. Coef. Coef. Coef. Coef. Coef.

Intercept −1757 ** −1854 ** −252.6 −1851 ** −275.0 −272.2 −322.7

ρ0 - - - - 0.9359 *** - - 0.9351 *** 0.9313 *** 0.9270 ***

ρ1 - - - - - - 0.01347 ** 0.002912 * 0.007630 *** 0.01315 ***

P

Yt−1

ρ2 - - - - - - 0.01347 ** 0.002912 * −0.0007092 −0.0009989

ρ1 - - 0.001307 ** - - - - - - - - - -
Yt

ρ2 - - 0.001307 ** - - - - - - - - - -

Shop dummy 63.80 73.76 15.89 74.16 18.17 17.76 19.74

Time diff. 1.302 *** 1.201 *** 0.1108 1.193 *** 0.08848 0.09618 0.08580

Distance(event) −496.1 *** −421.6 *** −13.53 −421.0 *** 2.264 −8.219 −2.353

Distance(station) −71.35 44.41 −0.4857 49.12 25.50 28.89 44.48

Event scale 640.0 ** 608.7 *** 74.42 606.1 *** 67.58 69.08 77.94

Normal pop. 0.9570 *** 0.9493 *** 0.06031 *** 0.9491 *** 0.05939 *** 0.06615 *** 0.06929 ***

AIC 26,473 26,467 22,441 26,467 22,439 22,433 22,426

Samples 1645

***: 0.1% significant, **: 1% significant, *: 5% significant.



Sensors 2021, 21, 4577 11 of 15

Table 5. Results of models (using data after event closing).

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

W: Not Directed W: Directed

ρ0 = 0 ρ0 6= 0 ρ0 = 0 ρ0 6= 0

ρ1 = ρ2 = 0 ρ1 = ρ2 ρ1 = ρ2 = 0 ρ1 = ρ2 ρ1 6= ρ2

ρ′1 = ρ′2 = 0

Coef. Coef. Coef. Coef. Coef. Coef. Coef.

Intercept 4734 *** −1545 * 403.1 −1490 * 149.0 160.9 99.43

ρ0 - - - - 0.9260 *** - - 0.9179 *** 0.9145 *** 0.9108 ***

ρ1 - - - - - - 0.0913 *** 0.004490 * 0.008522 ** 0.01083 ***

P

Yt−1

ρ2 - - - - - - 0.09125 *** 0.004490 * 0.002066 0.003401

ρ1 - - 0.08993 *** - - - - - - - - - -
Yt

ρ2 - - 0.08993 *** - - - - - - - - - -

Shop dummy 15.81 54.72 9.569 55.27 11.56 8.795 11.32

Time diff. −1.743 *** 0.1751 −0.1744 ** 0.1574 −0.09451 −0.09956 −0.08190

Distance(event) −979.1 *** −364.5 *** −45.26 −350.4 *** −22.43 −23.13 −19.84

Distance(station) −144.9 249.9 ** 5.622 264.4 ** 24.46 24.48 37.82

Event scale −889.9 *** 335.1 93.48 312.3 *** −41.24 −43.46 −29.94

Normal pop. 1.149 *** 1.117 *** 0.07195 *** 1.118 *** 0.07979 *** 0.08336 *** 0.08576 ***

AIC 30,502 30,181 26,209 30,165 26,205 26,205 26,201

Samples 1873

***: 0.1% significant, **: 1% significant, *: 5% significant.

4. Discussion

RMSE (Root Mean Squared Error) was used to evaluate the model performance. RMSE
is a commonly used as a measure of precision. Values close to 0 indicate that the model fits
well. Figure 9 shows scatter plots of observed and estimated values of model 0 and Model
6 using the data prior to the event opening. Figure 10 shows scatter plots of observed
and estimated values of Model 0 and Model 6 using the data from after the event closed.
Table 6 shows a summary of correlations and RMSE.

The simple multiple regression model (Model 0) did not consider geometrical variables.
Model 0 showed significant limitations in its capability to estimate population by combining
normal and temporary behavior. However, the proposed spatial auto-regressive model
with a directed adjacency matrix (Model 6) could consider geometrical relationships.

A comparison between Models 0 and 6 using data from before the event opening
(Figure 9) and a comparison between these models using data from after the event closing
(Figure 10) show that proposed model demonstrated improvement not only in terms of
correlation but also of RMSE, similar to the trend observed in the above comparison in
terms of AIC.

Table 6. Summary of Correlation and RMSE.

Before Opening After Closing

Correlation RMSE Correlation RMSE

Model 0 0.81 731.80 0.66 786.55
Model 6 0.98 220.31 0.98 226.45
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(a) Model 0 (b) Model 6
Figure 9. Correlation between observed and estimated population (before event opening).

(a) Model 0 (b) Model 6
Figure 10. Correlation between observed and estimated population (after event closing).

5. Conclusions

Aggregated population data was collected for each zone; thus individual movement
was obscured and rendered more difficult to trace. In this study, a descriptive analysis
of this data was performed at each mesh near the site of an event. The circumstances of
people moving in the area surrounding the event location were revealed from this data
by plotting time series. In addition, after the closing of the event, the peak timestamp of
population movement near event location showed some delay. Based on these observed
delays and geometrical relations between meshes, we confirmed the movement of event
participants who left the event location.

To estimate the population around the event spot, we proposed a spatial autoregressive
model using 2-step directed adjacency matrices. This model was applied to a 2.5 square
kilometer area representing the vicinity of the event location. In this model, the effects on
population movement at t− 1 were divided into three parts (own mesh, next mesh, meshes
two steps away away). Compared to a simple multiple regression model, the proposed
model demonstrated a better fit to the data. Furthermore, we evaluated the differences
between the estimated and actual population over time. These results confirm that the
proposed model showed significant improvement over a simple multiple regression model,
with a lower RMSE and higher correlation.
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The model distinguishes congested meshes by a simple calculation using big data
collected from mobile phones, though it may also be applied to more limited areas and time
durations. The real-time predictions of the model also showed optimal correspondence
with the true congestion situation.

An improved model could evaluate congestion areas with greater precision and
consider the distribution of security personnel, as well as an increased number of subways
and traffic regulations.

One of the limitations is the potential self-selection bias in the GPS data. The inves-
tigation on those who allowed/did not allow the company to collect the location data is
the future research topic. The proposed model could estimate the population in the target
mesh at t with the population around itself at t− 1. The previous datapoint is set to 5 min
before a given time t as the population at t− 1. The coefficients of this model related to
population 5 min prior and to the population in normal condition were significant. How-
ever, other coefficients were not significant. We selected this time interval to understand
the travel behavior of event participants. Therefore, future work may focus on the impacts
of variations in the time interval of the proposed model on its accuracy and applicability.
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