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Abstract
Cerebellar ataxias (CAs) comprise a group of rare, neurological disorders characterized by extensive phenotypic and genetic 
heterogeneity. The core clinical feature is the cerebellar syndrome, which is often accompanied by other neurological or 
non-neurological signs. In the last 30 years, our understanding of the CA etiology has increased significantly, and numerous 
ataxia-associated genes have been discovered. Conventional variants or tandem repeat expansions, localized in the coding 
or non-coding DNA sequences, lead to hereditary ataxia, which can display different patterns of inheritance. Advances 
in molecular techniques have enabled a rapid and cost-effective detection of causative variants in a significant number of 
CA patients. However, despite performing extensive investigations, a definite diagnosis is still unknown in the majority of 
affected individuals. In this review, we discuss the major advances in the genetics of CAs over the last 30 years, focusing 
on the impact of next-generation sequencing on the genetic landscape of childhood- and adult-onset CAs. Additionally, we 
outline possible directions for further genetic research in hereditary and sporadic CAs in the era of increasing application of 
whole-genome sequencing and genome-wide association studies in various neurological disorders.

Keywords Ataxia · Next-generation sequencing · Tandem repeat expansions · Conventional variants · Epigenetics · 
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Introduction

Cerebellar ataxias (CAs) are a heterogeneous group of neu-
rological disorders characterized by impaired coordination 
of limb and eye movements, and dysarthria. The primary 
pathology in CAs is progressive cerebellar atrophy; how-
ever, in most cases, the phenotype is complex and involves 
multiple neurological deficits. Due to large phenotypic and 
genetic heterogeneity the diagnostic work-up in CAs remains 
a challenge. In terms of etiology, we distinguish acquired, 
sporadic, and hereditary ataxias. Hereditary ataxias can 
be further divided into autosomal dominant cerebellar 
ataxias (ADCAs, also known as spinocerebellar ataxias, 
SCAs), autosomal recessive cerebellar ataxias (ARCAs), 
and X-linked ataxias. Based on similar clinical features, we 
also distinguish episodic ataxias (EAs) and spastic ataxias 
(SPAX). Sporadic ataxia, previously known as idiopathic, 
is a progressive disorder of the cerebellum of unknown 

etiology, which is neither acquired nor monogenic [1]. The 
term sporadic is also commonly used in cases with no rel-
evant family history, but for the purposes of this article, it 
will be used as defined above.

It is difficult to estimate the frequency of specific eti-
ologies among CA patients due to differences in ethnicity, 
age, family history, and other various inclusion criteria of 
the studied groups. For many years, the cause of ataxia was 
unknown in the majority of affected individuals. Since the 
1990s, we have observed significant progress in understand-
ing the causes of cerebellar degeneration, mainly due to the 
development of novel genetic techniques. In this review 
paper, we discuss milestones in genetics of CAs and outline 
possible directions for further genetic studies.

Cerebellar ataxias caused by tandem repeat 
expansions

After discovery of the first trinucleotide repeat expansions 
in fragile X syndrome and spinobulbar muscular atrophy in 
1991 [2, 3], the era of identifying tandem repeat disorders 
(TRDs) has begun. Most TRDs in humans are caused by 
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the expansion of short tandem repeats (STRs) (also known 
as microsatellite DNA), which consist of 1–6 bp repeti-
tive DNA elements. Polyglutamine diseases, caused by 
the expansion of trinucleotide CAG repeat, account for the 
majority of TRDs [4]. Among dominantly inherited CAs, 
CAG repeat expansions were firstly described in SCA1 in 
1993, and subsequently in dentatorubral-pallidoluysian 
atrophy (DRPLA), SCA3, SCA2, SCA6, SCA7, SCA12, 
and SCA17 [5]. In recessive ataxias, a GAA intronic repeat 
mutation was described in Friedreich’s ataxia (FRDA) in 
1996 [6]. Up to date, there are at least 16 known repeat 
expansion ataxias. Pathogenic expansions are localized in 
coding or/and non-coding DNA sequences and comprise 
repeated motifs from 3 to 6 bp (Table 1). The most recent 
discovery was a biallelic intronic AAGGG repeat expansion 
in RFC1 gene in cerebellar ataxia, neuropathy, vestibular 
areflexia syndrome (CANVAS) in 2019 [7].

Studies on epidemiology of TRDs show that they are a 
frequent cause of CA worldwide. FRDA is the most common 
inherited ataxia in Europe, with the prevalence of 2–4 per 
100 000 [8]. Fragile X-associated tremor/ataxia syndrome 
(FXTAS), caused by a trinucleotide CGG expansion in the 
FMR1 gene, is found in 2 to 4% of men with adult-onset 
CA and a negative family history [9]. A homozygous RFC1 
pentanucleotide expansion, which can manifest not only as 
CANVAS but also as limited peripheral, vestibular, or cer-
ebellar dysfunction, was detected in 22% of late-onset ataxia 
cases in the original study [7]. The overall prevalence of 
SCAs is estimated at 1–3:100 000. The most common SCA 
worldwide is SCA3, followed by SCA1, SCA2, SCA6, and 
SCA7 [10]. Polyglutamine SCAs may together account for 
about half of ADCAs, but there are significant variations in 
frequency by geographic region [10, 11]. A positive family 
history highly influences the percentage of detected expan-
sions in the studied groups. While screening for the most 
common repeat expansion SCAs is routinely performed in 
patients with CA, the detection rate is rather low in individu-
als with an informative and negative family history, ranging 
from 0 to 18.9% [10–14]. However, in some non-familial 
cases, testing for repeat expansion SCAs should particularly 
be considered, such as SCA7 in early-onset ataxia and retinal 
dystrophy (possible dramatic anticipation), SCA6 in late-
onset ataxia, and SCA8 in slowly progressive ataxia (pos-
sible incomplete penetrance) [10, 14].

Cerebellar ataxias caused by conventional 
variants

Since the 1990s, we have observed an increasing number of 
novel CAs, caused by sequence and copy number variants 
(CNVs) in various genes. The phenotypes of the most com-
mon ARCAs, i.e., ataxia with oculomotor apraxia (AOA) 

and ataxia-telangiectasia (AT), were differentiated in the 
1970s and 1980s [15]. A causative gene for AT was identi-
fied in 1995 by positional cloning [16]. In the same year, 
Ouahchi et al. [17] reported that ataxia with vitamin E defi-
ciency (AVED) is caused by biallelic pathogenic variants in 
TTPA gene. APTX and SETX gene variants were described 
as the cause of AOA in 2001 and 2004 respectively [18, 19]. 
However, it was not until the introduction of next-generation 
sequencing (NGS) techniques that allowed the identifica-
tion of multiple novel hereditary cerebellar ataxias, most of 
which are ultrarare. The application of NGS in clinical prac-
tice showed that this method is highly effective in the diag-
nosis of heterogeneous neurological disorders. From the sec-
ond decade of the 2000s, many studies have been conducted 
using NGS in patients with various ataxia-related pheno-
types. Three main approaches were used: target sequenc-
ing panels, which analyzed the coding exons and flank-
ing introns of a restricted number of genes, whole exome 
sequencing (WES), and recently whole-genome sequenc-
ing (WGS). Prior to NGS, patients underwent numerous 
diagnostic tests in accordance with the standards of a given 
center. In general, common repeat expansion CAs had to be 
excluded by targeted techniques because they are not reli-
ably detected by NGS. In a pilot study Németh et al. [20] 
analyzed 118 known and candidate ataxia genes in 50 index 
patients. The overall detection rate was 18% and reached 
75% in a subgroup of patients with an adolescent onset and a 
positive family history. The application of WES in pediatric 
ataxic patients showed a 46% success rate [21]. Subsequent 
studies confirmed that the highest percentage of diagnoses 
can be achieved in groups of early-onset CA, in consanguin-
eous families and in patients with a positive family history. 
However, such cases represent only a minority of CAs.

Utility of next‑generation sequencing 
in childhood‑onset cerebellar ataxias

Several studies analyzed the utility of NGS in groups of 
solely children and adolescents with CA. While the overall 
prevalence of childhood ataxia is relatively high and esti-
mated at 26:100 000 children, a significant proportion can be 
attributed to acquired and mixed etiology, such as ataxic cer-
ebral palsy (CP) [22]. However, it is a matter of discussion 
and further investigation of how many of the so-called CP 
cases are due to a non-progressive brain damage. Hereditary 
ataxias in children are characterized by large phenotypic and 
genetic heterogeneity, and ataxia is often a part of a complex 
phenotype, with multiple comorbidities. Ataxia can be a sign 
of congenital hindbrain abnormalities (such as Joubert syn-
drome, Dandy Walker malformation, and pontocerebellar 
hypoplasia), complex neurodevelopmental disorders (like 
MECP2-disorder), or various metabolic and mitochondrial 
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conditions. Specific non-ataxic symptoms, as well as abnor-
malities on imaging and laboratory investigations, often 
guide the diagnosis and enable targeted genetic testing.

Diagnostic rates (DRs) of NGS in pediatric ataxia 
cohorts vary from 25% to over 80%, depending on the 
selection of the study group and the type of NGS method 

(panel vs exome sequencing). Sawyer et al. [21] analyzed 
the utility of WES in childhood-onset CA and obtained 
a molecular diagnosis in 13 of 28 families (DR = 46%). 
Similar result was published by Ohba et al. [23], who eval-
uated children with cerebellar atrophy and reported a 39% 
success rate (9 of 28 families). Application of targeted 

Table 1  Tandem repeat expansion ataxias

SCA spinocerebellar ataxia, DRPLA dentatorubral-pallidoluysian atrophy, CANVAS cerebellar ataxia, neuropathy, vestibular areflexia syndrome; 
FXTAS fragile X-associated tremor/ataxia syndrome; *all have cerebellar ataxia (Web resources: Bird, T.D. (2018). Hereditary Ataxia Overview. 
In GeneReviews, https:// www. ncbi. nlm. nih. gov/ books/ NBK11 38/; OMIM, https:// www. omim. org/)

Tandem repeat 
expansion ataxias

Gene Repeat motif Region Characteristic clinical features*

Autosomal dominant
  SCA1 ATXN1 CAG Coding Spasticity, peripheral neuropathy, cognitive 

decline
  SCA2 ATXN2 CAG Coding Slow saccadic eye movements, peripheral 

neuropathy, cognitive decline, dopamine-
responsive parkinsonism, dystonia, chorea

  SCA3 ATXN3 CAG Coding Facial-lingual fasciculations, pyramidal 
signs, parkinsonism, peripheral neuropa-
thy, distal muscular atrophy, bulging eyes, 
autonomic symptoms

  SCA6 CACNA1A CAG Coding Late-onset, slow progression, diplopia, 
abnormal vestibuloocular reflex

  SCA7 ATXN7 CAG Coding Cone-rod retinal dystrophy, vision loss, 
highly variable age of onset and rate of 
progression

  SCA8 ATXN8OS and ATXN8 CTG and CAG Non-coding 
(CTG), coding 
(CAG)

Scanning dysarthria with characteristic 
drawn-out slowness of speech, truncal 
titubation, slow progression

  SCA10 ATXN10 ATTCT Non-coding Recurrent seizures, slow progression
  SCA12 PPP2R2B CAG Non-coding Upper extremity action tremor, head tremor, 

subtle parkinsonism, cognitive and psychi-
atric manifestations

  SCA17 TBP CAG and CAA Coding Dementia, psychiatric symptoms, chorea, 
dystonia

  SCA31 BEAN1 TAAAA, TAGAA, and TGGAA Non-coding Late adult-onset, slow progression, normal 
sensation

  SCA36 NOP56 GGC CTG Non-coding Sensorineural hearing loss, tongue fascicula-
tion and atrophy, upper and lower motor 
neuron involvement

  SCA37 DAB1 ATTTC Non-coding Dysarthria and abnormal vertical eye move-
ments in early stages of the disease

  DRPLA ATN1 CAG Coding Choreoathetosis, dementia, seizures, myo-
clonus, psychiatric symptoms

Autosomal recessive
  Friedreich ataxia FXN GAA Non-coding Sensory axonal neuropathy, absent lower 

limb tendon reflexes, scoliosis, hyper-
trophic cardiomyopathy, pes cavus, 
diabetes mellitus

  CANVAS RFC1 AAGGG and AAAGG Non-coding Sensory neuropathy or neuronopathy, bilat-
eral vestibular areflexia, chronic cough, 
autonomic dysfunction

X-linked
  FXTAS FMR1 CGG Non-coding Late adult-onset, intention tremor, cognitive 

decline
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ataxia gene panel in a group of 84 pediatric patients 
resulted in genetic diagnosis in 25% [24]. In consanguin-
eous families, exome sequencing can provide a molecular 
diagnosis in up to 80% of cases [25, 26]. Several genes 
were recurrently implicated in congenital or infantile-onset 
CAs with cognitive impairment in few series. These are 
predominantly ion channel-coding genes, such as CAC-
NA1A, CACNA1G, KCNC3, and ITPR1, as well as β-III 
spectrin gene SPTBN2, which is involved in trafficking 
and stabilization of membrane proteins [25, 27–32]. All 
are associated with variable degenerative and developmen-
tal neurological disorders, including non-progressive or 
slowly progressive cerebellar ataxia, with a wide range of 
disease onset, from infancy to adulthood.

More information on the utility of NGS in early-onset 
cerebellar ataxias (EOCAs) comes from studies on larger 
series of adults, whose symptoms started appearing before 
the age of 40. Overall, they showed a diagnostic yield of 
NGS ranging from 21% to over 50%, with higher percent-
ages of molecular diagnoses in patients with a positive 
family history compatible with Mendelian inheritance 
[20, 32–39]. The results of NGS studies outlined the most 
common etiologies of EOCAs in different populations. 
According to the literature, the most common recessive 
ataxias in Western countries are FRDA, spastic paraple-
gia 7 (SPG7), autosomal recessive spastic ataxia of Char-
levoix-Saguenay (ARSACS), AOA2, spectrin repeat-con-
taining nuclear envelope protein type 1 (SYNE1)-related 
ataxia, ataxia-telangiectasia (AT), AOA1, and polymerase 
gamma (POLG)-related ataxia. In addition, Marinesco-
Sjögren syndrome and AVED show a relatively high 
frequency irrespective of ethnic origins, the latter being 
particularly common in North Africa and in the Mediter-
ranean [40, 41]. All together, they constitute the major-
ity of the more than 100 ARCA etiologies known so far. 
While most present in childhood and adolescence, onset 
in adulthood is also frequently described, especially for 
SPG7 and SYNE1 ataxias, which are typically adult-onset 
disorders. In 2019, the International Parkinson and Move-
ment Disorder Society Task Force on Classification and 
Nomenclature of Genetic Movement Disorders proposed a 
revised naming system for ARCAs, based on a phenotypi-
cal prefix followed by the gene name. Overall, 62 disor-
ders with CA as a prominent feature were assigned with 
ATX prefix while 30 disorders with CA and coexisting 
other predominant movement disorder with double prefix 
[40]. In the same year, the Consensus Statement from the 
Society for Research on the Cerebellum and Ataxias Task 
Force proposed a list of 59 primary ARCAs [41]. Further-
more, both classifications listed numerous other disorders 
that may present with ataxia as an additional feature.

Utility of next‑generation sequencing 
in adult‑onset cerebellar ataxias

Before the era of NGS, genetic diagnosis of SCAs was 
based mainly on the exclusion of common CAG trinu-
cleotide expansions, which allowed for the diagnosis of 
approximately half of ADCAs [10, 11, 13]. Advances in 
molecular techniques have led to identification of numer-
ous novel SCAs, with 48 SCA subtypes and 36 casual 
genes identified so far [42]. Coutelier et al. [27] examined 
a large cohort of 412 index cases with dominantly inher-
ited CAs, who tested negative for polyglutamine SCAs, 
using combining panel sequencing and  TaqManÕ polymer-
ase chain reaction assay and reported a high incidence of 
channelopathies. Pathogenic variants in CACNA1A were 
found to be the most frequent genetic cause of SCAs in 
this group, followed by other ion channel-coding genes, 
such as KCND3, KCNC3, and KCNA1. However, despite a 
positive first-degree familial history, relevant genetic vari-
ants were detected in 15% cases. Similarly, a low diagnos-
tic rate (9.8%) in dominant CAs, negative for CAG repeat 
expansions, was reported by Chen et al., in the largest 
sample described so far in China [11]. In this study, over 
80% of 480 cases with negative family history remained 
without a genetic diagnosis. These results indicate that a 
significant proportion of CAs are genetically unexplained 
despite strong indicates of genetic contribution. Of note, 
channelopathies are also a frequent cause of cerebellar 
ataxia in Canada, but appear to be ultrarare in China and 
Japan [11, 32, 43].

The majority of patients presenting to ataxia clinics 
have late onset of symptoms and a negative family his-
tory. After excluding acquired and hereditary causes, they 
are classified as sporadic adult-onset ataxias (SAOAs) [1]. 
According to the literature, NGS methods may detect con-
ventional variants in 6–33% of apparently SAOA [44–48]. 
Giordano et al. [48] screened a large cohort of 194 cases 
with progressive SAOA for causative variants in 201 
ataxia-associated genes and obtained a genetic diagnosis 
in 6%. In a study by Coutelier et al. [34], a diagnostic yield 
of exome-targeted capture sequencing in patients with dis-
ease onset after 40 years of age was 6.4%. Klockgether 
and Giordano et al. [1, 48] estimated that testing for com-
mon tandem repeat expansions, followed by ataxia-spe-
cific NGS panel, may result in genetic diagnosis in about 
20% of apparently SAOAs. Apart from detecting ultrarare 
monogenic causes, NGS studies outlined several genes 
commonly implicated in adult-onset CAs, such as SYNE1, 
SPG7, and ANO10 [34, 36, 44]. Importantly, a significant 
number of patients classified as CAs were found to carry 
pathogenic variants traditionally associated with heredi-
tary spastic paraplegias (HSPs). This indicates that ataxias 
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and HSPs share similar pathways and mechanisms and 
gave rise to the concept of a continuous ataxia-spasticity 
disease spectrum [49]. Table 2 presents genes recurrently 
involved in several series of ataxic patients and reported 
as common causes of rare ataxias.

Future genetic testing in cerebellar ataxias

Despite the wide application of NGS in the diagnosis of 
heterogeneous neurological diseases, it is well known that 
these methods have several limitations. Multigene panels 
have proven to be an effective diagnostic tool, showing sig-
nificant diagnostic yield at relatively low cost. However, 
they analyze a limited number of genes, which may pose 
an important problem in the context of the heterogeneity of 
CAs. Clinical features can overlap with other neurological 
disorders and can be separately classified as leukodystro-
phies, metabolic disorders, spastic paraplegias, and intel-
lectual disability, and therefore causative variants may be 
not captured by a typical ataxia-specific gene panel. In this 
respect, WES has the advantage of analyzing the sequence of 
nearly 95% protein-coding regions in the genome. Recently, 
due to continuous improvements in NGS and bioinformatics 
data analysis, WES has become widely available in clinical 
setting.

In terms of CAs, major limitations of NGS are the prob-
lem with detection of tandem repeat expansions and diseases 
caused by alterations in mitochondrial DNA. WES is also 
considered not adequate for detecting deep intronic variants, 
copy number variations (CVNs) defined as single exon or 
larger deletions and duplications, balanced translocations or 
complex inversions, and low-level mosaicism. There may 
also be problems in achieving good coverage of the GC-rich 
regions of the exome [50]. However, many of these issues 
have been recently addressed. Now, many services offer mul-
tigene panels and exome sequencing together with analysis 
of mtDNA, CNVs and selected deep intronic variants, with 
efficient capture and satisfying read depth. Although CNVs 
constitute a minority of variants in progressive CAs, their 
involvement cannot be ignored. Ngo et al. [46] performed 
WES in a heterogeneous cohort of 260 patients with CA and/
or spastic paraplegia, with additional CNV and repeat expan-
sion analysis in a representative subset of cases (n = 68) and 
found two pathogenic CNVs and one trinucleotide expan-
sion. In a study by Marelli et al. [35], a group of 33 patients 
was examined using mini-exome coupled to read depth-
based CNV and found two pathogenic CNVs in SETX gene. 
While in autosomal recessive diseases the diagnosis is usu-
ally facilitated by the presence of a concomitant SNV in the 
second allele, undetected CNVs may be a potential cause of 
false-negative results, especially in cases with de novo domi-
nant variants. The combination of multiple NGS approaches, 

such as exome sequencing, targeted testing, CNV, and repeat 
expansion analysis, can provide high diagnostic yield of over 
50% in various heterogeneous ataxia cohorts [31, 46, 51].

Among patients with unexplained CA, the use of WGS 
may be a promising option. WGS is designed to analyze all 
coding and non-coding sequences of nuclear DNA and cov-
ers up to 98% of the whole human genome. By comparison, 
WES captures up to 95% of the exome, which is only 1–2% 
of the human genome. Additionally, WGS has more uniform 
depth of coverage and is more efficient than WES for detect-
ing SNVs, small insertions and deletions (indels), and CNVs 
within regions that are targeted by WES [52]. Indeed, data 
show that so far diagnostic advantage of WGS over WES 
consists mainly in better detection of alterations in the cod-
ing regions of the genome [53]. Nevertheless, CAs caused 
by variants in non-coding DNA sequences have also been 
reported, like early-onset cerebellar ataxia associated with 
non-coding RNA, RNU12 [54]. Determination of patho-
genicity of deep intronic variants remains a challenge, but 
this is likely to change in the future with the further improve-
ments in functional studies and bioinformatics tools.

So far, there are only a few studies in the literature assess-
ing the utility of WGS in CAs. Kang et al. [55] performed 
WGS in patients with CA after negative testing for repeat 
expansions and multigene panel and found a causative vari-
ant in one out of three individuals. Kim et al. [56] examined 
a heterogeneous group of 18 cases with spastic paraplegia 
with or without CA and reported a 38.9% diagnostic rate. 
However, only one intronic variant was detected that could 
have been missed on WES. Further research on larger groups 
of patients is necessary to determine the benefits of WGS 
in CAs.

In the case of CAs, the possibility of detecting tandem 
repeat expansions using WES and WGS is particularly 
promising. Standard NGS techniques based on short-
read sequencing were traditionally not capable to detect 
TRDs, except for SCA6, caused by the smallest expansion. 
Recently, several algorithms were developed to analyze 
STRs from short-read NGS data and successfully applied 
in CA patients. Retrospective use of these algorithms can 
lead to diagnosis in individuals with negative NGS results. 
Additionally, we can expect to identify new ataxia-causative 
expansions in the future [57]. Recently, WGS in conjunction 
with non-parametric linkage analysis has led to the identi-
fication of pathogenic repeat expansion in CANVAS and 
late-onset ataxia [7]. WGS also contributed to the discovery 
of several novel TRDs, such as benign adult familial myo-
clonic epilepsy, neuronal intranuclear inclusion disease, ocu-
lopharyngodistal myopathy, and others [58, 59]. At present, 
there are several types of SCA, i.e., SCA4, SCA25, SCA30 
and SCA32, which genetic cause awaits to be determined. 
The introduction of new molecular technologies, such as 
PacBio and Nanopore long-read sequencing, which enables 
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sequencing normal and expanded STR alleles, can lead to 
further discoveries in the field of repeat expansion disorders 
in the future [57].

Cerebellar ataxias—beyond monogenic 
diseases

Despite the increasing use of advanced genetic techniques, 
still more than half of patients with CA remain without a 
specific diagnosis [60]. Determining the cause of the dis-
ease is of particular concern in patients with late-onset of 
symptoms and a negative family history, who constitute the 
majority of CAs. The term idiopathic late-onset CA has 
previously been used for all individuals without an appar-
ent acquired or hereditary etiology. Further studies allowed 
to distinguish from this group patients with multiple sys-
tem atrophy of cerebellar type (MSA-C), a separate disease 
entity characterized by the presence of glial cytoplasmic 
inclusions. SAOA has to be differentiated from MSA-C, and 
its cause remains unknown. Despite significant phenotypic 
heterogeneity, SAOA patients present several common fea-
tures, such as isolated cerebellar atrophy on neuroimaging, 
pyramidal signs, absent ankle reflexes, reduced vibration 
sense, and mild urinary symptoms. The mean age of onset 
reported in the literature varies from 41 to 56 years, and dis-
ease progression is significantly slower than in MSA-C [1].

Presumably some patients with sporadic CA are patients 
with undiagnosed acquired, autoimmune, or hereditary 
causes. With the introduction of WGS, we can expect 
identification of novel monogenic etiologies, especially in 
early-onset and familial cases. However, it appears that a 
significant proportion of sporadic ataxias may have multi-
factorial or polygenic background. Genome-wide associa-
tion studies (GWASs) identify genomic risk variants by a 
patient to population control variant frequency comparison. 
To date, no GWASs have been published in the population 
of patients with sporadic CA. The main issue is that GWASs 
require large groups of patients and controls, typically thou-
sands of individuals, which is difficult to achieve in CAs. 
Moreover, an additional challenge is to distinguish pheno-
typically homogeneous cases. So far, GWASs for common 
and complex neurodegenerative disorders, such as Alzhei-
mer’s disease (AD), Parkinson’s disease, amyotrophic lateral 
sclerosis, and frontotemporal dementia, identified several 
susceptibility variants, but most of them have very small 
effect on risk [61]. GWAS in MSA found no significant loci, 
but detected several potential variants that need to be exam-
ined in a larger sample set [62]. Studies show that AD has 
a significant polygenic component, which may be used in 
calculating genetic risk of developing the disease. The sum 
of risk alleles carried by an individual, where each single 
nucleotide polymorphism (SNP) is weighted by the effect *  A
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size from the prior GWAS, is called a polygenic risk score 
(PRS) and may have a predictive value for multiple common 
diseases. Promising results that point to potential clinical 
utility of PRS in the future have been published for AD and 
epilepsy [63, 64]. Collecting a large number of clinically 
homogeneous ataxia patients through international consortia 
gives hope to conduct GWASs and identify potential variants 
enriched in CA.

Epigenetic alterations may potentially be responsible 
for some cases of unexplained CAs; however, there is lit-
tle literature on this topic. Epigenetic mechanisms such as 
DNA methylation, histone modifications, and microRNAs 
(miRNAs) regulate gene expression without changing the 
underlying genomic sequence and are implicated in vari-
ous neurodevelopmental processes. Studies on epigenetics 
in CAs have shown that epigenetic dysregulation is involved 
in the pathogenesis of FRDA, FXTAS, ataxia-telangiectasia, 
and several SCAs [65, 66]. MiRNAs have been shown to 
be essential for the survival of Purkinje cells, and their loss 
leads to the degeneration of the cerebellum and the develop-
ment of ataxia [67]. Alterations in specific miRNAs levels 
have been described in SCA1 and SCA3. Given the role 
of miRNAs in CA neuropathology, it was suggested that 
pathogenic variants in miRNA-binding sites or miRNAs 
may be causative for a group of unexplained ataxias [66]. 
Aberrant DNA methylation profiles were found in several 
trinucleotide expansion disorders and related to age at onset 
and somatic repeat instability of the mutated allele [68]. 
Recently, genome-wide DNA methylation profiling showed 
differentially methylated loci in ataxia-telangiectasia [69]. 
Further studies are needed to determine the possible role of 
epigenetic dysregulation in the pathogenesis of unexplained 
CAs.

Summary

The last 30 years have been the era of discovering the mono-
genic causes of CAs. After trinucleotide expansion ataxias 
and several conventional ataxias, identified by targeted tech-
niques, there was a rapid increase in the number of novel 
ataxia-causative variants, detected by massive parallel 
sequencing. The introduction of NGS to clinical and experi-
mental neurology significantly changed our understanding 
of the complex landscape of cerebellar ataxia genetics. Cur-
rently, the common use of multigene panels and WES in 
clinical practice allow for the rapid diagnosis of CA etiology 
in a substantial number of patients. However, for the major-
ity of affected individuals, especially adults, genetic findings 
do not currently inform diagnosis or management. In fact, 
a significant proportion of CAs remains genetically unex-
plained despite strong indicates of genetic contribution. Fur-
ther advances in NGS technique and bioinformatics analysis, 

as well as the widespread use of WGS, give hope for better 
detection of conventional variants and repeat expansions in 
the future. In addition, GWASs will be needed in large series 
of ataxic patients in order to identify risk loci contributing to 
cerebellar ataxia. Combining GWASs results with rare-vari-
ant burden analyses and repeat expansion data from whole-
genome sequencing may unravel the genetic architecture of 
unexplained CAs.
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