
American Journal of Epidemiology
© The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.

Vol. 187, No. 4
DOI: 10.1093/aje/kwx317

Advance Access publication:
January 30, 2018

Practice of Epidemiology

Data-Adaptive Estimation for Double-Robust Methods in Population-Based
Cancer Epidemiology: Risk Differences for LungCancer Mortality by Emergency
Presentation

Miguel Angel Luque-Fernandez*, Aurélien Belot, Linda Valeri, Giovanni Cerulli, Camille Maringe,
and Bernard Rachet

*Correspondence toDr.Miguel Angel Luque-Fernandez, Department ofNon-CommunicableDiseaseEpidemiology,Cancer SurvivalGroup,
London School of Hygiene and Tropical Medicine, Keppel Street, LondonWC1E 7HT, United Kingdom (e-mail: miguel-angel.
luque@lshtm.ac.uk).

Initially submitted January 20, 2017; accepted for publication September 5, 2017.

In this paper, we propose a structural framework for population-based cancer epidemiology and evaluate the per-
formance of double-robust estimators for a binary exposure in cancer mortality. We conduct numerical analyses to
study the bias and efficiency of these estimators. Furthermore, we compare 2 different model selection strategies
based on 1) Akaike’s Information Criterion and the Bayesian Information Criterion and 2) machine learning algo-
rithms, and we illustrate double-robust estimators’ performance in a real-world setting. In simulations with correctly
specified models and near-positivity violations, all but the naive estimators had relatively good performance. How-
ever, the augmented inverse-probability-of-treatment weighting estimator showed the largest relative bias. Under
dual model misspecification and near-positivity violations, all double-robust estimators were biased. Nevertheless,
the targeted maximum likelihood estimator showed the best bias-variance trade-off, more precise estimates, and
appropriate 95% confidence interval coverage, supporting the use of the data-adaptive model selection strategies
based on machine learning algorithms. We applied these methods to estimate adjusted 1-year mortality risk differ-
ences in 183,426 lung cancer patients diagnosed after admittance to an emergency department versus persons with
a nonemergency cancer diagnosis in England (2006–2013). The adjusted mortality risk (for patients diagnosed with
lung cancer after admittance to an emergency department) was 16% higher in men and 18% higher in women, sug-
gesting the importance of interventions targeting early detection of lung cancer signs and symptoms.

cancer epidemiology; causality; machine learning; population-based data; statistics; targetedmaximum likelihood
estimation

Abbreviations: AIC, Akaike’s Information Criterion; AIPTW, augmented inverse-probability-of-treatment weighting; ATE, average
treatment effect; BIC, Bayesian Information Criterion; DAG, directed acyclic graph; IPTW-RA, inverse-probability-of-treatment-
weighted regression adjustment; TMLE, targeted maximum likelihood estimation.

Data from population-based cancer registries are critical for
cancer control and policy (1–3). However, the scope of the
information available from cancer registries is limited, pertain-
ing only to cancer characteristics and basic sociodemographic
factors (1, 2, 4). Recently, strategies for linkage of population-
based data sets from different sources have been implemented.
This has allowed for more advanced modeling scenarios regard-
ing applications in cancer policy and control (5–10). For instance,
comparative effectiveness approaches using medical records and

linked population-based databases are used to evaluate the effec-
tiveness of treatment or exposures concerning cancer mortality
and survival (6–10). Nevertheless, evaluation of the effectiveness
of treatments or exposures in a large population-based cancer
study requires well-defined structural frameworks and modern
statistical methods in order to overcome confounding (9).

The use of the Neyman-Rubin potential outcomes frame-
work (11) allows researchers to make explicit the assumptions
under which an observed association from observational

871 Am J Epidemiol. 2018;187(4):871–878

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


studies can be interpreted causally. For a given factor to be
considered causal, researchers must consider a set of additional
assumptions (i.e., conditional exchangeability, positivity, and
consistency) (12). Directed acyclic graphs (DAGs) help one to
evaluate whether, under a given causal model, the counterfac-
tual outcome is independent of the observed exposure given
some set of covariates (conditional exchangeability) selected on
the basis of subject matter knowledge (12–14).

The average treatment effect (ATE) or risk difference is
a commonly used parameter of interest (12, 15, 16). Correct
model specification is crucial to obtain unbiased estimates of
the true ATE.Many estimators of the ATE (but not all) rely on
parametric modeling assumptions, thereby introducing bias
when the model is incorrect (15). Researchers have developed
double-robust estimation procedures to reduce bias due
to misspecification (17, 18). More recently, van der Laan and
Rose (15, 19, 20) developed a targeted maximum likelihood
estimation (TMLE) method using machine learning algo-
rithms to minimize the risk of model misspecification. Simu-
lation studies using TMLE in finite samples provide evidence
of its double-robust properties and gains in performance when
it is combined with machine learning algorithms (15, 21, 22).

However, there is no evidence evaluating the performance of
TMLE compared with other double-robust methods in the set-
ting of population-based cancer epidemiology. We sought to
compare the performance of 3 different double-robust causal es-
timators of the ATE for cancer mortality in a simulated scenario
with forced near-positivity violations (i.e., certain subgroups in
the sample rarely or never receive treatment) andmodel misspe-
cification. Furthermore, we studied the efficiency and bias of
double-robust estimators and compared 2 different model
selection strategies based on 1) a combination of Akaike’s
Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) and 2) machine learning algorithms and TMLE.
We illustrate these methods with real population-based data on
lung cancer patients in England.

METHODS

Counterfactual framework

On the basis of background knowledge, we used a DAG to
depict our general counterfactual framework (Figure 1). We
considered 1-year cancer mortality as a binary outcome Y and
a generic binary exposure or treatment A, and we assumed that
the following measured covariates were sufficient to ensure
conditional exchangeability: patient’s socioeconomic status
(W1), age (W2), cancer stage (W3), and comorbidity at diagnosis
(W4) (Figure 1). Afterward, based on our DAG, we generated
data to explore the effects of near-positivity violations and dual
misspecification (outcome and treatment models). The set
of covariates included in W is critical for cancer treatment
decision-making (3, 23, 24). However, cancer stage and pa-
tient’s comorbidity at diagnosis play a crucial role in the
choice of clinical treatment and have been cited as the most
important explanatory factors for cancer mortality and survival
(3, 23, 24). As depicted in our DAG, we highlighted the
importance of patient’s cancer stage, socioeconomic status,
and comorbidity as the minimum set of variables needed to
assume conditional exchangeability based on the backdoor

criterion. Our targeted parameter was the 1-year risk difference
in cancer mortality for patients exposed to a generic exposure (A)
versus nonexposed patients.

Data-generation process andMonte Carlo simulations

We generated data based on the structural framework repre-
sented in Figure 1 by a DAG. The covariates (W) were drawn
using a set of random uniform and binomial variables. The pro-
pensity score for the binary exposure (A) and the outcome vari-
able (Y) were derived from a binomial logit model that included
the interaction between age (W2) and comorbidity (W4) for the
generation of Y.

Afterward, we drew 1,000 replications from the data-generation
process with sample sizes of 1,000 and 10,000. In each rep-
lication, we estimated the binary ATE and recorded the point
estimates and standard errors based on the influence curve
in order to calculate the ATE standard deviations, bias,
95% confidence interval coverage, and root mean squared
error (25).

Model estimation scenarios and performance evaluation

We set 2 different modeling scenarios aiming to assess the
performance of double-robust estimators of the ATE using
1) correctly specified models for the treatment and the outcome
and 2) misspecified models for both treatment and outcome.
Correctly specified models for the treatment and outcome
included socioeconomic status (W1), age (W2), cancer stage (W3),
and comorbidity (W4) as covariates. Model misspecification for
the treatment and the outcomewas forced omitting the interaction
between comorbidity (W4) and age (W2). Data-adaptive ap-
proaches were used to estimate the treatment and outcome for
misspecified models (Web Appendix 1, available at https://
academic.oup.com/aje, describes in more detail the model

Figure 1. Directed acyclic graph for a proposed structural causal
framework in population-based cancer research. Conditional exchange-
ability of the treatment effect or exposure (A) on 1-year cancer mor-
tality (Y) is obtained through conditioning on a set of available covariates
(Y1,Y0 ⊥ A|W). The minimum sufficient set, based on the backdoor crite-
rion, is obtained through conditioning on onlyW1,W3, andW4. The aver-
age treatment effect for the structural framework is estimated as the
average risk difference between the expected effect of the treatment
conditional on W among treated persons (E(Y|A = 1; W)) and the ex-
pected effect of the treatment conditional onW among the untreated
(E(Y|A = 0; W)). W1, socioeconomic status; W2, age; W3, cancer
stage;W4, comorbidity.
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specifications for the data generation). For both scenarios, we
included near-positivity violations that forced some values of
the propensity score distribution close to zero. Near-positivity
violations were evaluated visually based on the summary of
the propensity score distribution. Figure 2 illustrates the over-
lap of the distribution of the potential outcomes for one simu-
lated sample in the first scenario (Figure 2A) and the second
scenario (Figure 2B).

In the first scenario, which uses correctly specified mod-
els, we evaluated the performance of a classical multivari-
ate regression adjustment with treatment (A) and covariates
(W1–W4) as predictors of the outcome (Y), namely the naive
approach, and of 3 different double-robust estimators of the
ATE: 1) inverse-probability-of-treatment-weighted regression
adjustment (IPTW-RA) (26); 2) augmented inverse-probability-
of-treatment weighting (AIPTW) (17, 27, 28); and 3) TMLE
(15, 29). IPTW-RA is a regression model weighted by the
inverse probability of treatment, whereasAIPTW is a 2-step pro-
cedure with 2 estimating equations for the treatment and mean
outcome, respectively (27).

For the second scenario, using misspecified models, we eval-
uated 2 different data-adaptive model selection strategies in
combinationwith the above-described double-robust estimators.
Models for the treatment and outcome included the above-
described covariates for the first scenario but omitted the inter-
action between comorbidity and age used to generate the data in
the second scenario. (Web Appendix 1 describes model specifi-
cations for the data generation in more detail.) As data-adaptive
strategies, we used AIC-BIC approaches for the IPTW-RA and
AIPTW estimators and ensemble learning for the TMLE
estimator. For the IPTW-RA, we used the AIC-BIC-based
approach implemented in the STATA user-written command
“bfit” (best fit) (30). The “bfit” algorithm sorts a set of fitted
candidate regression models using the AIC and BIC and displays
a table showing the ranking of the models. Each linear predictor
of the candidatemodels is defined as a linear combination of func-
tional forms of the variables. The smallest of the candidatemodels
includes only 1 variable. The largest of the candidate models in-
cludes all of the variables in a fully interacted polynomial of
the order prespecified by the user. We set the order to “2” for

comparative purposes with TMLE. For simulations and analy-
sis of the IPTW-RA and AIPTW estimators, we used STATA,
version 14.1 (StataCorp LP, College Station, Texas) and the
“teffects ipwra” and “teffects aipw” commands (26).

The TMLE estimator has not been implemented in STATA
statistical software yet, so we used the package “tmle” (ver-
sion 1.2.0-4) (29) fromR, version 3.0.2 (R Foundation for Sta-
tistical Computing, Vienna, Austria). The implementation of
TMLE in R loads the SuperLearner package. SuperLearner
uses V-fold (10-fold by default) cross-validation to assess the
performance of the prediction of the outcome and the propen-
sity score models as weighted averages (ensemble learning)
of a set of machine learning algorithms (29, 31). We used the
default specifications of the “tmle” package, which included
the following machine learning algorithms: 1) stepwise for-
ward and backward selection; 2) generalized linear modeling
(“glm”) with the covariates (W) and the treatment (A) as main
terms; and 3) a “glm” variant that included second-order poly-
nomials and 2-by-2 interactions of the main terms included in
the model. InWeb Appendix 2, we provide a basic implemen-
tation of the TMLE algorithm in both STATA and R statistical
software, as well as the link to a testing version of TMLE im-
plemented in STATA.

Monte Carlo simulation results

First scenario: correctly specified models and near-positivity
violation. The true risk difference of the ATE estimate from
the 1,000 simulation repetitionswas−18%. The naive approach
showed a biased estimate of the ATE with overestimation of
the treatment effect by 23% (relative bias). All double-robust
estimators were nearly unbiased, showing a smaller root mean
squared error with increasing sample size, but the TMLE pre-
sented higher precision (based on the difference in variances
between estimators), the smallest root mean squared error, and
the best coverage (95%) (Table 1, first scenario: correctly speci-
fiedmodels).

Second scenario: misspecification, near-positivity viola-
tion, and adaptive model selection. The true risk difference
of the ATE from the 1,000 simulation repetitions was −12%.
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Figure 2. Overlap of the propensity scores for correctly specified (first scenario (A)) andmisspecified (second scenario (B)) models for the proba-
bilities of treatment statusP(A= 1|W) and P(A= 0|W) in 1 random sample from 1,000Monte Carlo simulations.

Am J Epidemiol. 2018;187(4):871–878

Applying TMLE to Observational Cancer Epidemiology 873



The naive approach was heavily biased, showing the highest
root mean squared error with underestimation of the treatment
effect by approximately 90% (Table 1, second scenario: adap-
tive estimation approach). The model selection strategy based
on AIC-BIC did not show either bias reduction or coverage
improvement. The double-robust TMLE estimator presented
the best performance with more precise estimates (1% bias for
a sample size of 1,000 patients and less than 0.5% for a sample
size of 10,000 patients) and the highest coverage. By con-
trast, the relative bias increased with increasing sample size
for the AIPTW estimator using the AIC-BIC approach. The rela-
tive bias ranged from 1.5% (n = 1,000) to 11.7% (n = 10,000)
(Table 1, second scenario).

ILLUSTRATION

Under the structural framework (see DAG in Figure 1)
described above for population-based cancer epidemiology, we
estimated 1-year adjusted mortality risk differences for cancer
diagnosed after admittance to a hospital emergency department
versus receiving a nonemergency cancer diagnosis. The high
proportion of lung cancer diagnosed after admittance to an
emergency department in England (emergency presentation)
has been hypothesized to be mainly due to multiple steps that
patients undergo between identification of the first symptoms
and final diagnosis by the health-care system.

In addition to age and socioeconomic status, we included
comorbidity and cancer stage as confounders. Evidence shows
that the presence of patient comorbidity increases the odds of
being diagnosed with distant metastases (advanced cancer
stage), and it does not lead to an earlier cancer diagnosis (32).
Socioeconomic status was measured using quintiles of the
income domain of the Index of Multiple Deprivation in Eng-
land (33); the presence of comorbid conditions was based on
the Charlson Comorbidity Index (34); and stage was based on
the tumor-node-metastasis classification of malignant tumors
(35). In England, a cancer diagnosis after emergency presenta-
tion correlates closely with poor 1-year survival. However, the
strength of the evidence comes from observational data and is
weak, owing to confounding (36).

It is of public health interest to estimate the 1-year adjusted
mortality risk differences for cancer diagnosed after an emer-
gency presentation, given the potential impact of a preventive
intervention aiming to improve earlier cancer diagnosis. Quan-
tifying the sex-specific adjusted risk differences in 1-year mor-
tality for lung cancer patients will reinforce the current evidence
and help to promote the policy actions required for improving
early cancer diagnoses.

To illustrate estimation of the adjusted risk differences for 1-
year mortality, we extracted data from the United Kingdom’s
National Cancer Data Repository for 183,426 incident cases of
lung cancer (102,535 men and 80,891 women) diagnosed in
England between 2006 and 2013. All patients had a minimum

Table 1. Results From 10,000Monte Carlo Simulations of the Average Treatment Effect for Correctly SpecifiedModels (First Scenario) and
MisspecifiedModels Using Adaptive Approaches (Second Scenario) for Different Double-Robust Estimators of 1-Year Lung Cancer Mortality,
England, 2006–2013

Simulated
Scenario

ATEa (SD) Absolute Bias Relative Bias, % RMSE
95%CI

Coverage, %

n = 1,000 n = 10,000 n= 1,000 n= 10,000 n= 1,000 n= 10,000 n= 1,000 n= 10,000 n= 1,000 n= 10,000

First scenariob

True ATE −0.1813

Naive −0.2234 (0.049) −0.2218 (0.012) 0.0421 0.0405 23.2 22.3 0.0575 0.0423 77 89

AIPTW −0.1843 (0.053) −0.1848 (0.018) 0.0030 0.0035 1.6 1.9 0.0534 0.0180 93 94

IPTW-RA −0.1831 (0.050) −0.1838 (0.017) 0.0018 0.0025 1.0 1.4 0.0500 0.0174 91 95

TMLEc −0.1832 (0.048) −0.1821 (0.016) 0.0019 0.0008 1.0 0.4 0.0482 0.0158 95 95

Second
scenariod

True ATE −0.1172

Naive −0.0127 (0.103) −0.0121 (0.033) 0.1045 0.1051 89.2 89.7 0.1470 0.1100 0 0

BFe AIPTW −0.1155 (0.093) −0.0920 (0.073) 0.0017 0.0252 1.5 11.7 0.0928 0.0773 65 65

BFe IPTW-RA −0.1268 (0.043) −0.1192 (0.031) 0.0096 0.0020 8.2 1.7 0.0442 0.0305 52 73

TMLEc −0.1181 (0.028) −0.1177 (0.011) 0.0009 0.0005 0.8 0.4 0.0281 0.0107 93 95

Abbreviations: AIPTW, augmented inverse-probability-of-treatment weighting; ATE, average treatment effect; BF, best fit; CI, confidence interval;
IPTW-RA, inverse-probability-of-treatment-weighted regression adjustment; RMSE, root mean squared error; SD, standard deviation; TMLE, targeted
maximum likelihood estimation.

a ATE across 1,000 simulated data sets.
b First scenario: correctly specifiedmodels and near-positivity violation.
c TMLE calling basic SuperLearner (SL) libraries: SL.Step, SL.glm, and SL.glm.interaction.
d Second scenario: misspecification, near-positivity violation, and adaptive model selection.
e Best fit based on Akaike’s Information Criterion and the Bayesian Information Criterion.
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potential follow-up period of 1 year, since vital status was not
assessed until December 31, 2014. Data were restricted to
cases with complete information on sex, age at diagnosis,
comorbidity, cancer stage, socioeconomic deprivation, and
type of cancer diagnosis. The strategy for assessment of a can-
cer diagnosis after an emergency department presentation has
been previously described (37). Overall, more than 80% of the
patients who died within 1 year after a cancer diagnosis had
been diagnosed after an emergency department presentation,
and only 96 (representing 0.05%) were lost to follow-up before
1 year (Web Table 1). The average age at diagnosis was 72
years in men and 73 years in women. One-year mortality after
diagnosis showed a balanced distribution across the different
age and socioeconomic groups and across quartiles of the
Charlson Comorbidity Index (34). However, persons with
stages IV and III cancer had 4- and 3-fold higher probabilities
of 1-year mortality, respectively, than thosewith stage I cancer
(Table 2).

To estimate the adjusted mortality risk difference, we used
the same approaches and commands as those used for the sim-
ulation study. We provide commented code for the illustration

in Web Appendix 2. Overall, based on double-robust estima-
tors, we determined that the adjusted risk of 1-year mortality
between cancer diagnosed after admittance to an emergency
department versus a nonemergency diagnosis was 16% higher
in men and 18% higher in women than it was after nonemer-
gency diagnosis. However, the naive approach showed the
largest risk difference, with 29% and 32% adjusted risk differ-
ences for women and men, respectively (Figures 3A (women)
and 3B (men)).

We also used the observed covariates from the illustration to
run 100 Monte Carlo simulations to estimate the adjusted mor-
tality risk difference for 1-year cancer mortality after admittance
to an emergency department. Using the information on baseline
covariates from the observed data, we simulated only the out-
come and treatment models. To evaluate the performance of the
different estimators under strong near-positivity violations, we
forced some values of the propensity scores close to zero (Web
Figure 1). However, the estimation models for the treatment
and outcome were correctly specified during simulations to
include the interaction between age and comorbidity (we pro-
vide the model specifications and the variables included for the
simulations inWebAppendix 1). The propensity score distribu-
tions among the exposed and unexposed overlapped consider-
ably in the real-world setting (Web Figure 1A), while the
overlap in the simulated scenario was poor given the strong
near-positivity violation (Web Figure 1B). Table 3 presents the
results of the simulations, which validate the previous results
with similar findings, but with a larger sample size and fixed co-
variates coming from a real-world scenario, thus reproducing
reality much better. TMLE presented the best precision and
coverage and outperformed all other double-robust estimators.
By contrast, AIPTW showed high sensitivity to the violation of
the positivity assumption, with a relative bias of 8% (Table 3).

DISCUSSION

Given the increasing availability of a different range and
variety of data in population-based cancer epidemiology, the
proposed structural framework (Figure 1) constitutes a basis for
further development of comparative effectiveness research in
population-based cancer epidemiology. Developed for a binary
treatment and outcome, the framework can be easily extended
to handle time-to-event outcomes and might be adapted to spe-
cific comparative effectiveness scenarios. For instance, we con-
sidered cancer patients’ comorbidity and stage as confounders,
but this might not be the case with other comparative effective-
ness research questions. We recently published an article in
which we argued that multivariate adjustment for cancer-
related comorbid conditions (those with an onset date close
before or after the date of cancer diagnosis) to evaluate the
effectiveness of cancer treatment might be inappropriate, as
it could induce collider stratification bias (38).

We also applied the proposed structural framework (Figure 1)
to a real-world data scenario and highlighted the critical impor-
tance of considering cancer stage and patient’s comorbidity in
the structural framework to satisfy the conditional exchange-
ability assumption in population-based cancer epidemiology.
Conventional methods control for confounding by assuming
that the effect measure of the exposure of interest is constant

Table 2. One-Year Mortality Among Lung Cancer Patients (Incident
Cases; n = 183,426 (102,535Males and 80,891 Females)), by
Cancer Stage, Comorbidity, Socioeconomic Status, and Age at
Cancer Diagnosis, After Admittance to an Emergency Department
Versus Nonemergency Diagnosis, England, 2006–2013

Variable

Mortality 1 Year
After Diagnosis, %

Women Men

ER presentation

No 53.4 59.9

Yes 83.7 86.4

Cancer stage

I 18.1 24.2

II 35.1 37.6

III 58.6 62.4

IV 82.2 85.8

Quartile of CCI

1 (lowest) 62.8 67.6

2 64.1 68.3

3 67.2 71.4

4 (highest) 72.4 75.5

Quintile of SES

1 (lowest) 62.6 66.7

2 63.3 68.1

3 64 69.5

4 64.2 69.6

5 (highest) 64.1 68.2

Age at diagnosis, yearsa 73.0 (10.8) 72.6 (10.3)

Abbreviations: CCI, Charlson Comorbidity Index; ER, emergency
room; SES, socioeconomic status.

a Values are presented asmean (standard deviation).

Am J Epidemiol. 2018;187(4):871–878

Applying TMLE to Observational Cancer Epidemiology 875



across all levels of the covariates included in the model (39).
We provided evidence of highly imprecise estimates of ATE
in the classical naive regression method, underestimating the
effect of the treatment, particularly for the misspecified model
in the simulation setting.

Model misspecification with parametric modeling is always
a concern in epidemiologic research. ATE estimators based on
the propensity score or regression adjustment are unbiased
only if estimation models are correctly specified (17, 27, 40).
Double-robust estimation combines these two approaches so
that only 1 of the 2 models needs to be correctly specified to

obtain an unbiased estimate of the ATE (17, 27, 40). Previous
simulation studies have shown that double-robust methods,
including TMLE, consistently provide almost unbiased estimates
when either the propensity score or the outcomemodel is misspe-
cified but the other is correct (41–43). However, more evidence is
needed to evaluate TMLE statistical properties under different
modeling scenarios.

TMLE is a general algorithm that can utilize the g-formula
(44) as a generalization of standardization, defining the param-
eters of interest semiparametrically as a function of the data-
generating distribution. TMLE evaluates the target parameter

Figure 3. Sex-specific adjusted risk difference for 1-year lung cancer mortality according to different double-robust estimators among 183,426
lung cancer patients diagnosed after admittance to an emergency department versus persons with a nonemergency cancer diagnosis, England,
2006–2013. A) women; B) men. Bars, 95% confidence intervals. AIPTW, augmented inverse-probability-of-treatment weighting; BF-AIPTW, best-
fit augmented inverse-probability-of-treatment weighting (data-adaptive estimation based on Akaike’s Information Criterion (AIC) and the Bayesian
Information Criterion (BIC)); BF-IPTW-RA, best-fit inverse-probability-of-treatment-weighted regression adjustment (data-adaptive estimation
based on AIC-BIC); IPTW-RA, inverse-probability-of-treatment-weighted regression adjustment; TMLE, targeted maximum likelihood estimation
(data-adaptive estimation based on ensemble learning and k-fold cross-validation).

Table 3. Results of aMonte Carlo Simulation of Risk Differences in 1-Year Mortality Among Lung Cancer Patients
(Incident Cases; n = 183,426) Diagnosed After Admittance to an Emergency Department, England, 2006–2013

Estimator ATEa (SD) Absolute
Bias

Relative
Bias, % RMSE 95%CI

Coverage, %

True ATE 0.1621

AIPTW 0.1493 (0.010) 0.0128 7.9 0.0165 79

IPTW-RA 0.1587 (0.006) 0.0034 2.1 0.0072 92

TMLEb 0.1620 (0.003) 0.0001 0.1 0.0034 92

Abbreviations: AIPTW, augmented inverse-probability-of-treatment weighting; ATE, average treatment effect; CI,
confidence interval; IPTW-RA, inverse-probability-of-treatment-weighted regression adjustment; RMSE, root mean
squared error; SD, standard deviation; TMLE, targetedmaximum likelihood estimation.

a ATE across 1,000 simulated data sets.
b TMLE calling basic SuperLearner (SL) libraries: SL.Step, SL.glm, and SL.glm.interaction.
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(ATE) by using a double-robust semiparametric substitution
estimation based on machine learning algorithms to avoid
misspecification and reduce bias (22).

Our results showed that when the models were correctly
specified, standardization implemented through IPTW-RA,
AIPTW, and TMLE provided nearly unbiased estimates of the
ATE, despite near-positivity violations. TMLE, however, was
the most efficient estimator. Nevertheless, dual misspecification
is the likely scenario in population-based cancer epidemiology;
thus, attempting to obtain the best possible estimates is paramount
for policy recommendations. Under dual misspecification and
near-positivity violations, both in simulations and in a real-life
illustration, AIPTW showed poorer performance than IPTW-
RA and TMLE, illustrating the instability of AIPTW to estimate
values of the propensity score close to zero (near-positivity viola-
tions) as previously reported by Kang and Schafer (27). How-
ever, basic machine learning algorithms and ensemble learning
techniques implemented in the “tmle” and SuperLearner R
packages avoid misspecification of the models (for either the
treatment or the outcome) used to estimate the ATE.

To the best of our knowledge, the performance of double-
robust methods using different model selection strategies has
not been evaluated in the context of adverse estimation situa-
tions with near-violations of the positivity assumption and mis-
specified models. Based on a simulated scenario, we compared
the STATA user-written program “bfit” (30) with machine and
ensemble learning algorithms implemented in the R package
“tmle” based on SuperLearner (29, 45). TMLE outperformed
model selection strategies based on AIC-BIC for the IPTW-
RA and AIPTW estimators. By default, TMLE implementa-
tion in R sets a bounded distribution of the propensity score to
0.025 and 0.975, and the adaptive estimation respects the lim-
its of the possible range of the targeted parameter, but AIPTW
does not. So AIPTW could, for instance, produce estimates
that are outside the range of the targeted parameter. Moreover,
the default AIPTW implementation in STATA will not con-
verge for very small values of the propensity score with a tol-
erance set by default to 10−5. We had to increase the tolerance
of the weights for the propensity score to 10−8 when using the
AIC-BIC adaptive approach (STATA “bfit”) for the AIPTW
estimator, given convergence problems associated with the
near-positivity violations. The relative bias using an adaptive
approach based on AIC-BIC for AIPTW estimation under diffi-
cult scenarios increases with a larger sample size (from 1,000 to
10,000 in our simulation setting). Hence, using AIC-BIC for
the AIPTW estimator might not be a good option when there
is a strong suspicion of model misspecification and near-violation
of the positivity assumption. Further evidence is needed to eval-
uate our findings.

However, the performance of AIPTW is similar to that of
IPTW-RA and TMLE under certain scenarios (correct specifi-
cation and without near-positivity violations). TMLE is compu-
tationally demanding, manifesting in slow run times for large
cancer population data (e.g., using a computer with 4 cores and
16 GB of memory, the R package “tmle” took 5.4 minutes
to estimate the ATE for 10,000 patients using more advanced
machine learning algorithms such as generalized additive mod-
els, random forests, and boosting).

Under an adverse estimation scenario, with near-positivity
violations and dual misspecification, the TMLE estimator of

the ATE for a binary treatment and outcome performs better
than other double-robust estimators. Its reductions in bias and
gains in efficiency support the use of TMLE for a binary treat-
ment and outcome in population-based cancer epidemiology
research. Results from the illustration provide quantitative evi-
dence of an increased 1-year mortality risk in patients diagnosed
with lung cancer after visiting a hospital emergency department.
This finding should boost calls for policy interventions such as
the implementation of multidisciplinary diagnosis centers to im-
prove early cancer diagnosis andmanagement.
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