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A/B testing is widely used to tune search and recommendation algorithms, to compare
product variants as efficiently and effectively as possible, and even to study animal
behavior. With ongoing investment, due to diminishing returns, the items produced
by the new alternative B show smaller and smaller improvement in quality from the
items produced by the current system A. By formalizing this observation, we develop
closed-form analytical expressions for the sample efficiency of a number of widely used
families of slate-based comparison tests. In empirical trials, these theoretical sample
complexity results are shown to be predictive of real-world testing efficiency outcomes.
These findings offer opportunities for both more cost-effective testing and a better
analytical understanding of the problem.

discrete choice | statistical testing | sample complexity

Many different forms of tests are used to compare two classes of items. As an example,
a company might wish to compare its current cola offering to a new variation it has
developed. In the Specified Tetrad test, a rater might be given two samples of the
original and two samples of the new variation, in unknown order, and asked to identify
the top and bottom two, along some axis such as sweetness, acidity, or overall quality.
As a second example using a different test format, Tomonaga and Imura (1) showed
chimpanzees n − 1 generic pictures and one picture distinguished by past experience,
in unknown order, and trained the chimpanzees to select the distinguished picture. And
as a final example, users of online streaming video services may be offered a carousel of
recommended videos assembled in some way from two sources: a production algorithm
and a new candidate algorithm undergoing testing; the stronger algorithm may be
identified based on the pattern of videos the users choose to watch. More generally, in
our setting a rater is given some slate of samples, drawn somehow from two different
alternatives, and asked to answer some question: What is the best, or what is the worst, or
which are the top two? It is of paramount interest to identify tests capable of teasing out
distinctions between classes as efficiently as possible.

Tests of this form are commonly used. The standard formulation was introduced by
Thurstone (2) in 1927 and has been widely adopted in psychology for sensory testing (3)
and used in animal behavior (1, 4) and animal training (5). The same setup also occurs
frequently in the development of popular online experiences that show sets of results such
as search ranking or recommendations for movies, books, or mobile apps (6–8). Perhaps
more prosaically, the same tests are employed outside commercial and academic settings
by enthusiast home brewers and coffee aficionados (9).

Despite broad usage, the current state of the art in understanding the statistical
properties of such tests is quite limited: No tight bounds are available for the number
of trials needed for a target accuracy, and so statistical power is typically estimated
by simulation for specific problem settings. An analytical characterization of sample
complexity would unlock more principled approaches to design of testing and would
deepen our understanding of this critical area.

In this work, we take a step in this direction. We note a common progression in
many testing scenarios, in which the objects to be tested get better and better over time,
and the difference between them becomes smaller and smaller as low-hanging fruits are
exhausted and diminishing returns set in. By focusing on this scenario of shrinking degree
of difference between alternatives, we are able to develop closed-form analytic expressions
for the sample complexity of several broad families of common tests. These expressions also
demonstrate a number of structural regularities that allow us to make statements about
the optimal and pessimal parameter settings for each family of tests we study.

Formal Model

In our setting, the goal is to compare two alternatives, each of which should be viewed as
a source of items, rather than a single item. The experimenter may construct tasks for the
rater that employ more than one item from each alternative. We adopt the Bradley–Terry
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model (10), perhaps the most well-studied theoretical formulation
of discrete choice. In this model, an item drawn from a particular
alternative will be scored by a rater as the sum of a base score for
the alternative plus an additive noise term drawn independently
from a standard Gumbel distribution.* We say that the alternative
with the higher base score is strong, and the other is weak. We
define ε as the difference between the strong and weak base scores,
also called the degree of difference between the alternatives. It
is well known that the likelihood that a user (or rater) prefers
a strong item to a weak item under standard Gumbel noise is a
logistic function of ε, f (ε) = 1

1+e−ε . In sensory testing, this is the
Thurstonian model with logistic link function (2, 11). In machine
learning, it is the multinomial logistic regression model (12, 13) if
the base score for an alternative is assumed to be linear in features
of the item or a deep neural network with softmax layer (14, 15)
if the base score is nonlinear in features of the item.

Families of Tests

The tests we consider all present the rater with a slate of items
constructed by drawing s items from the strong alternative and w
items from the weak one. The rater is then asked some question
about the overall slate of n = s + w items. We consider four
families of tests, each characterized by the type of question the
rater must answer:

• Permutation test: The rater is asked to order the set of items
from worst to best.

• Ordinal(k ) test: The rater is asked to return the k th best item.
• Prefix(k ) test: The rater is asked to return the set of the k best

items (in no particular order).
• Partition test: The rater is asked to partition the items into two

groups of equal size, without specifying which group is better;
this test is defined only for s = w .

These and other forms of tests are commonly studied in the
sensory-testing literature (3, 16).

Sample Complexity Results

Perhaps the most fundamental theoretical question in testing is
to determine the sample complexity of a test. Sample complexity
is defined as the smallest number of trials that are sufficient to
determine with error probability at most δ whether the samples
were drawn under the null hypothesis in which strong and weak
alternatives are identical (ε= 0) or, under the alternate hypothesis,
in which some small nonzero degree of difference ε exists between
the base scores of the alternatives.

For the Bradley–Terry model with arbitrary degree of difference
ε, there is no known closed-form solution for this problem, and
it is unlikely that one exists. However, when ε approaches zero,
we are able to provide closed-form results due to the interplay
between the structure of Gumbel noise and the dynamics of
shrinking ε. (If the noise is instead derived from the Gaussian
distribution, which is also studied in sensory testing, we do not
see a similar path to a closed-form result even for vanishing ε.)
We describe our theoretical results next, and then to complement
these results, we also present a series of experiments on real data,
which confirm that our findings apply in practical settings.

The derivations and background for all results are given
in SI Appendix, section 2. Our theorems are stated in terms

*Gumbel is a standard noise distribution, defined formally in SI Appendix, section 1.

of the harmonic number Ht =
∑t

i=1 1/i and the inverse
error function inverf(y), the inverse of the error function
erf(z ) = 2√

π

∫ z

0
e−t2dt . These functions are discussed in

SI Appendix, section 1.

Theorem 1. Let the number of strong and weak alternatives s and
w be two fixed positive integers, let the degree of difference ε̄ between
the two alternatives be chosen to be either 0 or some sufficiently small
known positive constant ε, and let the error probability 0< δ < 1

2
be a fixed real number. For Permutation, Ordinal, and Prefix tests,
showing a slate of size n = s + w , the minimum number of samples
to correctly output ε̄with probability 1− δ ±O(ε) has the following
limiting form as ε vanishes:

(1±O(ε)) · C · 1

ε2
· inverf(1− 2δ)2.

The coefficient C depends only on the type of test and the parameters s
and w and is given by

C =
8 · (n − 1)

s · w ·

⎧⎪⎨
⎪⎩

n
n−Hn

Permutation
n−1

(Hn−Hn−k−1)2 Ordinal(k)
k

(n−k)·(Hn−Hn−k )2
Prefix (k).

[1]

All our discussion below assumes that ε is sufficiently small
(with respect to n = s + w , to the test, and to δ) for the O(ε)
term to be negligible. We give empirical results to support this
assumption in our experiments. There are a number of direct
consequences of our functional form:

• The form of Theorem 1, which is a tight characterization of the
number of samples, allows robust comparisons of tests. If one
test requires twice as many samples as another for a particular
δ and a small enough ε, it will require twice as many for every δ
and every smaller choice of ε. Note that merely an upper bound
on the sample complexity would be insufficient to compare and
rank tests in terms of their efficiency.

• Further, since the value of C depends on the number of strong
and weak samples s and w through a 1/(sw) term for all
tests, the same robustness also applies for construction of the
slate: The ratio of samples required between tests with a slate
of a given composition is robust to any choice of δ and any
small enough ε. Therefore, the relative power of these tests can
be understood entirely through the behavior of the coefficient
C . Consider any pair of tests for which the theorem holds:
for instance, the Ordinal(n) test and the Prefix(n/2) test. No
matter what our error tolerance δ or our (sufficiently small)
degree of difference ε is, these two tests will always have the
exact same ratio in number of samples required.

• If δ and ε are not fixed, but vary according to the needs of
the experimenter, the impact on sample complexity is well
behaved. As the degree of difference ε is cut in half, the sample
complexity grows by a factor of 4. And the dependency on the
error probability δ is given by the same function of δ, for all
tests.

• The sample complexities predicted by Theorem 1 have no hid-
den constants. They exactly reproduce the number of samples
required to attain the desired ε and δ with a particular test.

Due to these consequences, an experimenter may estimate the
per-trial rater cost and then multiply this cost by the sample
complexity to determine the cheapest test. The best test will be
unchanged for every target accuracy.
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We now discuss the implications of the form of the expression
for coefficient C . As we observed above, the value of C depends
on s and w only through a 1/(sw) term. Thus, for fixed slate
size n , and for any parameter k of the Ordinal and Prefix tests,
the leading coefficient is minimized and the optimal sample
complexity attained with {s ,w}=

{⌊
n
2

⌋
,
⌈
n
2

⌉}
, so an equal slate

of strong and weak elements is ideal, even for tests that ask only
for the best or worst item. Specifically, and somewhat surprisingly,
even when asked to choose the best of 100 samples, no matter
the target accuracy, the 100 samples should always be constructed
with 50 each from the strong and the weak alternative. The sample
complexity increases monotonically with increased imbalance in
the composition of the slate. This happens for all δ, all ε, all n ,
and all k .

Based on the expressions in Eq. 1, it is also possible to de-
termine the settings of k that minimize the sample complexity
and likewise to study some other common test settings. We
provide such a study in SI Appendix, section 3.1. We also provide
in SI Appendix, section 3.2 a discussion of the simplified sample
complexities that result when the slate size n grows large.

For our model as given, we have fully characterized the Permu-
tation, Ordinal, and Prefix tests. For the Partition test (which, in
the case n = 4 is known in the literature as the Unspecified Tetrad
test) the asymptotic sample complexity is as follows:

Theorem 2. For the Partition test, the number of required samples to
provide correct output with probability at least 2/3 has the following
limiting form as ε→ 0:

Ω

(
1

ε4

)
.

Note that the Partition test has a sample complexity that
asymptotically grows worse and worse without bound relative to

any of the other tests, as the sample complexity grows as ε−4 for
Partition, rather than ε−2 for all the other tests we study.

Leading Coefficients Compared

Fig. 1 compares the leading coefficient C for various tests at slate
sizes from 2 to 16. Ordinal(n) returns the worst element of the
slate and is always the best Ordinal test, although for increasingly
large slates its sample complexity becomes unboundedly worse (as
a function of n) than the other tests in Fig. 1. Prefix(αn) with
α≈ 0.8 is always the optimal Prefix test, while Prefix(n/2) is
slightly worse in sample complexity, by an amount that tends to
about 35% as n grows. Finally, the Permutation test contains a
superset of the information from all other tests and is therefore
optimal in sample complexity over all “rank-based tests” (tests like
ours that consider just the ordering of elements, rather than the
actual scores), asymptotically requiring slightly fewer than half the
samples of Prefix(n/2). However, Ordinal(n) requires the rater to
return just a single item, while the other tests require additional
levels of cognitive burden. These and related theoretical results are
derived and discussed in SI Appendix, section 3.1.

Experiments and Discussion

Fig. 2 shows the predicted values of coefficient C from Eq. 1 for
a set of 11 different tests. These predictions are plotted against the
empirical value of C found in experiments. We show these results
for two large datasets, Movies and Books, described in detail in
SI Appendix, section 4.2. Fig. 2 shows that our predictions cor-
rectly order the 11 tests by sample complexity except for two small
deviations for Movies and one small deviation for Books. The
details of experiment design and datasets, along with discussion
of the deviations and the sources of discrepancy between theory
and experiments, are given in SI Appendix, section 4.
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Fig. 1. Comparison of sample complexity of different tests. Shown is the leading coefficient C of the minimum number of samples for various tests using,
for a given slate size, the optimal split between weak and strong elements and with small enough ε. Observe that the Prefix(n/2) test is defined only for
even n. For n = 4, the Prefix(n/2) test (i.e., the Specified Tetrad test) requires more samples than the Ordinal(n) test (“return the worst item”). Note also that
Ordinal(n) is identical to Prefix(n − 1), which for slates of size five or less is the sample-optimal Prefix test. Conversely, for slate sizes n ≥ 6 the optimal Prefix
test outperforms Ordinal(n), and for n ≥ 10, the Prefix(n/2) test also outperforms Ordinal(n).
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Fig. 2. Theoretical sample complexity leading coefficient C for each test is plotted on the x axis against empirical sample complexity leading coefficient on the
y axis. A monotonically increasing line means that the theoretical predictions perfectly order the tests according to sample complexity. Error bars indicate the
interquartile range (25th to 75th percentile) of the estimated coefficient C across different pairs of alternatives within the dataset.

In SI Appendix, section 4 we also show over a range of
datasets that the theoretical dependence on ε described in
Theorem 1 holds robustly, with most tests and datasets deviating
by at most 3% from the form of Theorem 1, across a range of
values of ε. This experiment also shows that our results hold for
realistic values of ε in practice despite being developed for the
setting ε→ 0.

Finally, we show in SI Appendix, section 4.8 that our predic-
tions in
Theorem 2 regarding the poor asymptotic sample complexity
of Partition tests hold strongly in practice, resulting in sample
requirements that are 30 times larger in all cases and for some
scenarios 2,000 times larger than in all other tests we studied.

We also observe that, while empirical score distributions may
not be Gumbel distributed as required by the Bradley–Terry
model, they are nonetheless often skewed in one direction or
the other. Our results predict asymmetries in tests that ask raters
to identify, for instance, the top or bottom element of a slate,
depending on the direction of data skew. Fig. 2 shows this

distinction in practice: Movies is well-modeled by Gumbel noise
while Books is better modeled using flipped-Gumbel noise. Test
selection can therefore be informed by the easily observed property
of asymmetric tail skew in rater scores.

We close by observing that our results in Theorem 1 give
exact limiting sample complexities that can then be multiplied by
empirically observed costs in rater time or budget of performing
particular experiments, to find the cost-minimizing approach to a
particular desired testing outcome.
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