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Abstract: Neural networks for deep-learning applications, also called artificial neural networks,
are important tools in science and industry. While their widespread use was limited because of
inadequate hardware in the past, their popularity increased dramatically starting in the early 2000s
when it became possible to train increasingly large and complex networks. Today, deep learning is
widely used in biomedicine from image analysis to diagnostics. This also includes special topics,
such as forensics. In this review, we discuss the latest networks and how they work, with a focus on
the analysis of biomedical data, particularly biomarkers in bioimage data. We provide a summary
on numerous technical aspects, such as activation functions and frameworks. We also present a
data analysis of publications about neural networks to provide a quantitative insight into the use of
network types and the number of journals per year to determine the usage in different scientific fields.
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1. Introduction

Biomedical research creates a myriad of health-related data, which come in different
formats, such as numerical (e.g., blood biomarker concentration and gene expression
data), time series (e.g., electrocardiogram data) or image data (e.g., histological images
and mammograms) [1–3]. Bioimage informatics is a subfield of bioinformatics that deals
with large-scale, high-throughput computational methods for the analysis of bioimages,
particularly cellular and molecular images [4,5].

However, this applies not only to biomedical research but also to other fields, such as
forensics [6,7]. The goal is to extract useful knowledge from complicated and heterogeneous
images and their associated metadata. Methods and algorithms are often applied to exploit
image features corresponding to statistical, geometric and morphological properties. The
frequency of image pixels and regions as well as the topological relationship between
multiple image objects are also used in this process [4,5,8–11].

High-content screening and analysis (HCA) encompasses a range of methods for the
objectified automated analysis of large image data sets using image processing, computer
vision and machine learning. Often, HCA is realised using complex processing pipelines
consisting of automated microscopes, automated liquid-handling and cell culture. Typical
applications are found in cell biology and drug discovery to identify compounds with
pharmacological activity or to identify biomarkers. Researchers use such methods to find
specific cell patterns in cells with suitable biomarkers (e.g., tubulin) under a fluorescence
microscope [12–15].

Image processing (including normalisation, segmentation, tracking, spatial transfor-
mation, registration and feature calculation) and machine learning are used to automatically
process high-dimensional image data into numerical data [16]. From these, biomedical
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results (e.g., identification of biomarkers, such as differentially regulated RNAs and pro-
teins, breakdown of signalling pathways and recognition of subcellular patterns) can be
derived [17–22].

Biomarkers or biological markers are objective indicators of a patient’s observable
biological state. They are often measured using bodily fluids (blood, urine and lymph) or
soft tissue biopsies to determine how well the body responds to a treatment for a disease
or medical condition [23]. Analysis of biomarkers on images is usually more difficult
compared to other types of data, as the biomarkers are defined not only by numerical
values but also by their spatial dependency to each other. An example is the detection of
nuclei on an immunofluorescence image [8].

A nucleus is defined not only by pixels that exceed a certain brightness threshold but
also by their spatial proximity (bright pixels that are directly next to each other) and the
brightness of the surrounding pixels (which has to be lower than those pixels that are inside
the nucleus area). Additional detection of biomarkers inside nuclei (e.g., γH2AX or 53BP1
foci; markers for DNA-double strand breaks [15,24]) would not only require their detection
(in the case of foci: the detection of areas of high brightness surrounded by areas with a
sharp drop of brightness (edges) surrounding them) but also the aforementioned detection
of nuclei and the spatial relationship between the detected nuclei and the potential detected
biomarkers. Another example would be the detection of cancerous tissue in histological
images, which can require certain colour/stain concentrations or specific cellular patterns
that need to be recognised.

Whilst these data types can be analysed manually or (semi-)automatically, this ap-
proach usually involves a degree of human subjectivity, where classification is usually done
by experts. Despite investing a large amount of money in the development of detection
approaches, the clinical treatments have not been successful thus far [25]. The main reasons
for these problems are the inability of clinicians to obtain sufficient data and perform
comprehensive data analysis. In bioimage analysis, a common task is the annotation of
certain structures in images (often obtained via techniques, such as microscopy and X-ray
tomography or flourescence microscopy) [8,9].

However, the complicated nature of biological images often requires this annotation
to be done by a human expert, which is time-consuming, labour-intensive, subjective and
may also be error-prone. Due to these limitations of human decision-making, a range of
novel software applications has been developed for automatic data classification to assist
health care workers. The introduction of machine-learning methods, in particular neural
networks, ushered in a new era in this area. For example, researchers in the field of
source image forensics are looking at issues of source camera identification, forensics of
re-recorded images, computer graphics image forensics, GAN-generated image recognition
and source social network identification [6].

One important property of using this type of technology is that machine-learning
systems can improve their performance with experience. Three basic paradigms can
be distinguished: supervised, semi-supervised and unsupervised learning. As soon as
features are extracted and computed, supervised classification methods can be used to
recognise different classes of target structures. For example, these can be physiological
and pathological phenotypes of cells. Unsupervised clustering can also be suitable to iden-
tify new phenotypes. Semi-supervised learning uses both supervised and unsupervised
methods [19].

Since their theoretical foundation in 1943, artificial neural networks (ANNs), which
mimic the working principle of the human brain, have become an increasingly influential
tool for machine learning and data analysis. However, due to hardware limitations, their
development in the 20th century was mostly theoretical. With the increase in computer
processing power and memory availability, ANNs became a widespread tool for data
analysis. From the late 2000s onwards, ANNs were increasingly employed for image
classification, resulting in different classification competitions, such as the Pascal VOC
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challenge (between 2005 and 2012, [26]) and the succeeding ImageNet Large Scale Visual
Recognition Challenge (starting 2010, [27]).

Superhuman recognition precision was first achieved by a deep network called Dan-
Net [28] in 2011. Recent attention for the application of deep learning in biomedicine was
created by the program AlphaFold [29], which applies neural networks for the prediction
of protein folding with unmatched precision in 2022. In particular, the field of bioimage
informatics has drastically benefited from the advance of deep learning. Several deep-
learning-based analysis approaches have been developed in recent years, ranging from the
classification of protein subcellular localisation in immunohistochemistry images [30] to
the spatial quantification of clinical biomarker pharmacokinetics [31].

Numerous frameworks for a variety of programming languages can be exploited to
use ANNs (Table 1). This includes prominent examples, such as TensorFlow and torch,
and lesser known examples, such as scikit-learn (Table 1). Most frameworks are designed
to be used without in-depth knowledge of the underlying functionality and concepts.
One example of this approach is the TensorFlow Estimator classes, which enable model
creation and training without the precise definition of learning methods, network layers
and activation functions.

Artificial neural networks have shown their potential particularly for the analysis of
image data. For example, forensic scientists use this technology for drowning diagnosis,
face verification, image manipulation detection or gunshot wound interpretation [32–35].
Other researchers in the field of source image forensics are looking at issues of source
camera identification, forensics of re-recorded images, computer graphics image forensics,
GAN-generated image recognition and source social network identification [6]. Further
examples are discussed below for biomedical data.

While this review widely covers the general application of ANN for the analysis of
medical data, our focus is the analysis of image data. At this point, we refer to the work of
Cynthia Rudin [36]. In her paper, she indicates the problems of these architectures and their
problems in the application of biomedical image data. This is because most of the methods
we describe here are black boxes whose decision-making process is difficult to comprehend.
Instead, she argues for inherently interpretable neural networks with a prototype layer
(a prototypical structure, such as the cell nucleus or cytoplasm from, which the network
learns a similarity metric between parts of images).

Table 1. Selected machine-learning frameworks and their supported programming languages. Note
that these frameworks may also have support for Julia, GO, Lisp (programming language by John
McCarthy (1958), one of the founding fathers of AI) and Haskell.

Framework Programming Languages

Tensorflow [37] Python, R, Java, C++, Go
pyTorch [38] Python
sklearn [39] Python

Deeplearning4j [40] Java
caffe [41] C++, Python, Matlab
Keras [42] Python, R

SparkMLlib [43] Java, Scala, Python, R
Deep Java Library [44] Java

The most basic unit of a neural network is a so-called (artificial) neuron (AN), which
mimics the function of biological neurons (Figure 1). A neuron is a function with n input
parameters and one output value. The output value is calculated as a weighted sum of all
input parameters and is passed through a so-called activation function, which modifies
the output range of the neuron. Additionally, a bias can be added to shift the activation
function on the x-axis.
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Figure 1. Structure of an artificial neuron. Each neuron receives n weighted inputs (Wn) and a bias
(b). First, a weighted sum of each input (X) is calculated. The bias (b) is added to the sum, and the
final output/activation (O) is calculated by the activation function (Θ).

The simplest ANNs consist of a layered structure of interconnected ANs to mimic the
function of a brain. As each neuron in an ANN receives the activation of all ANs of the
previous layer as input parameters, this type of architecture is also called a Dense or Fully
Connected Network (Figure 2). Another name would be a Feed-Forward Network, as this
architecture only connects consecutive layers. ANNs with more than one layer between
the input and output layer (so-called hidden layers) are called deep; thus, training such
networks is called deep learning. Training is usually performed via supervised learning
(manual annotation of data before training) and adjusting the weights for each input via
backpropagation.

Figure 2. Basic structure of an artificial neural network with three inputs. A neural network consists
of artificial neurons, which calculate weighted sums with N input parameters. The output range
of an individual neuron will be limited before passing via the application of an activation function.
Neurons are arranged in a layered structure, where each neuron receives the activation of all neurons
of the previous layer as input parameters. ANNs with more than one layer between the input
and output layer (hidden layers) are called deep neural networks. X = Initial input of the network.
O = Final output of the network.

Before starting to use deep learning for data analysis, the nature of the data to analyse
has to be determined to choose an appropriate network type and architecture. Thereby, the
activation functions for each layer have to be chosen carefully to weight between training
speed and prediction quality.
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2. Activation Functions

As stated previously, activation functions are used for limiting the output range
of a neuron. Over the last decades, dozens of different activation functions have been
proposed for usage in neural networks and deep learning, each with specific advantages
and flaws [45] (Table 2).

Table 2. Commonly used activation functions. The graphs for each function (red) and its derivative
(blue) are shown.

Name Function [Range] Function (Red) and
Derivative (Blue)

linear

f (x) = a ∗ x

Range : [−b, b]

Heaviside

f (x) =
{

0 if x < 0
1 if x ≥ 1

}

Range : [−∞, ∞]

Rectified Linear Unit

f (x) =
{

0 if x < 0
x if x ≥ 1

}

Range : [0, ∞]

Logistic/sigmoid

f (x) =
1

1 + e−x

Range : [0, 1]

tanh f (x) = tanh(x) =
2

1 + e−2x − 1

Range : [−1, 1]

elu

f (x) =
{

a ∗ (ex − 1) if x < 0
x if x ≥ 1

}

Range : [−∞, ∞]
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2.1. Early Activation Functions

One of the earliest activation functions was the Heaviside function (named after Oliver
Heaviside [46]) also called the unit step function:

f (x) =
{

0 if x < 0
1 if x ≥ 1

}
(1)

This function binarizes the activation by assigning all values below zero to zero
and every other value to one. Whilst extremely efficient, the Heaviside function has
two severe drawbacks: First, the strict binarization of the activation drastically limits the
plasticity of the ANN by limiting the neurons to a similar switch-like function as transistors
in electrical circuits. A more critical problem is that learning cannot be performed via
backpropagation due to the derivative of the function, which equals 0 for all x (except for 0,
where the derivative is undefined) [46]. Another, comparably simple approach that solves
this problem would be the usage of a linear function (also called an identity function if a
equals 1) as an activation function [47], which would perform similarly:

f (x) = a ∗ x (2)

As the derivative of the function equals a, learning via back propagation would
theoretically be possible. However, due to the constant derivative of the function, gradient
descent would be input independent and thus convergence of the model, meaning that
further training will no longer improve the model inference, cannot be achieved.

2.2. Sigmoid Activation Functions

The usage of non-linear functions solves the problem of a constant derivative and thus
allows for learning via back propagation. One of the oldest proposed nonlinear function is
the sigmoid (s-shaped) logistic function:

f (x) =
1

e−x (3)

It limits the neuron output between 0 and 1 and thus can be useful as an output layer
activation for categorisation tasks. Another sigmoid function is the Tangens hyperboli-
cus (tanh):

f (x) = tanh(x) =
2

1 + e−2x − 1 (4)

This function is comparable to the logistic function but limits the output range between
−1 and 1. Sigmoid functions suffer from the vanishing gradient problem: As the network
becomes deeper, the calculated gradient of the loss function becomes smaller and smaller,
reducing the possible weight update and thus impairing the learning of layers closer to the
input [48].

2.3. Rectified Linear Activation Functions

A solution for the vanishing gradient problem was the introduction of the Rectified
Linear Unit function (ReLU):

f (x) =
{

0 if x < 0
x if x ≥ 1

}
(5)

This assigns 0 to all values below or equal to zero and otherwise is equal to the
identity function [49]. This omits the problem of constant, input-independent learning
but introduces a new problem known as “dying ReLu”. Here, neurons have an activation
of 0, regardless of input and thus cannot be changed by gradient descent any longer [50].
Different modified forms of ReLU were proposed to address this problem, which all modify
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the assigned values below 0 to create a non-zero derivative and thus enable gradient
descent. Examples are Leaky ReLU:

f (x) =
{

x ∗ a if x < 0
x if x ≥ 1

}
(6)

which multiplies all values below zero with a small alpha value [51], or ELU:

f (x) =
{

a ∗ (ex − 1) if x < 0
x if x ≥ 1

}
(7)

which shifts function one unit to the left and exponentiates Euler’s number with all values
below 0 [52]. The minimal y value of the function can be controlled by variable α. Despite
the “dying ReLU” problem, ReLu remains one of the most popular activation functions due
to its simple implementation, its fast calculation and the good inference performance [45].
The function is frequently used for convolutional layers [45] but was also proposed to be
used as an output function for the last layer [53]. Compared to sigmoid functions, ReLU is
far less costly to calculate and appears to be on par in inference quality [54,55].

3. Training

However, training efficiency is not only influenced by the selected activation function,
the choice of the training algorithm/optimiser is equally important. In general, a back-
propagation algorithm attempts to determine the global minimum of the loss function of a
neural network. Each training cycle, the network weights are updated, according to their
share of network output, to follow the gradient to the local or global minimum of the loss
function. Several optimisation algorithms have been developed over time. One of the most
prominent algorithms for backpropagation is gradient descent.

3.1. Gradient Descent

Optimisation algorithms are used to minimise the loss function of a neural network.
The most popular optimisers in deep learning are based on gradient descent. Gradient
descent, which is a widely used algorithm for optimisation in neural networks, is an
iterative optimisation algorithm to minimise the objective function J(Θ) over the training
data by updating the parameter Θ [56]. The main idea of gradient descent is to update
randomly initialised parameters until the objective function J reaches a minimum. Gradient
descent was proven to be highly effective in supervised learning [57]. Gradient descent is
based on the following process (Figure 3):

• Initiating a random or all-zero vector value to Θ.
• Modification of Θ in order to decrease J(Θ).

To reach the optimal value of Θ, it is recurrently updated until J(Θ) reaches its
minimum value. This can be described by the following formula:

Θ(k+1) = Θk − α∇J(Θ) (8)

Here, α is step size or learning rate that indicates the size of the steps to reach a (local)
minimum. In gradient descent, we usually normalise the direction of the steepest descent:

d(k) = − ∇J(Θ)

||∇J(Θ)|| (9)

Here, d is the descent direction and indicates the direction of the steepest descent. The
direction of the steepest descent is an guaranteed improvement if the objective function
is smooth, the step size is small enough and and the gradient is greater than zero. The
direction of the steepest descent is opposite to the direction of gradient ∇J. Thus, to obtain
a maximal decrease in J, the subsequent direction will always be orthogonal to the current
direction [58]. Hence, to have optimal step size α at each step, we have:
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α(k) = argminJ(Θ(k) + αd(k)) (10)

Furthermore, to minimise α, we have [58]:

∇J(Θ(k) + αd(k))Td(k) = 0 (11)

d(k+1) = − ∇J(Θ(k) + αd(k))
||∇J(Θ(k) + αd(k))||

(12)

d(k+1)Td(k) = 0 (13)

The above equation indicates that d(k+1) and d(k) are orthogonal, which was the
condition to have maximum decrease in J. Three important variations were developed
from gradient descent: Batch Gradient Descent (BGD), Stochastic Gradient Descent (SGD) and
Mini BGD, which differ in the amount of data that are used to calculate the gradient of the
objective function. Depending on the amount of data, a trade-off between the accuracy and
parameter update time is necessary.

Figure 3. Relationship between the parameter Θ and the objective function J(Θ). The colour gradient
indicates high (red) and low (blue) values of J(Θ).

3.1.1. Batch Gradient Descent

Batch Gradient Descent (BGD) performs calculations over the whole training set at
each update. As a result, it is very slow on large datasets and is additionally limited by
memory capacity. This also introduces redundancy in terms of computation.

Θ(k+1) = Θ(k) − α∇J(Θ) (14)

Batch Gradient Descent is more appropriate for convex or relatively smooth error
manifolds and is guaranteed to converge convex error surfaces to the global minimum and
non-convex surfaces to local minimums [56,57].
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3.1.2. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a widespread algorithm in various machine
learning algorithms, e.g., in neural networks and logistic regression. SGD calculates the
error and updates the parameters of the model for each training example x(i) and label y(i):

Θ(k+1) = Θ(k) − α∇J(Θ; x(i); y(i)) (15)

In contrast to the redundant computations of Batch Gradient Descent, SGD reduces
the amount of computations by performing one update at a time, making SGD usually
much faster than Batch gradient descent. Despite the faster convergence of SGD, the error
function is not as well minimised as for the batch gradient descent. Furthermore, the
descent path is noisier, as only one example per update is used. However, this can allow
the model to escape from shallow local minima [59].

3.1.3. Mini-Batch Gradient Descent

Mini-Batch Gradient Descent can be seen as the middle ground between the robustness
of Stochastic Gradient Descent and the efficiency of Batch Gradient descent, and this is the
most common gradient descent algorithm in the field of deep learning. It makes an update
for every mini batch of n training examples [56]:

Θ(k+1) = Θ(k) − α∇J(Θ; x(i:i+n); y(i:i+n)) (16)

Mini-batch refers to the number of training examples utilised in one iteration, which
has a range between 1 and n− 1 where n is the total dataset size. Finding the appropriate
batch size can be challenging: If the size of the batch is chosen small, the learning process
converges quickly; however, the descent is noisy, and reaching a minimum is therefore
more difficult. Large batch sizes, however, result in a learning process that converges slowly
while the error gradient is estimated more accurately. However, some experiments have
indicated that a small batch size improves the training stability [60] and takes advantage
of speeding up the learning process [61]. The upsides and downsides of variant gradient
descent are listed in Table 3.

Table 3. Comparison of gradient descent algorithm variations and their advantages and disadvantages.

Algorithm Advantages Disadvantages

Batch Gradient
Descent

1. The reduced update frequency leads to a more
stable error gradient and better convergence
on some problems.

2. Given sufficient time for convergence gives
an optimal solution.

1. Cannot escape shallow local minima easily.
2. Can be very slow and do not fit in memory for

large datasets.
3. Performs redundant computations for large

datasets.

Stochastic Gradient
Descent

1. The increased model update frequency can
result in faster learning and convergence.

2. The noisy update process can enable the
model to avoid local minima.

3. It is faster and requires fewer computations
than BGD.

1. The frequent updates cause a noisy gradient sig-
nal that may cause the model parameters and
error to jump around.

2. The noisy learning process can make it hard for
the algorithm to settle on a minimum error.

3. The model gives a good but not optimal solution.

Mini-Batch Gradient
Descent

1. The higher update frequency of this model,
compared to batch gradient descent, provides
a more robust convergence, and it helps avoid
local minima.

2. Higher computational efficiency compared to
SGD.

3. Less memory usage than other methods

1. To calculate error of the model, it is required to ac-
cumulate error information across mini-batches,
such as BGD.
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3.2. Optimisation Algorithms

In the following paragraphs, various algorithms are introduced to address the chal-
lenges of the three mentioned variants of gradient descent.

3.2.1. Momentum

SGD is a popular optimisation method; however, training takes a long time. Mo-
mentum can be used to reduce the training time, particularly when curvatures are high
and gradients are either small and noisy or steady [62]. Momentum is a commonly used
optimisation algorithm, and many of the latest models are trained with it. It is an adaptive
optimisation algorithm that accelerates SGD in the related directions and reduces oscil-
lations [56]. The use of Momentum can be imagined as pushing a ball down a hill. The
ball accumulates momentum via gravity and becomes faster. Similarly, gradient causes
Momentum, which accumulates in the descent methods. As a result, convergence becomes
faster, and oscillation is reduced. Momentum is described by the following Equations [58]:

g(k) = ∇J(Θ(k)) (17)

v(k+1) = βv(k) − αg(k) (18)

Θ(k+1) = Θ(k) + v(k+1) (19)

For β = 0, the gradient descent formula is recovered.

3.2.2. Nesterov Accelerated Gradient

A problem of Momentum is that it does not slow down sufficiently at the bottom of a
valley but rather tends to follow the slope, making it prone to overshooting [58]. Therefore,
a more sophisticated optimisation algorithm is needed. Nesterov Accelerated Gradient
(NAG) is a slightly different version of Momentum. NGA calculates the point where the
current Momentum is pointing to (Figure 4) and thus is able to reduce the step size before
the valley slopes up again [56]. The modified Momentum formulas are as follows:

v(k+1) = βv(k) − α∇J(Θ(k) + βv(k)) (20)

Θ(k+1) = Θ(k) + v(k+1) (21)

Figure 4. Difference between Nesterov’s Momentum update and the Regular Momentum update.

A glance at the (Figure 4) reveals the difference between Nesterov’s momentum update
and the regular momentum update. The momentum update is performed before calculating
the steepest gradient descent vector, which is the main difference between these two. This
kind of update refrains from being too fast and ends up increasing responsiveness. As a
result, it can enhance the performance of RNN on various tasks, such as the reconstruction
of ultrasound images [63].

3.2.3. Adagrad

Unlike Momentum and Nesterov momentum, which update all parameters with the
same learning rate, the adaptive subgradient method (Adagrad) uses a different learning
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rate for each parameter. To adjust the learning rate to the parameters, it considers larger
updates for infrequent, and smaller updates for frequent parameters, thus, making it
suitable for sparse data. Dean et al. [64] used Adagrad to train large-scale neural nets
at Google due to the improved robustness compared to SGD, and it was also utilised to
recognise cats in videos. In addition, Adagrad was used to train GloVe, a network to
find relations between words [65], due to its ability of much larger updates for infrequent
parameters. Adagrad can be described with the following formulas:

Θ(k+1)
i = Θ(k)

i −
α

ε +
√

s(k)i

g(k)i (22)

s(k)i =
k

∑
j=1

(g(j)
i )2 (23)

Here, s is a vector, and s(k)i is the sum of the squares of the partials up to time step k
and respecting Θ. ε is a small value (about 1× 10−8) to prevent division by zero. Adagrad
is less sensitive to the used learning rate (usual value: 0.01); however, a major weakness of
the method is the accumulation of the squared gradients in the denominator. Every added
term is positive, and thus the accumulated sum continues increasing during the training.
As a result, the learning rate often becomes infinitesimally small before convergence. It
was shown that AdaGrad can have fewer generalisation errors compared to the Adam
optimiser [66].

3.2.4. Adadelta

Adaptive Delta (Adadelta) is a more robust extension of Adagrad. The aim of Adadelta
is to deal with the monotonically decreasing learning rate of Adagrad based on restricting
the window of accumulated past gradients to some fixed size w [67] rather than accumulat-
ing all past gradients.

Θ(k+1)
i = Θ(k)

i −
RMS(∆Θi)

ε + RMS(gi)
g(k)i (24)

Since the value of RMS(∆Θ) is not known, it is estimated with the Root Mean Square
(RMS) of parameter updates until the previous time step [60]. As can be seen, it is unneces-
sary to specify a default learning rate, since it has been eliminated from the update rule.

3.2.5. Root Mean Square Propagation

The Root Mean Square Propagation (RMS Prop), similar to Momentum, is a technique
to speed up gradient descent [68]. It maintains an exponentially decaying average of
squared gradients and divides the learning rate by the root of this average [56]. The
average is updated according to:

ŝ(k+1) = γŝ(k) + (1− γ)(g(k) � g(k)) (25)

Θ(k+1)
i = Θ(k)

i −
α

ε +
√

ŝ(k)i

g(k)i (26)

Θ(k+1)
i = Θ(k)

i −
α

ε + RMS(gi)
g(k)i (27)

where the decay γ ∈ [0, 1] was suggested by Tieleman and Hinton [68] to be set to 0.9,
while a good default value for the learning rate α is 0.001.

3.2.6. Adam

The adaptive moment estimation method (Adam) adapts learning rates to each param-
eter. Both exponentially decaying squared gradient s(k+1), such as RMSProp and Adadelta,
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and exponentially decaying gradients v(k+1), such as momentum, are stored in the Adam
algorithm. v(k+1) and s(k+1) are estimates of first-order momentum and second-order
momentum of the gradients, respectively [69]. To introduce a bias, v(k+1) and s(k+1) are
initialised to zero during the initial time steps and particularly when the decay rates are
small. The mathematical notation for Adam can be expressed as following:

v(k+1) = γvv(k) + (1− γv)g(k) (28)

s(k+1) = γss(k) + (1− γs)(g(k) � g(k)) (29)

v̂(k+1) =
v(k+1)

1− γk
v

(30)

ŝk+1 =
s(k+1)

1− γk
s

(31)

Θ(k+1) = Θ(k) − αv̂(k+1)

ε +
√

ŝ(k+1)
(32)

According to a publication of Kingma and Ba [70], good starting values are α = 0.001,
γv = 0.9, γs = 0.999 and ε = 1× 10−8. Adam is an efficient method for computation, uses
less memory for implementation and is invariant to diagonal rescaling of the gradients.
Thus, it is suitable for huge data sets, noisy data, inadequate gradients and non-stationary
problems that require small tuning [62].

3.2.7. AdaMax

AdaMax is a variant of Adam, which was changed based on the use of infinity norm
(ut). The Adam update rule for weights is based on scaling the gradients inversely propor-
tional to a l2 norm of the past and current gradients. The l2 norm based update rule can
be generalised to a lp norm based update rule. In the case of using large p values, norms
become numerically unstable, while, for l∞, a stable algorithm appears [70]. The AdaMax
algorithm can be described by the following formulas:

s(k+1) = γss(k) + (1− γs)|g(k)|2 (33)

s(k+1) = γ
p
s s(k) + (1− γ

p
s )|g(k)|p (34)

u(k+1) = γ∞
s s(k) + (1− γ∞

s )|g(k)|∞ (35)

u(k+1) = max(γs · s(k), |g(k)|) (36)

by replacing ε +
√

ŝ(k+1) in the Adam equation with u(k+1), the AdaMax update rule is
obtained:

Θ(k+1) = Θ(k) − αv̂(k+1)

u(k+1)
(37)

3.3. Choosing the Right Optimiser

The choice of the right optimiser is highly dependent on the dataset to analyse. If the
input data are sparse, then good results can be achieved using one of the adaptive learning-
rate methods, such as Adam or Adadelta. Additionally, using adaptive-learning methods
eliminates the need to fine-tune the learning rate to obtain optimal results. However, it
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should be considered that they are computationally costly, since they calculate and keep all
the past gradients and their squares to update the next parameters.

Furthermore, the adaptive-learning optimisers converge to different minima points
in comparison with fixed learning-rate optimisers. Both RMSprop and Adadelta are
extensions of Adagrad, which overcome Adagrad’s monotonically decreasing learning rate.
The difference between both methods lies in the usage of the RMS of parameter updates in
the numerator update rule.

The Adam algorithm extends RMSprop by adapting learning rates to each parameter
and adding bias-correction and momentum. The Adam technique can be utilised in the
case of high-dimensional parameters and huge data sets. RMSprop, Adadelta and Adam
are algorithms with similar behaviour and can perform well under comparable conditions.
However, Kingma and Ba [70] indicate that its bias-correction results in better performance
in Adam compared to RMSprop towards the end of optimisation as gradients become
sparser. Therefore, Adam might be the best of the presented choices.

Interestingly, recent work found that SGD can produce better results when combined
with a good learning rate annealing schedule. Although SGD is usually able to find a
minimum, it might take considerably longer than other optimisers. It also depends much
more on a robust initialisation and choice of learning rate. Moreover, its fluctuation helps
avoid local minima; however, it may become stuck in saddle points. In summary, when a
good learning rate schedule is required, SGD with momentum can be a viable choice. In
the case of searching for fast convergence and training a complex neural network, one of
the adaptive learning rate methods should be chosen.

3.4. Back Propagation

Backpropagation, presented in 1986 by Rumelhart and McClelland [71], is a short
form of “backward propagation of errors”. It is a common method of training neural
networks and an iterative gradient descent training procedure. It utilises the loss function
and gradient descent method to modify the parameters (called weights) of a network. The
backpropagation process can be described as follows [72]:

Forward propagation: Input is entered into the network and propagated from the input
layer, via the hidden layer, to the output layer. Input values are multiplied with weights of
connecting nodes, and values of hidden layer nodes are obtained. The weight and offset
value of the network are kept constant during the forward propagation.

Back propagation: In the case that there is a difference between the expected output
and the achieved output, the error of the network is propagated from the output layer
to the input layer. The network carries on updating the weights until the error becomes
minimal. Updating weights is performed from the output layer and hidden layer and can
be described via the following formulas [73,74]:

The error function is defined as follows

ej(n) = dj(n)− yj(n) (38)

E(n) =
1
2 ∑ e2

j (n) (39)

EAV =
1
N

N

∑
n=1

E(n) (40)

Here, ej(n) is the error of the jth neuron, E(n) is the instantaneous error energy,
EAV is the averaged squared error energy, and N is the total number of training data.
Furthermore, dj(n) and yj(n) are the expected output and the obtained output of the
jth neuron, respectively. In the following, the way of obtaining output of the layers is
explained:

yj(n) = φj(vj(n)) (41)
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vj = ∑
i=0,...,m

wjixi (42)

Here, wji indicates the weight of the connection from the ith neuron to the jth neuron,
m is the number of neurons, xi is the input signal of ith neuron, and φ is a function. The
methods of minimising the loss function and updating the weights are as follows:

∂E(n)
∂wji(n)

=
∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

∂vj(n)
∂wji(n)

(43)

∂E(n)
∂wji(n)

= −ej(n)φ′(vj(n))xi(n) (44)

The weight correction ∆w is obtained as follows:

∆wji(n) = −α
∂E(n)

∂wji(n)
= αej(n)φ′(vj(n))xi(n) (45)

The local gradient δj of the jth neuron is computed using the chain rule, which can be
seen as follows:

δj(n) = −
∂E(n)
∂vj(n)

= − ∂E(n)
∂ej(n)

∂ej(n)
∂yj(n)

∂yj(n)
∂vj(n)

(46)

δj(n) = ej(n)φ′(vj(n)) (47)

∆wji(n) = αδj(n)xi(n) (48)

Here, α is the learning rate. Ultimately, the weight is updated as follows:

wji(n + 1) = wji(n) + ∆wji(n) (49)

To update weights from the hidden layer, errors are propagated from hidden layer
down to the input layer. The method of calculating a local gradient is different, and it is
computed as follows:

δj(n) = −
∂E(n)
∂yj(n)

∂yj(n)
∂vj(n)

(50)

∂E(n)
∂yj(n)

= ∑ ek
∂ek(n)
∂yj(n)

(51)

∂E(n)
∂yj(n)

= ∑ ek
∂ek(n)
∂vk(n)

∂vk(n)
∂yj(n)

(52)

in order to compute ∂ek(n)
∂vk(n)

, remember:

ek(n) = dk(n)− yk(n) = dk(n)− φk(vk(n)) (53)

∂E(n)
∂yj(n)

= −∑ ekφ′(vk(n))wkj(n) (54)

∂E(n)
∂yj(n)

= −∑
k

δk(n)wkj(n) (55)

δj(n) = −
∂E(n)
∂yj(n)

∂yj(n)
∂vj(n)

(56)
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δj(n) = φ′j(vj(n))∑
k

δk(n)wkj(n) (57)

Finally, the weight is updated as shown in following formulas:

∆wji(n) = αδj(n)xi(n) (58)

wji(n + 1) = wji(n) + ∆wji(n) (59)

4. Potential Training Problems

The automatic approach of neural network training has several potential pitfalls, which
can negatively impact training and overall classification performance or even completely
invalidate the classification. First, problems can arise due to the initialisation of the network
weights. An intuitive approach would be to simply initialise all values and biases with a
fixed value, e.g., zero. This, however, impairs learning as such initialised neurons tend to
develop similar weights [75]. A solution to this problem was proposed by random value
initialisation—the application of randomly changing the learning rate [75,76]. Further,
training problems can arise when an inappropriate learning rate is selected: too small and
the training progress per training cycle is small, while too large and minima of the loss
function might not be achievable.

Another potential point of failure is the training used data set and training time. Data
sets should have a sufficient size and be diverse enough to fully represent the target data,
otherwise the network might not be able to generalise enough to perform well under real
testing conditions. Another error regarding the dataset is to break the strict separation of
the training and the validation data set, which usually results in a gross overestimation of
network performance.

Regarding the training time, two phenomenons can be seen: underfitting and over-
fitting. Underfitting occurs when the model’s training time is too short to properly adapt
to the dataset, whilst overfitting occurs when a network is trained too extensively and
thus loses its capability to generalise. Both under- and overfitting result in poor network
performance. However, whilst underfitting can be easily spotted by predictions accuracy
during training, overfitting can easily be overlooked if no adequate validation dataset
is used.

A more sinister problem is called Clever Hans Predictors (CHP). These kinds of neural
networks seemingly perform well under laboratory conditions, making them difficult to
spot before deployment. The problem of CHP arises if a network focuses on features that
are logically irrelevant for inference [77]. These could be watermarks or other text on
images or on background details instead of the objects of interest. This problem becomes
particularly serious when only certain classes contain irrelevant characteristics. If both the
training and validation dataset are flawed, the only way to spot CHPs is via a review of
its activation for specific samples, which both takes time and requires a certain degree of
expertise for both the used dataset and programming.

Recent examples of flawed applications of neural networks in the health sector were
described in the studies of Wynants et al. [78] and Roberts et al. [79], where they anal-
ysed prediction models that had been recently described to support COVID-19 diagnosis
(Wynant et al.: 232 models; Roberts et al.: 62 models). Both studies did not recommend any
of the studied models for clinical use because all of them had at least one or more of the
above listed problems. This highlights the urgency of good datasets and network design.

5. Network Types

Different types of network architectures have been developed over time to address
different types of data and problems. The first developed types were fully connected
neural networks, followed by convolutional neural networks. Currently, more complicated
networks, such as U-Nets or Generative Adversarial Neural Networks are also abundant.



Biomedicines 2022, 10, 1469 16 of 30

5.1. Convolutional and Generative Adversarial Neural Networks

Convolutional Neural Networks (CNNs) are specialised ANNs that are designed to
solve pattern recognition tasks via machine learning. Thereby, rather than receiving scalar
input, as with dense networks, CNNs receive matrix input, such as images. The basis for
modern CNNs was laid by the neocognitron by Fukushima in 1980 (43) and the time delay
neural networks by Waibel in 1987 [80]. One of the first widely recognised networks was
LeNet, a CNN for the recognition of postal zip codes, designed by LeCun et al. in 1989 [81].
CNNs are composed of three main components: convolutional, downsampling/pooling
and dense layers.

In contrast to dense layers, convolutional layers perform convolution, which means
each neuron calculates weighted sums of a predefined set of inputs for each input rather
than forming a weighted sum for all inputs. The size and weighting of the area is defined
by a convolution kernel, which is shared between all neurons of a layer. This allows
convolutional layers to perform image processing tasks, such as edge and corner detection.
Per convolutional layer, multiple convolution kernels are trained to perform different
processing tasks.

To reduce the input dimensionality as well as to abstract it, each convolutional layer is
followed by a downsampling layer. Whilst different methods for pooling are available, the
most commonly used is maximum pooling, where the maximum of the specified area is
used as the output. In addition, reducing the output dimension of a convolutional layer
and thus subsequently the complexity of the network, it can also help to prevent overfitting
by reducing the availability of raw input information. To be compatible with the dense part
of the network, the output of the last downsampling layer is vectorised before passing. The
subsequent processing is then performed as described for ANNs (Figure 5).

Whilst CNNs are useful for whole image classification, their ability for image segmen-
tation is limited: Due to their dense layer, a convolutional network can output a certainty if
an object is contained in an image but not where the object is located. Another limitation is
the detection of multiple different objects in the same image. One approach to overcome
this hurdle was the introduction of regional CNNs (R-CNNs). R-CNNs are designed as
described for regular CNNs but are fed with overlapping segments of the image, which are
classified individually, allowing to create a heatmap of object locations.

A further advantage for image segmentation was the introduction of fully convolu-
tional networks (FCNs), first described by Long et al. in 2014 [82]. Contrary to CNNs,
FCNs are composed completely out of convolutional and pooling layers. The dense part of
a CNN is replaced by one upsampling layer to match the output and input dimensions.
This design gives FCNs several advantages over CNNs. Due to the missing dense layers
and the shared convolution kernels of convolutional layers, FCN architecture allows for
dynamic, arbitrary input sizes. Furthermore, as the output of an FCN is a matrix rather
than a vector, pixelwise image segmentation can be achieved.

Another direction to deal with mentioned problems is superpixel segmentation. A
Superpixel can be defined as a group of pixels that perceptually shares common characteris-
tics while considering spatial constraints. Superpixels carry more information compared to
pixels and also provide a compact representation of an image, which is useful for reducing
computational complexity [83]. They are becoming increasingly popular in many computer
vision and image processing algorithms, such as image segmentation, semantic labelling,
object detection and tracking.

Gheshlaghi et al. [84] used the superpixel segmentation technique to overcome di-
mensionality problems for multiple sclerosis lesion detection. Fang et al. [85] proposed a
superpixel segmentation algorithm to segment two-dimensional bone images and three-
dimensional brain images. In this paper, the blocks with the same features were merged
and to segment the superpixel/voxel medical image, the final distance with the intensity
feature and the location feature, and the gradient feature was considered.
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Figure 5. General structure and functioning of a convolutional neural network (CNN). (Top): Ar-
chitecture of a CNN. A CNN usually contains a various number of convolutional layers, which are
each directly followed by pooling/downsampling layers to both reduce the network complexity and
abstract the input. The output of the last maximum pooling layer is flattened at the transition to the
dense layer. 1: Convolution; 2: Convolution and pooling; and 3: Linearisation. (Middle): Depiction
of the process of convolution Padding is indicated in gray. (Bottom): Depiction of Maximum Pooling
with a radius of 1.5 for both axes. Pooling is performed by determining the maximum of each region
(shown in different colours).

The FCN architecture was further refined by the introduction of U-Nets by Ronneberger
et al. in 2015 [86]. A U-Net can be divided into two different sections: downsampling and
upsampling. As with a normal FCN, the downsampling part of the network is composed
of alternating convolutional and pooling layers. The upsampling of a U-Net is composed of
transposed convolutional layers, whereby the number of transposed convolutional layers
matches the number of pooling layers.

Furthermore, the upsampling rate is set to match the downsampling rate so that the
input and output shape are equal. To further improve the segmentation quality, each
upsampling layer is connected to a downsampling block; thereby, the first downsampling
block is connected to the last upsampling layer, the second downsampling layer is con-
nected to the second last upsampling layer and so on. This allows deeper layers to use
low-level data, which helps to improve the predictions.

In comparison to the older dense neural network, neural networks with convolutional
layers have different advantages: Due to the weight sharing, convolutional layers can
process much more input parameters. The performed convolution also allows each neuron
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to consider local neighbourhood parameter relationships rather than weighing each param-
eter individually, which allows the network to recognise features, such as edges, corners
and patterns. Additionally, the added pooling forces the network to become less reliant on
the input data as part of it is cut at each pooling layer, which might help the network to
generalise better.

A major drawback of convolutional neural networks is their dependence on huge
datasets for training, as they are neither rotation-, translation- nor color-invariant. This
requires multiple images of the object of interest in different positions and rotations as well
as lighting conditions. This could partially be alleviated by the introduction of random
rotation/translation into the dataset (data augmentation) but might introduce difficult to
detect artificial artefacts, which could negatively influence the classification results.

A special use case of FCNs/CNNs are Generative Adversarial Networks (GANs),
which can be used to create images and other output data comparable to its training data
from noise [87,88]. This is achieved by training an FCN and CNN simultaneously, where
one network is designed to receive noise (FCN, called the generator) and output fabricated
images, whilst the second network is trained to differentiate between the fabricated and
real input images (CNN, called the discriminator).

The generator is generally trained using the inference difference of the discrimina-
tor between generated and real images. This allows the generator to train unsupervised.
However, compared to the training of other types networks, GANs are notoriously dif-
ficult to train as they require hyperparameter fine tuning for both the generator and the
discriminator: Both overly high and overly low inference quality of the discriminator can
cause poor generation quality. Several different approaches have been proposed to address
this problem, such as noise addition for the discriminator input or “freezing” of the lower
layers of a pretrained discriminator [89,90].

5.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special class of neural networks that are
derived from feed-forward networks and possess the ability to process sequential data.
This is accomplished by saving previous states of the network in specialised recurrent units
(RUs), which are organised in loop-like structures. These RUs can be regarded as dense
layers with tanh activation, which save their respective activation as a hidden state. This
hidden state is passed between and modified by each RU for inference.

Whilst this, in theory, allows RNNs to learn long-term dependencies, they suffer in
practice from either vanishing or exploding gradients during training, drastically limiting
the inference performance of classical RNNs [91]. This problem was addressed by the
development of Long Short-Term Memory Networks (LSTMs) [91,92]. Each standard
LSTM unit has two states: the cell state, which is solely passed between the different LSTM
cells and the hidden state, which constitutes the cell output. These states are influenced by
three different gates: The forget-gate, the modification-gate and the output-gate.

The cell state is first influenced by the forget-gate, which weighs the previous cell
state. In other words, the forget-gate decides which information of the cell state is relevant
for further inference. The second gate is the modification gate, which modifies the cell
state according to the cells learned parameters. Both gates depend on the hidden state of
the previous cell. The last gate is the output gate, which further modifies the cell state,
dependent on the previous hidden state, to create this cell’s hidden state.

Since the first introduction of LSTMs, different modifications have been proposed.
Peephole LSTMs [93], for example, interconnect the gates with the cell state and thus
changes the information flow inside each unit. A more radical change was proposed with
Gated Recurrent Units (GRUs) [94], which replaces the forget and the modification gate
with a singular update gate and merges the cell and hidden state.

Due to their structure, RNNs cannot be trained via regular backpropagation. Instead,
training is usually performed via backpropagation through time (BPTT), a variant of back-
propagation, which unravels the RNN and applies gradient descent using accumulation of
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the error for each recurrent unit of the network. Regardless of their challenges in training
convergence, they exhibit remarkable performance in practical application. As an example,
in one application [95], a combination of CNN feature extraction and LSTM classification
was used to classify histopathological images.

The images were divided into patches to alleviate the limitation of the computational
requirements, and then the CNN model was utilised to embed each path into a latent
space (e.g., feature vectors). Next, the feature description of all patches was concatenated
to form an input sequence for the LSTM model. Finally, with the sequence-to-sequence
transformation capability of the LSTM model, the contextual dependency among patches
was modelled to produce an image-level prediction. R. Azad et al. [96] further developed
the LSTM idea into a segmentation model to unify the feature description driving from the
encoder–decoder module in a non-linear fashion.

5.3. Graph Neural Networks

Graph-like data has been proven to be difficult to analyse using network architectures,
such as CNNs or RNNs, which expect a predefined set of input features. To tackle this
kind of data, a new kind of architecture was developed, named Graph Neural Network
(GNN, [97]). A GNN is usually used to tackle the following tasks: Node classification
and regression; edge classification and prediction; and graph classification, regression and
matching [98].

In general, a GNN usually consists of three main modules: a propagation module,
used to aggregate information from neighbouring nodes, a sampling module, working
in conjunction with the propagation module, and a pooling module, which reduces the
data complexity [98]. An improvement of a GNN is the so-called Graph Convolutional
Network (GCN), which applies convolutional layers to extract information [99,100]. The
concept of convolution was applied to GNN to decrease the high computational weight of
the previous GNN design. In CNNs, convolution operates on local Euclidean structure,
while in GCNs, it operates on non-Euclidean data (e.g., graph) to incorporate irregular
data structure [101]. The main difference between GNNs and dense neural networks is the
graph transfer function. More specifically, similar to the dense neural network, the graph
transfer module learns the full connection weights between all nodes; however, in addition,
it considers the importance of the edge connections.

This might explain why the GCN network is more capable of learning structural
information shared among all nodes and is more prone to missing data points. It should
also be noted that the GCN model requires precise data structuring (unlike CNN that
works on the raw data), which might limit the applicability of this architecture in different
applications. Time and space complexity are also other limitations of the GCN network.
Particularly, the backpropagation operation in the GCN [22] networks requires saving all
computed nodes along with the intermediate states, which requires high computational
memory specifically for the large graph.

In addition, as stated before, the GCN is a generalised form of CNN architectures and
requires more training time to capture the underlying representation. Yu et al. [102] used
Graph Neural Networks for the determination of biomarkers from microarray data. In
this work, first, the graph structure was constructed using the gene interaction network,
and then the Graph Neural Network was used for the link prediction method to enhance
the graph structure data. Li et al. [103] proposed a novel biomarker selection method
in microarray data by Combining Graph Neural Networks and Gene Relationships. In
this paper, Graph Neural Networks were used to select features and characterise node
information. Then, a spectral clustering method was applied to filter redundant features.

5.4. Transformers

Transformers are a neural network architecture that was proposed in the year 2017
by Vaswani et al. [104]. This architecture is built around attention-driven blocks, which
are neural network layers that aggregate information from the whole input sequence [105].
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The model was originally designed for machine translation by modelling long-range
dependencies and multi-head attention mechanisms (the proposed model of Vaswani et al.
is one the most famous in the field of Natural Language Processing (NLP)) but is currently
also increasingly used for image processing. Although Convolutional Neural Networks
(CNNs) have been the most popular deep neural networks in medical image analysis, they
are weak in learning long-range data because of their localised receptive field [106].

Application of the long range learning capabilities for computer vision tasks was
made possible by the development of Vision Transformers (proposed by Dosovitskiy
et al., 2020 [107]). In this model architecture, an image is transformed into a sequence
of non-overlapped patches, where each patch indicates a spatial location on the input
image. Next, by applying the multi-head attention mechanism followed by the Multilayer
Perceptron (MLP) module, it learns the importance of each sequence component to model
object-level recognition. An extension of this architecture (e.g., [108]) was further proposed
to alleviate the problem of weak global representation stemming from the local nature of
the CNN modules.

From another perspective, the lack of global representation in the CNN model usually
pushes the learning strategy of this network toward the texture clues, which weakens the
shape-based description. The Transformer network utilises the attention mechanism on top
of the image patches to model global representation. Hence, it has the potential in learning
global and, consequently, shape-based information.

In addition, the sequence-to-sequence learning strategy deployed in the Transformer
model empowers this architecture to better model inductive bias compared to the CNN
counterparts. However, with a higher number of parameters, the quadratic computational
complexity of the attention operation and hunger for the large training data are among the
main drawbacks of this network architecture.

As an example of utilising Transformers in clinical applications, Lum et al. [109] pro-
posed an attention-based video model to detect the disease signatures and learn clinically
relevant imaging biomarkers. A knowledge transfer approach was also used to overcome
the problem of data limitations. In another application [110], a Transformer-based method
was utilised to reconstruct Electrocardiography’s (ECG) signal from the photoplethysmog-
raphy (PPG) version. More specifically, a multi-head attention mechanism was designed to
perform sequence to sequence prediction processes using waveform data. The predicted
ECG signal along with the PPG version was then used to monitor cardiovascular diseases.

5.5. Challenges of Neural Networks

Despite their advantages, neural networks also have to contend with some difficulties.
The most glaring problem of neural networks is their extremely high complexity, which
makes it difficult to explain the results obtained (also called black-box networks). In recent
years, some efforts have been made to make neural networks more interpretable (e.g.,
through reverse engineering or various visualisation techniques, [111,112]); however, as
neural networks grow in size and complexity, the problem is likely to become worse. This is
problematic because black-box networks can hide other problems, such as CHP (Section 4)
and dataset bias, i.e., the uneven distribution of available data for different social groups,
which can lead to incorrect diagnoses and/or treatments for women and minority groups
when such networks are used as tools by clinicians [113,114].

6. Usage of Neural Networks for Medical Data Analysis

The appropriate architecture for analysis largely depends on the type of data. We
differentiate between four data types: scalar data, n× n matrices (images), series data and
graph data.

6.1. Scalar Data

Scalar data are the most basic type of data obtained during diagnosis. Typical medical
data with scalar characteristics are:
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• Heart rate.
• Blood pressure.
• Blood type.
• Glucose level.
• Spectroscopic measurements.
• Biomarker concentration.

A dense network usually receives and outputs scalar data, making it useful for classifi-
cation and clustering. The main application of dense networks lies in diagnosis assistance
for medical personnel. Networks trained with different biomarkers as input and the re-
spective medical diagnosis as output could be utilised particularly for the diagnosis of rare
and thus often overlooked diseases. The applicability of such diagnosis models has been
evaluated for acute nephritis, abnormal cardiac behaviour, carcinoma, valve stenosis and
other diseases [115,116].

Dense networks were also used for the estimation of skin parameters for the recon-
struction of 2D maps of blood volume fraction and blood oxygen saturation in the skin,
the measurement of oxygen saturation and haemoglobin concentration in living tissue, the
differentiation of smokers from non-smokers and the discrimination of human bodies from
bones and teeth remains [117–120].

6.2. Images

Several diagnostic procedures produce image data. Some typical examples are:

• MRI/CT images.
• Tissue section images.
• Immunofluorescence images.
• Retinal images.

In addition, there are applications in forensics that deal with, for example, the iden-
tification of image sources, forensic face verification in videos, drowning diagnosis or
the interpretation of gunshot wounds [32–35]. The input for CNNs/FCNs/U-Nets is an
n-dimensional matrix; it can thus be used for classification and clustering of image data.
Since their development, CNNs, FCNs/U-Nets and derivatives thereof have been used
extensively for classification of image-based medical data. Examples can be found, among
others, for the detection of Alzheimer’s Disease, brain tumours, lung cancer, liver cancer
and mitosis and nuclear atypia detection for breast cancer [121–125]. GANs also have seen
various uses in medical data analysis from the estimation of CT images from MR images,
the detection of brain lesions and retinal vessel detection to image synthesis for recognition
network training [126–129].

6.3. Series Data

Series data are a special case of data compared to the previously described ones.
Instead of only analysing one data point for classification, the network needs to draw
conclusions from a series of ordered data points. These data points can be scalar data points
as well as image data. Typical series data are:

• Biomarker concentration over time.
• ECG.
• Live cell imaging.

RNNs with memory cells (LSTMs and GRU) are a suitable choice to tackle this kind of
data. They have been used for sepsis detection, survival prediction for heart transplantation,
hospital readmission rate prediction for lupus patients or MRI image reconstruction [130–134].

6.4. Graph Data

A graph describes the characteristics of and relationships between data points. Typical
series data are:

• Protein/molecule structures.
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• Patient data.

Graphs are difficult to analyse using classical neural networks because of their lack of
predefined structure. The network types to analyse graph data are GNNs and derivatives,
such as GCNs. GCNs have been utilised in many fields, including computer vision applica-
tions, person re-identification, action localisation and also in medical image analysis. These
networks were successfully used, e.g., for diagnosis prediction, prescription prediction and
biomarker identification [135–137]. Zhang et al. [128] considered the supervoxels from the
brain MRI volume as the nodes of the graph and used GCN to classify supervoxels into
different types of tissues. Zhou et al. [101] utilized a GCN for the grading of colorectal
cancer, and Shi et al. [138] used a GCN to classify cervical cells.

7. Publication Development between 2000 and 2021

To analyse the usage of different neural network architectures, we searched the
PubMed API (https://pubmed.ncbi.nlm.nih.gov/, accessed on 27 January 2022) to find
articles with publication dates between 2000 and 2021 that matched a respective keyword
(Table 4). Overall, 42,335 publications were analysed. First, the PubMed IDs of matching
publications were fetched using the esearch interface. A document summary, containing
among others, information about the authors and journal, was then requested for each ID
using the efetch interface.

Table 4. Used search terms for performed queries. A query using the listed search terms (separated
by “;”) for each architecture type was performed.

Architecture Search Terms

General Artificial Neural Network; Deep Learning

Convolutional Neural Networks Convolutional Neural Network;
Fully Convolutional Neural Network

Generative Adversarial Neural Networks Generative Adversarial Neural Network
Recurrent Neural Networks Recurrent Neural Network

Graph Neural Networks Graph Neural Networks

For each keyword, the number of published articles, and journals between 2000 and
2021 was analysed (52,940 publications in total, publications without a full journal name
were excluded). Thereby, for all searched keywords, an increase in the number published
articles and a respective increase in publishing journals was observed (Figure 6). The largest
increase in publications per year was observable for the broad terms “Artificial Neural Net-
work” (N = 185 (2000) to N = 3531 (2021) and “Deep Learning” (N = 62 (2000) to N = 10,000
(2021)), which are generally broadly used to indicate the usage of neural networks.

For specific architectures, an increase in publications per year for all architecture types
were observed, particularly after the year 2015. This might be explained by ever-increasing
computing prowess over the last twenty years, the emergence of Graphics Processing Units
(GPU; described as early as 2005 [139])—and cloud computing driven machine learning
(ML) as well as increasing popularity due to easy access ML APIs, such as Tensorflow
or Torch. Thereby, the largest number of publications was observed for Convolutional
Neural Networks with 5415 publications in 2021, followed by Recurrent Neural Networks
(N = 926) and Graph Neural Networks (N = 872).

The least number of peak publications was found for Fully Convolutional Neural
Networks (N = 608). The high number of papers incorporating convolutional neural
networks can be explained by their ability to categorise multidimensional data as well
as their easier implementation compared to generative or recurrent networks. Whilst
approaches have been shown to analyse image data for both recurrent and generative
networks, their implementation is usually more complicated, and more parameter fine-
tuning is required for successful training.

https://pubmed.ncbi.nlm.nih.gov/
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Figure 6. (Top): Number of published articles per year. (Bottom): Number of journals that published
articles matching the following keywords: Artificial Neural Network, Deep Learning, Convolutional
Neural Network, Fully Convolutional Neural Network, Generative Adversarial Network, Recurrent
Neural Network and Graph Neural Network. Articles were fetched using the PubMed API (https:
//www.ncbi.nlm.nih.gov/home/develop/api/, accessed on 27 January 2022).

The number of unique journals in general shows a similar trend as the number of
publications for all searched keywords. The largest number of unique journals was ob-
served for the keyword Deep Learning (N = 1591 (2021)), followed by Artificial Neural
Network (N = 1042 (2021)) and Convolutional Neural Network (N = 915 (2021)). The
least diverse publication fields were observed for Graph Neural Network (N = 242 (2021)),
Fully Convolutional Neural Networks (N = 221 (2021)) and Generative Adversarial Neural
Networks (N = 204 (2021)).

Additionally, the ten journals with the overall most publications between 2000 and
2021 were investigated (Figure 7). The overall most publications were published in the
journal Sensors (Basel, Switzerland) with 4502 publications, followed by Scientific reports
(1867 publications) and Conf Proc IEEE Eng Med Biol Soc (1570 publications).

Figure 7. The top 10 journals between 2000 and 2021 with the overall most publications. Interestingly,
in the last five years, journals with a bioanalytical scope (Sensors and Scientific Reports (Sci. Rep.) and
PLOS One (PloS one)) had a high share.

https://www.ncbi.nlm.nih.gov/home/develop/api/
https://www.ncbi.nlm.nih.gov/home/develop/api/
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