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INTRODUCTION

The brain/body relationship and interdependence has been one of the most prevalent questions
toward understanding psychobiological mechanisms underlying human behavior (Gover, 1996;
Thompson and Varela, 2001). Current epistemological stances define brains as dynamic, complex,
and self-organized systems (Cosmelli and Thompson, 2011), tightly coupled, and integrated with
the rest of the body, establishing bidirectional communication axes (Thayer and Lane, 2000; Craig,
2002). The paradigmatic turn can be evidenced in an increment in scientific research considering
both brain and bodily signals, such as the heart (Pollatos et al., 2007b; Villena-Gonzalez et al., 2017),
respiration (Yuan et al., 2013; Ahani et al., 2014), gastrointestinal (Richter et al., 2017; Rebollo
et al., 2018), and muscular dynamics (Boonstra et al., 2009, 2015; Kerkman et al., 2018). Recent
evidence has furthermore revealed the many ways in which psychological processes influence the
body, and vice-versa, with behavioral and health implications (Pollatos et al., 2007a; Mattson, 2015;
Babo-Rebelo et al., 2016; Azzalini et al., 2019).

These ideas are products of continuous epistemological growth, already present at the end of
behaviorism and the early days of the cognitive revolution. From Bartlett in the UK to Dewey
in the USA to Luria in Moscow, many scientists had seen mind and brain as a whole with the
body (Rossi et al., 2019). Like them, many other revolutionaries -whose work was unaffected by
behaviorism- pushed forward the idea of a mind without the need for manipulation of abstract
symbols and representations. However, the mainstream epistemological stance in Psychological and
Cognitive Sciences still pursues the anthropogenic representational and computational capacities
of the mind (Frégnac, 2017; Hari, 2017; Jonas and Kording, 2017).

BODY SIGNALS INFLUENCE MOOD AND BEHAVIOR

Research agendas including brain/body measurements are sustained in part by the fact that there
are intrinsic cognitive mechanisms, related to body awareness and sense of self, integrating and
monitoring visceral information; a process known as interoception (Craig, 2002; Slonim, 2014;
Quadt et al., 2018). Interoception is a global concept encompassing a plethora of processes:
neuro/humoral body-to-brain signals, neurocognitive dynamics associated to the integration of
those signals, the influence of those dynamics on extended brain/body functional networks,
and the associated unfolding of metacognitive processes (Valk et al., 2016; Quadt et al., 2018).
High interoception has been associated with increased emotional regulation (Füstös et al., 2012)
and decreased alexithymia (Herbert et al., 2011), depression (Avery et al., 2014), and anxiety
(Garfinkel et al., 2016). Hence, it has been suggested that accurate sensing of visceral information
and body awareness is a critical factor for psychological and emotional regulation, well-being
(Hanley et al., 2017), and the basis for an integrated experience of the self (Christoff et al., 2011).
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The “Neural Subjective frame” hypothesis (Park and Tallon-
Baudry, 2014) integrates evidence suggesting body signals can,
non-consciously, modulate other cognitive processes like self-
processing (Babo-Rebelo et al., 2016) and perception (Park
et al., 2014). This hypothesis suggests that part of the
emotional experience and perception is sustained by implicit and
continuous brain monitoring of the internal organs of the body,
such as the heart. These process would depend on autonomic
signals mediated by the vagus nerve (Slonim, 2014).

It seems plausible that physical and mental well-being might
depend on states emerging from implicit and explicit information
associated with bodily signals (Critchley, 2005; Farb et al., 2012).
Interestingly, one of the greatest sources of body information
comes from the gastro-intestinal system (Park and Tallon-
Baudry, 2014; Azzalini et al., 2019). This latter point has been
an important focus of recent research and increasing evidence
identifies gut microbiota as playing a functional role on cognition
and emotion (Cryan and Dinan, 2012; Allen et al., 2017; Sarkar
et al., 2018).

GUT MICROBIOTA INFLUENCE BEHAVIOR

The relationship between nervous and gastrointestinal systems
is an example of psychobiological integration with direct impact
on health, well-being (Grenham et al., 2011; Mayer et al., 2014;
Carabotti et al., 2015; Fukui et al., 2018), and psychological states
such as stress and anxiety (Mackos et al., 2016; Provensi et al.,
2019). In fact, exposure to social stressors changes microbiota
composition (Bailey et al., 2011) and diversity (Partrick et al.,
2018), in a process that may also influence the immune function
(Gur and Bailey, 2016). Interestingly, the treatment with bacteria
of the Bifidobacterium and Lactobacillus genus confer resilience
against effects of stress (Bharwani et al., 2017; Yang et al., 2017). It
is worthmentioning thatmost of the evidence have been acquired
using animal models. Hence, understanding the bidirectional
role of psychological processes over microbiota in humans is
still lacking. Microbiota would impact behavior via bottom-
up pathways, positioning it as a factor to consider in studies
attempting the understanding of well-being (O’mahony et al.,
2009; Dinan and Cryan, 2012; Dinan et al., 2013). Moreover,
increasing evidence has posited microbiota as relevant in the
context of autism (Mulle et al., 2013; Sgritta et al., 2019),
schizophrenia (Severance et al., 2016), multiple sclerosis (Jangi
et al., 2016), bipolar disorder (Evans et al., 2017), irritable bowel
disease (Jeffery et al., 2012; Kennedy et al., 2014), obesity (Gomes
et al., 2018), neurodegenerative disorders (Boehme et al., 2019),
and depression (Naseribafrouei et al., 2014; Jiang et al., 2015;
Aizawa et al., 2016; Kelly et al., 2016; Heym et al., 2019). The
mechanisms through which microbiota exert its effects over
behavior include neural pathways via the vagus nerve, regulation
of the stress response, production of short chain fatty acids
after fiber fermentation, amino acids metabolism and control of
immune function, among others (Cryan and Dinan, 2012; Ma
and Ma, 2019). The crosstalk between microbiota and immune
cells is particularly relevant in therapeutic contexts, as a tight
and complex relationship between dietary composition (amino

acids) and inflammatory regulation by microbiota-dependent
metabolic processes exists (Ma and Ma, 2019; Ma et al., 2019).
Thus, positioning diet as a relevant therapeutic alternative for
inflammatory-related conditions affecting brain and gut (Kiecolt-
Glaser et al., 2017; Valdes et al., 2018).

Hence, growing evidence posits the gastrointestinal system
in general -and the microbiota in particular- as a fundamental
regulator of nervous system functioning (Agustí et al., 2018;
Davidson et al., 2018) with clear neurobiological mechanisms
(Cryan and Dinan, 2012; Ma and Ma, 2019) and potential
impact on health and behavior. Our comprehension of cognitive
and affective processes might depend on understanding the
composition, diversity, and physiology of this ecosystem of
microorganisms. In the fledgling field of gut-brain axis research,
a plethora of novel questions emerge, some of them focused on
understanding the particular role of specific bacterial strains on
cognition, behavior, and overall brain function.

THE USE OF PROBIOTICS AS A
BEHAVIORAL REGULATOR

Clinical population studies have pointed at the role of specific
bacterial strains in brain function and their use as probiotics
have adopted the name of psychobiotics (Dinan et al., 2013). For
instance, patients diagnosed with depression present a decreased
population of Bifidobacterium, Lactobacillus bacteria, and
Faecalbacterium (Aizawa et al., 2016). Accordingly, psychobiotics
with different combinations of strains have been used to assess
their effects over depression symptoms in healthy participants
and clinical population (Pirbaglou et al., 2016). For instance,
depressive symptoms are diminished after 30 days of probiotic
formulation with Lactobacillus helveticus and Bifidobacterium
longum (Messaoudi et al., 2011). Likewise, patients diagnosed
with irritable bowel syndrome scoring high in depression were
treated with Bifidobacterium longum strain probiotics for 6
weeks, resulting in a significant decrease of subjective levels
of depression (Pinto-Sanchez et al., 2017). Psychobiotics have
also been used in the context of social/cognitive processes
such as assessing attention (Chung et al., 2014), emotional
processing (Tillisch et al., 2013) and stress (Allen et al., 2016).
Additionally, it has been also shown that brain signatures -
under MRI setup- of healthy participants during an emotional
memory and decision-making tasks are sensitive to 4-weeks of
psychobiotic administration (Bagga et al., 2018). This effect was
also accompanied with behavioral, self-reported and microbiota
changes, suggesting that gut dynamics affect cognitive processes
and the associated brain correlates.

The aforementioned results could be explained, in part,
through bidirectional neural circuits established between the
central nervous system, the enteric system, and the vagus
nerve (Forsythe et al., 2014). This hypothesis has been tested
using animal models in which anxiolytic and antidepressant
effects induced by Bifidobacterium longum strains probiotics are
blocked after the section of the vagus nerve (Bercik et al., 2011;
Bravo et al., 2011). Hence, vagal afferents are necessary for any
cognitive, affective, and behavioral effects produced by these
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FIGURE 1 | Microbiota establishes bi-directional relationships with physiological processes of the body and is affected by the ecological niche of which an agent

participates. Gut microbiota interacts with other systems via neural and humoral pathways (Central, enteric and peripheral nervous system, immunoendocrine

pathways, etc.). Possible communication mechanisms involve the regulation of neurotransmitter metabolism, gut permeability, nutrient processing and absorption,

inflammatory cytokines release, the stress response, etc. Therefore, internal microbiota dynamics are actively affecting body dynamics in a process which in turn is

also affecting microbiota. Microbiota in not only affected by internal processes but also by the agent’s ecological niche. The features of the environment at different

levels might be limited for the colonization and establishment of specific microbiological communities. Some environmental features which could be relevant includes

the amount of people, the presence of the urban green space, urban hygiene, etc. Additionally, the ways by which the subject interact with it such as transportation,

diet, and interpersonal relationships would also provide relevant information to take into account at the moment of carrying out interdisciplinary microbiota research.

microorganisms (Han et al., 2018). Additionally, a recent study
identified a type of enteric sensory cell that, by means of a single
synapse with neurons of the vagus nerve, propagates nutrient
information from gut to brain in the order of milliseconds
(Kaelberer et al., 2018). This communication channel may
also include information from microbiota-dependent immune
dynamics of the gut mucosa (Ma et al., 2018). Furthermore,
low-frequency gastro-intestinal oscillations (0.05Hz) and cortical
alpha rhythms (8–10Hz) coupling has been described (Richter
et al., 2017), indicating that the cross-talk between gut-
microbiota and brain may be faster and more direct than
previously thought. Complementarily, a gastric network was
described during resting state involving connectivity between
gastric oscillations and brain regions related to the generation
of alpha rhythms and visual, somatosensory, and motor
internal body representations (Rebollo et al., 2018). Those

neural oscillatory networks could shed light on a possible
physiological mechanism by means of which the microbiota
communicates with the brain, exerting effects on mental
processes in a fast and direct way (Komanduri et al., 2019).
Nevertheless, this is a fledgling field and much research is
still needed.

DISCUSSION AND OUTSTANDING
QUESTIONS

When considering dynamics internal to the organism (Figure 1),
understanding how the brain-gut-microbiota establishes
bidirectional relationship offers new perspectives that will
greatly advance our comprehension of phenomena studied
by psychology, neuroscience, and psychiatry (Tillisch et al.,
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2013; Dinan and Cryan, 2017). Given the increment of brain-
gut-microbiota research, some important research questions
have emerged. First, the physiological mechanisms underlying
its relation to other body systems and health, in general,
remains unknown in humans, resulting in limited clinical
applicability (Schmidt et al., 2018; Zmora et al., 2019). Second,
the establishment of microbiota communities begins early in
development, even before birth. It has been suggested that
pre- and postnatal experiences affect microbiota composition,
shaping the immune system’s function, ultimately leading to
increased risk of disease (Tamburini et al., 2016; Francis and
Dominguez-Bello, 2019). However, most countries are still
far away from including the microbiota as a relevant factor
for public policymaking. Finally, public opinion on probiotic
products (from Kefir to Kombucha to laboratory formulas) has
become favorable. However, recent evidence suggests that intake
of generic probiotic formula as a therapeutic alternative should
be carefully considered, as gut mucosal colonization presents
person-specific resistance to probiotics (Zmora et al., 2018).
Therefore, consuming such products as means of life-quality
improvement and disease prevention might barely work. In
contrast, it seems probiotic formulas will have to contain
specific bacterial strains personalized for particular individuals,
according to each person’s diet (Oriach et al., 2016). Furthermore
taking into account other physiological parameters relevant for
the host-microbiota interplay, such as nutrients availability and
water absorption (Arnoldini et al., 2018).

Considering the ecological niche of the organism presents a
major challenge for microbiota research (Figure 1). Given
the available evidence of living environment in mental
health [i.e., housing quality, indoor/outdoor noise, occupant
density, etc. (Evans, 2003)], the connection between the
community of microorganisms residing in built environment
and well-being remains unknown (Kembel et al., 2014;
Relman et al., 2014). These microorganisms, grouped
within the fledgling literature of the microbiome of the built
environment (MoBE), have co-evolved with the mammalian
immune system. Hence, there is a good reason to believe
that the increment of chronic inflammatory disorders
and others such as Alzheimer in industrialized countries
might relate to reduced or increased exposure to certain
microbial communities (Raison et al., 2010; Fox et al.,
2013). Furthermore, research on the impact of MoBE in
the development and dynamics of the community and/or
person-specific microbiota is needed (Huttenhower et al., 2012;
Hoisington et al., 2015; Lax et al., 2015). Thus, providing
opportunities for specific and strategic MoBE manipulation that

will ultimately regulate microbial diversity in order to reach
positive outcomes.

CONCLUDING REMARKS

Cognitive process and associated states such as well-being
are embodied, in a process of phylogenetic and ontogenic
interdependencies, encompassing an organism’s both internal
and external environments. Diurnal mammals’ physiology has
been enslaved by the day/night cycle, imposed to planet Earth
from the cosmos (Parada and Rossi, 2018). Mammals’ physiology
is furthermore entangled to the micro-dynamics of small
organisms, imposed onto the body through the development
of a symbiotic relationship unfolding throughout ontogeny
and phylogeny. Therefore, adequate scientific study of human
behavior will include as many levels as possible: socio-cultural,
psychological, microbiological, etc. (Parada and Rossi, 2018). The
brain-gut-microbiota topic represents a fascinating opportunity
to expand our knowledge about cognition, mental health,
and life in general. It is important to frame this research
topic from multiple perspectives including biological/medical
sciences, public policy, architecture, urbanism, and psychology.
Furthermore, recent philosophical and epistemological advances,
under the 4E-cognition framework (Newen et al., 2018), will
help the integration of evidence, providing new insights and
novel hypotheses.
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