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Abstract: Recent innovations in 3D printing technologies and processes have influenced how land-
scape products are designed, built, and developed. In landscape architecture, reduced-size models
are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on
the surfaces of such 3D-printed components, which requires additional post-treatment. In this work,
we develop a new type of landscape design structure based on the fused deposition modeling (FDM)
technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical
components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra
15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are
further analyzed during laser polishing. The stability and accuracy of the results are evaluated based
on the standard deviation. Additionally, the superior tensile and flexural properties are examined
in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6%
and the flexural strength is increased by up to 74.5% compared with the as-fabricated components.
Finally, a real polished landscape model is simulated and optimized using a series of scales.

Keywords: 3D printing; landscape design; material characterization; mechanical property; laser polishing

1. Introduction

Landscape design is not only a symbol of urbanization, but also an embodiment of
urban culture and charm. New landscape architecture approaches have triggered the
emergence of a large number of public development spaces [1,2]. Traditional landscape
production methods are increasingly unable to meet the efficiency requirements and diverse
characteristics by modern society [3]. In order to re-use these spaces to enhance the cultural
aspects of urbanization, we present a landscape design concept that should transform the
current state of this field, improving efficiency and reducing environmental pollution risk
in landscape architecture [4,5].

Globally, 3D printing (additive manufacturing) is one of the new information manufac-
turing technologies that is promoting automation of traditional landscape sculptures, which
is impacting manufacturing ecosystems, as the supply chain in the process of landscape
construction can be minimized [6–8]. The freedom building approach increases fabrication
flexibility, offering a wide range of advantages, such as net shape fabrication, increased
product customization, and high production efficiency [9]. Therefore, this technology has
been widely used in aerospace, biomedical industries, landscape construction, and marine
and offshore applications [6]. Although there has been significant research on 3D printing
for landscape construction in the last three decades, work on the design of polymeric
materials for landscape applications is still limited [10,11].

As one of the most popular 3D printing technologies, fused deposition modeling
(FDM) is mainly used to produce thermoplastic materials, such as acrylonitrile-butadiene-
styrene (ABS), high-impact polystyrene (HIPS), and polylactic acid (PLA, [12–14]. Karimi
et al. produced an environmentally friendly stone composite based on ABS and recycled
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natural granite stone particles, which could be considered as a potential material for 3D
printing [15]. As such, we adopted a research strategy, in which we sought out exemplary
organizations within real estate in order to understand the changes that 3D printing has
brought to their operations. A model set of buildings in Qinhuangdao, China, was printed
using FDM and PLA materials, which can be seen in Figure 1a,b. Unfortunately, high sur-
face roughness and porosity usually occur in such freeform-fabricated components due to
the staircase effect, non-uniform temperatures, and thermal shrinkage or expansion [16–18],
which can be seen in Figure 1c. Therefore, such products usually requires additional post-
treatment or parameter optimization to meet landscape design requirements.

Figure 1. Landscape design photographs of a 3D-printed PLA model set of buildings in Qinhuangdao, China: (a) model set
of landscape design and buildings; (b,c) locally enlarged graphs.

Although there have been many studies on parameter optimization, such as the study
by Khosravani et al., which presented the influence of two printing parameters on the
strength of 3D-printed components [19], solutions for the staircase effect and the occurrence
of non-uniform temperature in the FDM formation process are still required [20,21]. Com-
pared with traditional surface post-treatment technologies, such as mechanical polishing
and chemical mechanical polishing, laser polishing, as an emerging method, can improve
the surface integrity of metal and non-metal components via re-melting the thermal input
of the laser irradiation and rapid smooth solidification [22,23]. In recent years, laser polish-
ing has been successfully employed to improve the surface finish of components fabricated
using 3D printing due to its non-contact mode of operation, high efficiency, precision, and
lack of mechanical damage [22,24].

In the literature, laser polishing has been applied for various metal 3D printing
components, e.g., CoCr alloy [25–27], nickel-based superalloys [28], titanium alloy [29–31],
and stainless steel [32,33], in order to reduce surface roughness and enhance surface
properties. For polymer 3D printing components, Taufik et al. [34] first adopted a pulsed
CO2 laser source to polish ABS components fabricated via FDM. The changes in roughness
parameters were analyzed before and after the laser polishing process. Chai et al. [35] used a
CO2 laser to polish PLA surfaces, whereby the Ra value of the surface roughness decreased
by 68%. Chen et al. [36] investigated the surface quality and mechanical properties of
laser-polished, FDM-fabricated PLA specimens, showing that the surface roughness could
be reduced by 90.4%. Additionally, Chen et al. [21] further studied the laser polishing
process for copper fiber–polylactide acid (Cu/PLA) composite parts manufactured using
FDM, showing that the storage modulus, loss modulus, and glass transition temperature
of Cu/PLA composites were significantly improved. Lambiase et al. [20] used a 30 W
CO2 laser source to polish the surfaces of components made of PLA and obtained via
material extrusion (ME), for which the Ra value of the surface roughness was reduced
from 12 µm to 0.3 µm. Note that previous studies have shown that the surface roughness
of FDM-fabricated PLA specimens can be decreased from over 12 µm to 0.3 µm by using
a continuous-wave fiber laser or a pulsed CO2 laser source. It should be noted that there
have been very few studies involving thermodynamic analysis of and rapid solidification
during the laser polishing polymer process, which is essential for surface finishing and the
resulting properties. These surface properties are directly related to the aesthetic quality and
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service life of 3D-printed polymer landscape design products. There is, therefore, a need
to investigate aspects of 3D-printed polymer landscape design, including laser polishing,
material selection, technology aspects, thermodynamic analysis, and surface properties.

In this work, the research objectives are to improve the surface smoothness and
mechanical properties of FDM-fabricated PLA landscape design products using laser
polishing technology, which are currently under discussion throughout a cooperating
interdisciplinary network of materials scientists and engineers. The thermodynamics and
rapid solidification during the laser polishing process are analyzed using finite element
simulation. Additionally, special attention is paid to the surface morphology of the polished
layers, as well as the tensile and flexural properties of the laser-irradiated zone. Finally, we
take a 3D-printed PLA Eiffel Tower as a landscape design example to compare the surface
morphology before and after laser polishing.

2. Materials and Methods

The FDM equipment (MakerBot® ReplicatorTM 2X, MakerBot Industries, Brooklyn,
NY, USA) was used to print the tensile and flexural specimens. The raw material used in
this experiment was pure PLA thermoplastic wire (1.75 ± 0.1 mm) from FLASHFORGE
Corp. China. The parameters of the FDM used in this paper are listed in Table 1, which
referred to [12]. The FDM principle is displayed in Figure 2a, and the raw filament is fed
into the extrusion nozzle by the driving force generated from a drive roller and a gear.
When the extrusion nozzle moves in the X-Y axis, the raw filament is heated by heating
coils to a semiliquid state and is extruded by the extrusion head at the same time. After the
completion of the first layer, the platform moves down or the extrusion head moves up one
layer along the Z axis. Through this process, the specimen will be deposited layer-by-layer
until the part is completed. The detailed dimensions for the tensile and three-point flexural
tests were taken from ASTM D638-10 and ASTM D790-10, respectively [12].

Table 1. FDM parameters used in this paper.

Parameter Value

Object infill density 100%
Layer height 0.1 mm

Feed rate 33 mm/s
Travel feed rate 58 mm/s

Print temperature 210 ◦C
Filament diameter 1.75 ± 0.1 mm
Nozzle diameter 0.3 mm

Deposition infill pattern ±45◦

Then, according to the reference [20,21,34–36], a continuous mode fiber laser with
optimized parameters (SPI red ENERGY G4, wavelength 1070 nm, power 5 W, scanning
speed 1200 mm/s, overlapping ratio 35%, defocus amount 35 mm and spot size 100 µm)
was utilized to polish the specimens. Because the hydroxyl group of PLA can be oxidized
by oxygen to form pyruvic acid under the conditions of high temperature heating, the color
of pyruvic acid will gradually darken in the air. Therefore, we used the Ar gas to protect
the specimens during polishing process. The reaction formula was as follows [37]:

2CH3-CHOH-COOH (polylactic acid) + O2 = 2CH3-CO-COOH (pyruvic acid) + 2H2O (1)

The tensile and flexural specimens were clamped by a rotating three-jaw chuck and
laser-polished while rotating on all four sides. A schematic diagram of the laser polishing
process is shown in Figure 2b. The loading device and its method of movement is shown in
Figure 2c, in which motor 1 can drive the three-jaw chuck to rotate, the three-jaw chuck and
motor 1 are mounted on the support platform, and motor 2 can drive the support platform
to rotate. The laser scanning pattern is a “snake” scanning mode and the scanning pattern
is located by the red light mounted on the laser.



Materials 2021, 14, 2601 4 of 14

Figure 2. The process for 3D-printed PLA components: (a) schematic representation of FDM process; (b) schematic
representation of laser polishing; (c) rotary machining platform.

A 1/10,000 precision balance (WT-1000) (WANTE Weighing Apparatus Co. Ltd.,
Hangzhou, China) was used to measure the mass values of the specimens. Tensile and
three-point flexural tests were performed using a SANS electronic universal testing machine
(Zhongte Machinery Co. Ltd., Jinan, China). The experimental parameters of the tests are
listed in Table 2. Five specimens were tested until failure occurred and the results were
averaged. A 3D laser scanning confocal microscope (LSCM, VK100, Keyence, Osaka, Japan)
was used to measure the surface topography and roughness, with a cutoff wavelength
of 650 nm and profile length of 1.5 mm when measuring Ra. The cross-section, surface
morphology, and specimen fracture with different magnifications of the polished surface
were characterized using an SU8010 scanning electron microscope (SEM), in which all
specimens were sprayed with gold. An intelligent infrared thermal imager (YRH300,
Nikon, Tokyo, Japan) was used to monitor the laser polishing in real time, for which the
measurement resolution, minimum measurement size, temperature range, and sensing
distance were 640 × 480 pixels, 20 × 15 cm2, 10–2500 ◦C, and 20–500 mm, respectively.

Table 2. Experimental parameters of the tensile and flexural test.

Categories Tensile Test Flexural Test

Testing speed 1.5 mm/min 1.5 mm/min
Sampling frequency 20 Hz 20 Hz

Distance between two grips 110 mm /
Distance between two

supports / 50 mm

The temperature during the laser polishing process was measured using the numerical
simulation method. The commercial ABAQUS software (ABAQUS 2019, SIMULIA, Detroit,
RI, USA) was used to measure the temperature distribution at the surface of the PLA
during the laser melting. The physical parameters of the materials were temperature-
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dependent and the processing parameters were identical to the experiments, for which
the thermophysical parameters of the PLA reference were taken the literature [13,38],
which can be seen in Table 3. Heat transport through the bottom walls was neglected
(adiabatic walls) and convective flow was dominant in energy transmission during the
laser polishing process. Because the physic process of laser polishing is very complex in
molten pools, some assumptions were formulated to simplify the model: (1) the molten flow
was laminar, and the liquid material was considered as a Newtonian and incompressible
fluid; (2) the vapor in this model was considered as non-conductive; (3) the Ar gas was
neglected in the polishing process; (4) only the melting and solidification process of the
molten pool were considered. The polishing model was calculated on a rectangular base
measuring 3 × 1 × 0.5 mm3. The minimum differential volume unit was a cube measuring
20 × 20 × 20 µm3. In the sequential thermal analysis, 56,578 elements were used to create
the model. The calculation used linear elements to solve the heat equation. Additionally, the
rest of the information about the convergence criteria, boundary conditions, and governing
equations were reported by He et al. [39]. The input heat flux density of each spot was
calculated using the Gaussian function [40].

q =
2P
πr2 × e f f × exp

−2×

[
(x1 − x0)

2 + (y1 − y0)
2
]

r2

 (2)

where q, P, and r are the heat flux density, laser power, and spot radius, respectively; eff
(46.5%) is the laser absorption rate; x0 and y0 are the instantaneous positions of the spot
center; x1 and y1 are the variables of the position.

Table 3. The input parameters during FEM simulation.

Parameter Value

Laser power 5 W
scanning speed 1200 mm/s

spot size 100 µm
Density 1280 Kg/m3

Thermal conductivity 0.025 W/m·K
Melting point 450.15 K

Solid specific heat capacity 1950 J/(Kg·K)
Liqud specific heat capacity 2120 J/(Kg·K)

3. Results and Discussion
3.1. Simulation Results for the Temperature Distribution

The temperature distribution of the cross-section of the polished layer is shown in
Figure 3a,c. As shown in Figure 3a, the temperature distribution proves that the molten
pool was elliptical in shape due to the high-speed movement of the laser source and the
maximum temperature was about 367.1 ◦C at the center of molten pool. The molten pool
and the heat-affected zone (HAZ) had temperatures of 201.7 ◦C and 92.6 ◦C, respectively.
Compared to the melt pool and the HAZ, the top surface of the melted zone had a higher
temperature value, which could cause vaporization at the top surface of the polished layer.
Further, we measured the temperature curves of five different points at the melt–substrate
interface of the polishing layer, as well as the temperature curve changes with time, as
shown in Figure 3b. It can be seen that the maximum temperatures were 150.31, 225.33, and
327.56 ◦C, respectively, at points P1, P2, and P3. At point P4, the maximum temperature
was predicted to be 347.58 ◦C; the boiling point temperature of PLA is less than this value.
At point P5, which is the bottom of the melted zone, the maximum was 274.91 ◦C; no
vaporization happened at this point due to the temperature of P5 being lower than the
melt pool temperature. Figure 3c reveals the center temperature of the cross-section of the
polished layer, indicating that the time for each point to reach the maximum temperature
was distinct. It can be seen that the maximum temperatures were 305.39, 349.27, 366.56,
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198.21, and 111.99 ◦C at points P6, P7, P8, P9, and P10, respectively. The maximum
temperature increased first and then decreased from the top surface to the bottom of the
molten pool, indicating that the highest temperature along the cross-section existed in the
middle of the molten pool and not at the top surface. Additionally, each of these points
reached its peak temperature at a different time. It can be seen that from the beginning of
polishing process, points 9 and 10 were dormant, then they were activated in turn with
the evolution of the molten pool. From the simulation temperature distribution, we can
conclude that the cooling rates were varied with the change of the melt depth. Additionally,
the scanning speed reached 1200 mm/s, which determined the interaction time. In this
case, the surface ablation was limited and only vaporization occurred [20]. The polymer
appeared not to shrink (no obvious ripple on the polished surface) along the direction of
solidification, indicating that the polished specimen had better mechanical consistency than
the as-received specimen. We need to point out that in the actual measurement process, we
only measurd the surface temperature of the molten pool, while the internal temperature
could not be obtained using actual measurements. In addition, we ignored the convective
flow, the influence of argon, and the change of density during polishing.

Figure 3. Numerical simulation and thermodynamic analysis of FDM-fabricated PLA using laser polishing: (a) Temperature
field simulation; (b) temperature profiles at different depths on the surface of molten pool; (c) temperature profiles at
different depths on the center of molten pool.

3.2. Laser Polishing of Tensile Specimen

Figure 4a,b show the tensile dimensions and a macro-scale photograph, respectively.
There are obvious filamentous wavy and seam lines between the layers on the as-received
surface (Figure 4c), which led to delamination and high surface roughness. The macro
photograph of the laser polishing using the above process parameters is shown in Figure 4f.
It is noted that the FDM-fabricated ripples on the as-received surface were significantly
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reduced via laser polishing, while no obvious defects appeared on the polished surface
(Figure 4g). LSCM was used to measure the surface roughness and topography of the
polished area, for which the average roughness decreased from over Ra 15 µm to less than
0.25 µm (Figure 4d,h). Additionally, in situ observation is known to play a significant role
in investigating laser–matter interactions. Hence, real-time temperature monitoring was
adopted to measure the polishing temperature in order to avoid damaging the specimen
when the temperature was too high, as the maximum polishing temperature is 322.6 ◦C at
7.7 s (Figure 4e). Laser surface re-melting is an important physical phenomenon during the
laser polishing interactions, which involves re-scanning and re-melting solidified layers,
during which an extremely shallow molten pool is produced in a very short time, reducing
the viscosity of material [21]. As shown in Figure 2b, the molten phase will be driven
away from the convex peaks and flow into the valleys via gravity and surface tension [22].
Meanwhile, recoil pressure occurs on the molten surface due to vaporization of the material
when the temperature reaches boiling point, during which the recoil pressure further
flattens the melted PLA surface. Eventually, the liquid PLA material will be solidified high
cooling rates of approximately 410 K/s and over [41], leading to a significant reduction of
the surface roughness.

Figure 4. The surface morphology of tensile specimens before and after laser polishing: (a) specimen size; (b,c) macroscopic
and microscopic surface morphologies of as-received specimen; (d) 3D topographic image of as-received specimen; (e)
real-time monitoring of temperature field; (f,g) macroscopic and microscopic surface morphologies of laser-polished
specimen; (h) 3D topographic image of laser-polished specimen.

3.3. Laser Polishing of Flexural Specimen

As with the tensile specimens shown in Figure 4, the laser polishing of the flexural
specimen is shown in Figure 5. Figure 5a,b show the flexural dimensions and macro-scale
photograph, respectively. Similar to Figure 4c, there are also obvious filamentous wavy
and seam lines between layers on the as-received surface in Figure 5c. Additionally, a
series of pores and wire drawings appear at the edge of the as-received surface (Figure 5c),
which was due to the different sizes of the tensile and flexural specimens in the thickness
direction, resulting in the different G-Code files and deposition paths [42]. In this process,
the maximum polishing temperature was 323.2 ◦C at 7.6 s (Figure 5e), which was not
significantly different to the maximum temperature of tensile polishing process shown
in Figure 4e. Additionally, the polished surface showed no obvious defects (Figure 5g),
whereby laser irradiation melted the staircase in the as-received surface and removed the
pores in between during a step known as densification or sintering. The smooth mechanism
of this process is outlined in Section 3.1. The average roughness decreased from Ra 18.45
µm to less than 0.25 µm (Figure 4d,h).
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Figure 5. Surface morphology of flexural specimens before and after laser polishing: (a) specimen size; (b,c) macroscopic and
microscopic surface morphologies of as-received specimen; (d) 3D topographic image of as-received specimen; (e) real-time
monitoring of temperature field; (f,g) macroscopic and microscopic surface morphologies of laser-polished specimen; (h)
3D topographic image of laser-polished specimen.

Since the FDM model is approximated by a series of triangles (*.STL format), it
leads to a chordal approximation error that will produce a tolerance equal to ±0.2 mm
overall [43]. In order to determine whether material removal occurs on the specimen after
laser polishing, the commonly mass method was used to analyze the mass loss, which
is listed in Table 4. It can be concluded that the as-received mass of the tensile specimen
was scattered between 8.4319 g and 8.5455 g, while for the flexural specimen the was
between 6.3322 g and 6.4899 g, for which the mass deviations were less than 5% with
slight mass variation, indicating that the machining capacity of the FDM printer meets the
experimental requirements [44]. After polishing, the mass values of the specimens were
reduced, with the mass of tensile specimen being scattered between 8.3890 g and 8.4237 g
and for flexural specimen between 6.2145 g and 6.4015 g. It can be inferred that the mass
reduction in the polished specimen was due to vaporization at high temperature, which
we will discuss in Section 3.4. Meanwhile, recoil pressure from the vaporization and recoil
effects due to laser heating also promote weight reduction.

Table 4. Mass analysis of the specimens.

Categories Tensile Specimens (Unit: g) Flexural Specimens (Unit: g)

As-Received 8.4722 8.5262 8.4319 8.5455 8.5113 6.5322 6.4723 6.3842 6.4026 6.5899
Laser-Polished 8.4013 8.4237 8.3997 8.3890 8.3973 6.3545 6.4015 6.3328 6.3803 6.3992

To provide more stable and precise results, the standard deviation of the mass datum
from arithmetic mean values was calculated using Formula (2) [12]:

S =
√
[|x1 − x|+ |x2 − x|+ |x3 − x|+ · · ·+ |xn − x|]÷ (n− 1) (3)

where S is the standard deviation, n is the number of all data, and x is the average value
of x1, x2, x3, . . . , xn. The average value and standard deviation of the tensile and flexural
specimens are listed in Table 5. The results show that the polished specimen has less
standard deviations relative to the as-received specimen. In the FDM process, there is a
pause due to the exchange of raw material in the molten state, whereby the as-received
specimen will produce a wire drawing and waviness region during the pause, which will
lead to mass deviation in the as-received specimen. Further, the polishing process with
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melting and solidification will eliminate the wire drawing and waviness effect, reducing
the standard deviations.

Table 5. The average value and standard deviation of the tensile and flexural specimens.

Categories
Tensile Specimens (Unit: g) Flexural Specimens (Unit: g)

x S x S

As-received 8.4974 0.2130 6.4762 0.2912
Laser-polished 8.4022 0.1037 6.3737 0.1732

3.4. Mechanical Properties and Fracture Interface

Typical tensile stress–strain curves of the as-received and polished samples at room
temperature are shown in Figure 6a. There is a clear yield platform in the stress–strain
curves, including a linear region and non-linear region. According to the maximum
stress value of the non-linear region, the ultimate tensile strength (UTS) can be calculated.
Additionally, according to the linear part of the linear fitting, the Young’s modulus can
be calculated. The standard deviation of the tensile strength and Young’s modulus is
calculated using Formula (2). As shown in Table 6, the polished sample exhibits a higher
UTS (average value: 58.57 MPa) than the as-received specimen (average value: 39.96 MPa).
Under such processing conditions, the tensile strength can be increased by up to 46.6%,
which exceeds the carbon fiber specimen [45]. Additionally, the Young’s modulus of the
polished sample is 1.61 GPa, which is increased by up to 37.6% compared with that of
the as-received PLA sample (1.17 GPa). Meanwhile, the lower standard deviation also
indicates that laser polishing of the 3D-printed PLA can result in more stable mechanical
properties. As shown in Figure 6a, the inexistence of necking and plastic deformation
at tensile failure can be verified by the later part of the two stress-strain curves, during
which the stress did not change with increasing strain. Further, the tensile SEM fracture
can be seen in Figure 6b,c, in which the fracture is smooth with no obvious emergence of
plastic deformation, showing brittle failure characteristics consistent with the stress–strain
curves in Figure 6a. In this process, the crack propagates along the longitudinal tension
until the specimen is divided into two parts. Figure 6c shows that the thickness of the
polished layer was 396± 12 µm; moreover, pores and vacancies disappeared in the polished
layer owing to rapid melting and the solidification process. This morphology eliminates
the stress concentration and mechanical dispersion caused by pores and discontinuity
of the specimen, which is the main reason for the tensile strength improvement of the
specimen [13,36].

Table 6. Tensile properties and standard deviation.

Categories
Young’s

Modulus
(GPa)

Young’s Modulus
Standard

Deviation (GPa)

Tensile
Strength

(MPa)

Tensile Strength
Standard Deviation

(MPa)

As-received 1.17 0.26 39.96 0.73
Laser-polished 1.61 0.05 58.57 0.52
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Figure 6. Tensile and flexural tests: (a) tensile stress–strain curves; (b) tensile SEM fracture of as-received specimen;
(c) tensile SEM fracture of laser-polished specimen; (d) flexural stress–strain curves; (e) flexural SEM fracture of as-received
Figure 7. Flexural properties and standard deviation; (f) flexural SEM fracture of Laser-polished. (A, B, C, D will be enlarged
in Figure 7).

Figure 7. SEM fracture: (a) tensile SEM fracture of the as-received specimen; (b) tensile SEM fracture of the laser-polished
specimen; (c) flexural SEM fracture of the as-received specimen; (d) flexural SEM fracture of the laser-polished specimen.
The panels (a–d) in this figure correspond to Figure 5a–d, respectively.
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The typical flexural stress–strain curves of the as-received and polished specimens
at room temperature are exhibited in Figure 6d. The flexural properties and standard
deviation are listed in Table 7. Similar to the tensile experiment, the polished flexural
sample also exhibited a higher ultimate flexural strength (average value: 75.61 MPa) than
the as-received sample (average value: 43.32 MPa), which was increased by up to 74.5%.
Additionally, the flexural modulus of the polished sample was 17.66 GPa, which was
increased by up to 23.2% compared with that of the as-received PLA sample (14.33 GPa).
The lower standard deviation also indicated that laser polishing of the 3D-printed PLA can
lead to more stable flexural properties. The material melts and solidifies under the influence
of laser radiation, which will affect the standard deviation and let the experimental data
congregate more. As a surface treatment process, laser polishing can solve the problem of
“control performance” for high-performance polymer 3D printing components. The initial
stage of the flexural stress–strain curves can be defined as a simple linear relationship,
when the specimen is in the process of slight linear elastic deformation. However, once
the sample is destroyed, the stress is quickly decreased, showing obvious brittle fracture
characteristics. This failure morphology is confirmed in Figure 6e,f. The fracture surface is
smooth and without cracks, while the thickness of the flexural polished layer is 387± 13 µm.
Differing from the as-received flexural specimen, the first crack of the polished specimen
occurs at the internal vacancy point when the specimen bends to failure. However, the
initial failure of the as-received specimen occurs at the surface due to the existence of pores,
which are the weak points of the stress concentration.

Table 7. Flexural properties and standard deviation.

Categories
Flexural
Modulus

(GPa)

Flexural Modulus
Standard

Deviation (GPa)

Flexural
Strength

(MPa)

Flexural Strength
Standard

Deviation (MPa)

As-received 17.66 0.46 43.32 0.65
Laser-polished 14.33 0.23 75.61 0.37

In order to characterize the fracture morphology, a clearer, magnified view of the frac-
ture is shown in Figure 7, whereby Figure 7a–d are correspond to Figure 6a–d, respectively.
The high magnification fracture surfaces of the laser-polished and as-received specimens
are relatively uniform, while the morphological analysis reveals the presence of porosity on
the as-received fracture surfaces (Figure 7a,c). The reasons for this phenomenon are that the
errors appear at the actual feed rate and the preset rate during the manufacturing process,
which leads to the imbalance of interfacial adhesion between the layers. The stable mobility
of the molten polymer shifts the PLA material from a rigid state to flexible solidification,
thereby influencing the internal microstructure [13]. Additionally, other studies have
shown that the cooling process from the molten to the solid state during the FDM process
can cause porosity production due to the shrinkage of the specimen [42]. As shown in
Figure 7b,d, the polished fracture is similar to the as-received specimen, which is a typical
brittle fracture. The reason for the slight change of the fracture after laser treatment is that
the laser does not destroy the molecular structure of the PLA and weakens the interaction
between molecular chains, thus leading to the similar fracture morphology. The interaction
between the laser and the material includes not only evaporation, but also melting [22];
polymer decomposition occurred in both the liquid and softened phases, blowing up from
the inner regions and driving the development of bubbles. The bubbles expanded up to
overflow on the surface, reducing the above porosity; this effect was expected.

3.5. Examples of Laser Polishing on Landscape Design Products

Designers’ understanding of “landscape design” is based on the concept or goal of
“an ideal sustainable form”. In summary, new urban landscapes clearly will benefit from
the methods and knowledge of 3D printing combined with laser polishing in the future.
If this interdisciplinary integration can be achieved, cities can develop ecologically to
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achieve urban sustainability, whereby the model set of real estate shown in Figure 1 will
be easier to construct. These strategies aim to link the landscape design experiments with
more advanced practical technology. Therefore, a 3D-printed PLA Eiffel Tower is shown
in Figure 8a as a landscape design example to compare the surface morphology before
and after laser polishing. The model as simulated and optimized using a series of scales.
It can be seen from the macro images in Figure 8b,c that the polished surface becomes
smoother, without serrated ripples or wire drawing. According to the SEM amplification
in Figure 8d,e, the deposition traces on the as-received surface disappear and the polished
surface presents a flatter morphology. It can be seen that the applications of scaled 3D
printing combined with laser polishing in the building lifecycle of the traditional landscape
model is feasible and valuable.

Figure 8. The surface morphology before and after laser polishing of the landscape design example: (a) 3D-printed PLA Eiffel
Tower; (b) as-received specimen; (c) laser-polished specimen; The bottom panels (d,e) correspond to the top panels (a,b).

4. Conclusions

This work demonstrates the potential of laser polishing to enhance the surface quality
and mechanical properties of 3D-printed polymer specimens. The laser polishing process
has significantly reduced the shortcomings of 3D printing, such as the high surface rough-
ness and porosity of as-fabricated FDM surfaces; the surface roughness can be reduced
from over Ra 15 µm to less than 0.25 µm. Additionally, the polished specimen showed
lower standard deviation relative to the as-received specimen, while no shrinkage of cavi-
ties or pores or microcracks were found in the laser-polished layer, which had a thickness
of 396 ± 12 µm. Both the tensile and flexural strength were increased by up to 46.6%
and 74.5%, respectively, compared with as-fabricated components due to the reduction
of shortcomings after laser polishing, while the mass reduction in the polished specimen
was due to vaporization at high temperature. Moreover, the FEM temperature distribution
showed that the peak temperature increased first and then decreased from the top surface
to the bottom of the molten pool. Through this kind of interdisciplinary research, hot spots
and research needs are emerging, providing sufficient motivation for those researchers
who are ready to carry out landscape design studies in the future. Furthermore, our next
major research task will be to study the service life of 3D-printed polymer landscape design
products involving laser polishing technology, including the fatigue life.
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