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Abstract: Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma
(ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells.
Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection.
Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like pos-
itive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression
is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1
avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant
viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to
transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses
towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we
review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere
with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase
inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human
immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.

Keywords: HTLV-1; ATLL; HIV; latency; kick and kill; shock and kill; Tax; latency reversing agents
(LRA); HDAC-inhibitor (HDACi); P-TEFb

1. Introduction
1.1. HTLV-1, a Persistent Human Tumorvirus

Human T-cell leukemia virus type 1 (HTLV-1) is a highly oncogenic retrovirus causing
adult T-cell leukemia/lymphoma (ATLL) or inflammatory diseases like HTLV-1-associated
myelopathy/tropical spastic paraparesis (HAM/TSP) in up to 10% of infected individ-
uals [1–5]. Worldwide, at least 5–10 million people are infected with this yet neglected
oncogenic retrovirus. Due to the restricted availability of reliable data, this is likely under-
estimated [6,7]. Asymptomatic carriers are mainly unaware of their infection and may pass
the infection to other people since HTLV-1 infection is not part of sexual health screening in
most countries [5]. The epidemiological distribution of HTLV-1 is unique. Endemic areas
include, amongst others, Japan, the Caribbean, northern regions in South America, areas in
intertropical Africa, and central Australia [6,8].

HTLV-1 poses as the etiological agent of malignant and inflammatory diseases, which
develop after a clinical latency of years to decades. The aggressive T-cell malignancy
ATLL and the inflammatory neurological conditions HTLV-1-associated HAM/TSP are of
major concern [7]. Moreover, a plethora of other inflammatory conditions are known to
arise from HTLV-1 infection, sometimes referred to as HTLV-1 associated inflammatory
diseases (HAID) [9–11]. Data on the prevalence of these pathologies varies. Commonly,
the lifetime risk for developing ATLL is estimated at around 3–5% for HTLV-1 infected
people [12]. Roughly 2–3% of carriers develop HAM/TSP. There is only scarce data
available on HAID prevalence [9,13]. The onset of these diseases is marked by a prolonged
clinical and viral latency. Even though the conditions only develop in a low number
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of infected individuals, they are of clinical relevance as there are currently no effective
therapies or vaccines available. As a result, the prognosis for patients suffering from ATLL
is very poor. According to Shimoyama, ATLL can be classified into four clinical subtypes,
with severance increasing from smoldering to chronic to lymphoma to acute. In aggressive
types, the overall survival only amounts to approximately six to ten months [14,15].

Several comprehensive articles have summarized current treatment regimens for
ATLL [15–17]. Options for ATLL depend on the subtype and vary between common
chemotherapy regimens, treatment with interferon-α and antiretroviral agents, allogenic
stem cell transplantation or may even include watchful waiting as an approach in the
smoldering subtype [15,18]. One of the newer treatment options is Mogamulizumab, a
humanized defucosylated monoclonal antibody targeting C–C chemokine receptor 4. It has
been explored for the treatment of ATLL and HAM/TSP in clinical trials and is approved
for the treatment of patients with relapsed or refractory CCR4+ ATLL in Japan [19,20].
However, HAM/TSP is still routinely treated only symptomatically with corticosteroids
and other immunosuppressants or antiretrovirals [9]. Overall, there is a need to expand
therapeutic options for HTLV-1-infected patients. Consequently, the discovery of efficient
and potentially curative treatments is mandatory [21].

Owing to its retroviral nature, the HTLV-1 genome integrates into the host genome
upon cell-to-cell spread and infection of CD4+ T cells. Interestingly, contrary to previous
beliefs, the integration site is not random but targets a nonpalindromic DNA motif [22].
Virus propagation occurs either indirectly by mitotic and clonal expansion of infected cells
or directly by de novo infection and transactivation of viral gene expression by the viral
transactivator and oncoprotein Tax [7,23]. As a common characteristic of retroviruses, the
integrated proviral HTLV-1 genome is flanked by long terminal repeats (LTRs) and encodes
gag, pol, and env genes. Additionally, the δ-retrovirus genome possesses a unique pX
region that features several open-reading frames encoding regulatory and accessory genes,
including the oncogene and viral transactivator Tax, a central regulatory protein. Tax exerts
not only a myriad of functions in the host, e.g., by stimulating the proliferation of infected
host cells, but it is also a central player in viral replication [23]. Due to Tax-responsive
promoter elements in both the 5′ LTR and the 3′ LTR, Tax activates plus (sense) and minus
(antisense) strand transcription, respectively [7,24,25].

Regulation of viral gene expression and viral latency is subject to a meticulously fine-
tuned balance of different viral gene products and cellular transcription factors. The mech-
anism through which Tax initiates HTLV-1 transcription is mediated via the cellular tran-
scription factor cAMP response element binding protein (CREB) and has been reviewed
previously [23,26]. Briefly, the viral LTRs feature three highly conserved 21 bp enhancer
elements referred to as viral cAMP response elements (vCREs) or Tax-responsive elements
(TREs). Interaction of Tax with phosphorylated CREB (pCREB) is required so that Tax can
bind to the viral promoter via the TREs. Subsequently, the Tax/pCREB complex recruits the
cellular histone acetyltransferase CREB binding protein (CBP) and p300 to the viral promoter.
Acetylation of histones at the viral promoter results in nucleosomal remodeling and a more
permissive chromatin state, overall favoring transcriptional activation [7,24,26–28]. Another
determinant of transcription is the RNA polymerase II (RNA Pol II). Productive elongation by
the RNA Pol II is facilitated by the positive transcription elongation factor b (P-TEFb), which
releases the RNA Pol II from promoter proximal pausing. Tax is able to bind P-TEFb and
enhance the activation and transcription of the viral promoter. Briefly, Tax not only affects
the initiation of viral transcription but also recruits host cell factors like P-TEFb to the viral
promoter to simulate transcription elongation [29,30].

1.2. The HTLV-1 Viral Reservoir

HTLV-1 preferentially infects CD4+ T-cells in vivo. However, it is also found to a minor
extent in CD8+ T-cells, monocytes and dendritic cells [31–33]. HTLV-1-infected T-cells
frequently have the phenotype of activated long-lived memory T-cells and are CD4+ CD25+

CCR4+ CADM1+ [34,35]. The latter marker cell adhesion molecule 1 (CADM1/TSLC1)
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was found as the best single marker of HTLV-1 infection, identifying HTLV-1 infected cells
with greater sensitivity and specificity than CD25, CCR4, or ICAM-1 and showing that
CADM1+ CD4+ T cells carried a median of 65% of proviral copies in peripheral blood [36].
However, for HTLV-1, the viral reservoir “outside” the peripheral blood is largely unknown.
Due to difficulties accessing patient material, most studies focus on ex vivo analysis of
peripheral blood, which only comprises a subfraction of all immune cells in vivo. Few
studies with the closely related simian T-cell leukemia virus type 1 (STLV-1) suggested
that hematopoietic cells in the bone marrow are infected. This could be confirmed by high-
throughput sequencing of HTLV-1-infected humans, which identified identical integration
sites in neutrophils, monocytes, B-cells, CD8+ T-cells, and CD4+ T-cells, which indicated
that HTLV-1 infects hematopoietic stem cells (HSCs) in vivo. Thus, HSCs could not only
contribute to viral spread but also to the formation of the latent reservoir [37].

Similar to the well-known retrovirus human immunodeficiency virus (HIV), the latent
viral reservoir of HTLV-1 is the main obstacle to curing the infection. In the context of HIV,
antiretroviral therapy (ART) has been used for years, however, ART cannot cure HIV due to
the long-term persistence of latent HIV in resting and proliferating cells. HIV can reactivate
and emerge from these latently-infected cells as soon as ART is ceased. Consequently, there
is a need to eliminate latently infected cells and control HIV to achieve a cure of HIV or
ART-free remission [38]. In HTLV-1-infected patients, infectious spread via cell-free virions
is less active than in HIV-infected people during disease progression. Persistence of HTLV-1
in the host is predominantly mediated via mitotic spread and clonal proliferation [7,24].
However, it remains to be determined whether similar mechanisms may account for the
treatment of HTLV-1-infected individuals after viral reactivation.

1.3. Immune Responses Targeting Tax

The Tax protein is not only required for activating viral transcription but also for the
initiation of malignant transformation of infected cells, mostly CD4+ T-cells [39]. However,
Tax expression is usually undetectable in freshly isolated peripheral blood mononuclear
cells (PBMCs) from HTLV-1 infected subjects, but gets reactivated upon removal of CD8+

T-cells. Concomitant with that, a persistently activated cytotoxic T lymphocytes (CTLs)
response is usually detectable, directed towards the immunodominant protein Tax even
in latently infected individuals [7,24,40–44]. Interestingly, recent work identified that
spontaneous bursts of Tax expression occur when PBMCs from HTLV-1 infected individuals
are cultured ex vivo. A possible explanation for the sustained CTL response towards Tax
is that Tax is also spontaneously expressed in vivo, though in intermittent bursts. Single-
molecule RNA fluorescence in situ hybridization (smFISH) revealed that tax transcription
occurs in infrequent bursts [24,45].

However, how is Tax expression repressed? In more than half of studied ATLL
cases, plus-strand expression of HTLV-1 from the 5′ LTR is inactivated. This happens
through genetic changes, such as mutations, insertions, or deletions or through epigenetic
modifications, including DNA hypermethylation at the 5′ LTR, while the 3′ LTR remains
unmethylated. In particular, North American ATLL patients display unique epigenetic
alterations [46–49]. Moreover, viral gene expression is repressed in vivo not only by
epigenetic mechanisms but also by viral and cellular proteins in late phases of infection,
which has been reviewed earlier [24,50]. Thus, HTLV-1 avoids an efficient CTL response
directed against the immunodominant viral Tax antigen. Consequently, new therapeutic
strategies aim to transiently activate viral gene expression and antigen presentation of
Tax to disturb the equilibrium in favor of an enhanced CTL response towards HTLV-1,
thus exposing the latent HTLV-1 reservoir to immune destruction. In HTLV-1 infection,
the proviral load is strongly correlated with the risk of developing HTLV-1-associated
inflammatory diseases or ATLL. Strikingly, HTLV-1-specific CTLs can coexist with a high
proviral load. Thus, efficient control of HTLV-1 in vivo depends on the CTL quality, in
more detail, on CTL avidity and lytic efficiency [51]. The complex interplay between



Int. J. Mol. Sci. 2021, 22, 5545 4 of 30

HTLV-1 and the immune response targeting HTLV-1 has been comprehensively reviewed
elsewhere [7,52,53].

Interestingly, studies combining predictions with experimental validation in a large
patient cohort (n = 432) showed that despite Tax being the immunodominant protein, CD8+

T-cells specific to the antisense protein HTLV-1 basic leucine zipper (HBZ) are the most
effective CD8+ T-cells [54]. However, antigen presentation of HBZ is impaired, possibly
due to nuclear retention of HBZ [55,56]. Thus, latency reversal may also be achieved by
enhancing antigen presentation of HBZ, a topic that is very interesting, but not discussed
within this review.

1.4. Kick and Kill, Shock and Kill, or Gene Activation Therapy to Achieve Latency Reversal

It would be desirable to prevent the outbreak of diseases in patients latently infected
with HTLV-1. However, the central problem is eradicating the latent viral reservoir (see
Section 1.2). Success in this field has been limited for HTLV-1. A therapeutic approach
termed Kick and Kill, Shock and Kill, or gene activation therapy is to be described here
(Figure 1). The goal is to eradicate latent reservoirs of infected T-cells. It might seem
paradoxical to aim at activating viral gene expression, which can be equated with latency
reversal. Nevertheless, transiently disturbing the tightly regulated viral latency attempts to
force the virus out of hiding. Thus, the principle is based on exposing virus-positive cells
via antigen-presentation to the host’s immune response and relies on a Tax-specific CTL
response to eliminate latent viral reservoirs [57].
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Figure 1. The Kick and Kill approach. The Kick and Kill approach presents a treatment option for HTLV-1 infection with the
objective to eliminate the CD4+ T-cells latently infected with HTLV-1. The “KICK” aims to reactivate viral transcription.
Consequently, the immunodominant protein Tax will be presented via MHCI on latently infected cells. CD8+ T-cells will
mediate the “KILL” of this latent viral reservoir. Abbreviations: CD, cluster of differentiation; HTLV-1, human T-cell
leukemia virus type 1; MHC I, major histocompatibility complex class I.

Lessons can be learned from the related retrovirus HIV-1. The virus, discovered in
1983, caused a pandemic and cost nearly 50 million lives. Research towards a cure for
HIV-1 is still ongoing [58,59]. The primary obstacle is, similar to HTLV-1, the persistence
of infected, quiescent but long-lived, and replication-competent CD4+ T-cells [58,60]. A
possible cure for HIV-1 or any other latently persisting retrovirus would have to eradicate
this latent viral reservoir. This Kick and Kill therapy, employing the immune response to
kill infected cells, has been reviewed for HIV-1 infection prior [61–63]. Proof-of-concept was
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demonstrated in 2005, using the HDACi valproate and later also with the HDACi vorinostat.
However, clinical results have been less promising in these studies and up to now [64–66].
The most intensively studied agents employed in HIV-1 latency reversal are bromodomain
(BRD) inhibitors/bromodomain and extraterminal domain (BET) protein inhibitors (BETi),
histone deacetylase inhibitors (HDACi), and methylation inhibitors. Among those, the
prominent and diverse group of HDACi has been investigated the most [60,63].

1.5. Brief Categorization of Latency Reversing Agents (LRAs)

Compounds used to attempt latency reversal are called latency reversing agents
(LRAs). Among them is the prominent group of HDACi. The widely accepted but probably
oversimplified mechanism by which HDACi activate transcription is by inhibiting the
deacetylation of histones (Figure 2). Acetylated lysine residues in histones inhibit their
tight association with negatively charged DNA strands. As a result, less condensed
chromatin is more likely to be transcribed [67]. There are several subgroups of HDACi,
whose members differ in their pharmacological properties and their specificity towards
the histone deacetylases (HDACs) they inhibit [68]. Hence, there is a distinction between
pan-HDACi and class-selective inhibitors. It is not yet entirely elucidated, which histone
deacetylases are located at the HTLV-1 promoter. According to Lemasson, HDAC 1 and
HDAC 2 are present at the 5′ LTR, and HDAC 3 is enriched at the 3′ LTR [69,70].
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Figure 2. Mode of action of histone deacetylase inhibitors (HDACi) as latency reversing agents for HTLV-1. Epigenetic
modifications govern transcription of the integrated HTLV-1 genome. Inhibition of histone deacetylases (HDACs) by histone
deacetylase inhibitors (HDACi) raises acetylation of histone tails, thereby decreasing their affinity to chromatin. This results
in a more permissive chromatin state, favoring transcriptional activation. Thus, the latent viral reservoir can be reactivated
more easily. Abbreviations: HDAC, histone deacetylase; HDACi, histone deacetylase inhibitor; LTR, long terminal repeat;
HTLV-1, Human T-cell leukemia virus type 1; Ac, acetylated lysine residue; PO3−

4 phosphate ion.

Another approach to reverse latency is the activation of P-TEFb. It comprises cyclin-
dependent kinase 9 (CDK9) and cyclin T1, T2, or K and is crucial for the productive
elongation of RNA-polymerase II. P-TEFb is found in an inactive, high molecular weight
(HMW) complex with hexamethylene bisacetamide inducible protein 1 (HEXIM1) and 7SK
snRNP and in an active low molecular weight (LMW) form, complexed with bromodomain-
containing protein 4 (BRD4). Tax can competitively bind to P-TEFb, and activate HTLV-1
transcription more effectively than the other complexes [29]. Facilitating the binding of Tax
to P-TEFb appears to be a profitable mechanism to stimulate transcription. By inhibiting
different factors and thereby disrupting the HMW or LMW P-TEFb complex, it is possible
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to increase the amount of P-TEFb, which can bind Tax, resulting in HTLV-1 promotor
activation [71,72].

Yet, systematic analyses and comparisons of compounds affecting HTLV-1 transcrip-
tion are lacking. Moreover, the composition of the protein complexes guiding HTLV-1 gene
expression and reactivation from latency is only partially understood. Thus, this review
will provide an overview of LRAs focusing on (1) HDACi and (2) activators of P-TEFb,
which have mainly been studied in the context of the related lentivirus HIV, but which
may also be powerful in the context of HTLV-1. Finally, we will briefly summarize other
strategies that aimed at enhancing viral reactivation, Tax expression, and Tax-specific CTL
responses to interfere with HTLV-1 latency.

2. Manipulation of Histone Modification
2.1. Histone Modification
2.1.1. Histone Modification: Histone Deacetylases (HDACs)

Epigenetic modifications of histone proteins strongly influence the transcription of
genes. This justifies a closer look at histones. It has been established that the cell’s genetic
information, the DNA, is complexed with core and linker histones. Core histones form
octamer complexes, nucleosomes, consisting of two copies of each core histone: H2A, H2B,
H3, and H4. Core histone protein domains comprise the histone-fold region, diverse exten-
sion, and histone tail [73,74]. The histones’ N-terminal tails are of particular interest, as they
are exposed to post-translational modifications (PTM). Different enzymes can reversibly
post-translationally modify these proteins. Acetylation, phosphorylation, methylation,
ubiquitination, sumoylation, and ADP-ribosylation have been described. Modification
of core histones influences their interaction with the nucleic acid. However, it can also
become the basis for interaction with other proteins, referred to as “histone code” [75–77].
For example, acetylated lysine residues are recognized by bromodomains [78,79]. The most
studied PTMs are histone acetylation and deacetylation. The responsible enzymes—histone
acetyltransferases (HATs) and histone deacetylases (HDACs)—warrant an equilibrium
of this particular histone modification [77]. Acetylation of lysine residues in histones
has firstly been described in the 1960s [80,81]. Hydrolysis of these acetyl-lysine bonds is
mediated by HDACs [82]. HDACs are categorized respectively to their homology to yeast
HDACs into classes I, II, III, and IV. HDAC 1, HDAC 2, HDAC 3, and HDAC 8 belong to
class I. They localize in the nucleus and are ubiquitously expressed in the human body.
Class II HDACs are considerably larger than those of class I. Their localization also differs
from class I, as they shuttle between the nucleus and cytoplasm, and their expression is
tissue-specific [77]. They can be further divided into classes IIa (HDAC 4, 5, 7, 9) and IIb
(HDAC 6, 10). HDAC 11 is the sole class IV HDAC and combines properties of class I and
class II. Classes I, II, and IV share a Zn2+-dependency and are inhibited by HDACi. In
contrast to that, class III HDACs or sirtuins (SIRT) are nicotinamide adenine dinucleotide
(NAD+)-dependent and unaffected by HDACi [77,83–85].

2.1.2. HDACs at the HTLV-1 Promoter

Regulation of HTLV-1 transcription is not yet fully understood. Research at the
beginning of the millennium began to elucidate the role of HDACs in viral transcription. It
was discovered that HDACs are distributed asymmetrically at the viral promoters of HTLV-
1, the LTRs. HDAC 1 and HDAC 2 display higher accumulation at the 5′LTR, whereas
HDAC 3 binds more strongly than HDAC 1 and HDAC 2 to the 3′LTR [69]. Interestingly,
Tax and HDACs bind the viral promoter in a mutually exclusive manner. Thereto, Tax
competes with HDACs to bind to the HTLV-1 promoter to activate transcription and
to relieve the transcriptional repression mediated by HDACs. Apart from that, direct
association of Tax and HDAC 1 has been demonstrated and suggested with HDAC 2 and
HDAC 3 [69,86,87]. However, HDAC 1, HDAC 2, and HDAC 3 are all members of class
I HDACs. Further studies are needed to characterize other HDACs and HDAC classes’
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binding and regulatory patterns at the HTLV-1 promoter and to evaluate the differential
expression of HDACs in HTLV-1 infected cells.

2.2. Histone Deacetylase Inhibitors (HDACi)
2.2.1. HDACi as the Anticancer Drugs

Several histone deacetylase inhibitors are licensed as drugs or research subjects in
various forms of cancer treatment [88]. The use of HDACi is a plausible approach, consid-
ering that epigenetic deregulation is a common feature in cancer development [89,90]. The
rationale behind their use is to reactivate the transcription of genes silenced in malignantly
transformed cells [89]. Commonly, growth arrest or apoptosis is reported after HDACi
treatment of transformed cell lines [68,83,91]. This poses the question as to what their mode
of action is.

2.2.2. HDACi: Mode of Action

The inhibition of HDACs increases the acetylation of histones. Increased acetylation is
associated with a more permissive, relaxed chromatin state, favoring transcription. Thus,
the application of HDACi positively correlates with transcriptional activation. Surprisingly,
after treatment with HDACi, only 0.5–20% of global gene expression is altered [92–94],
indicating further regulatory implications. Furthermore, only a fraction of promoters
affected by HDACi treatment displays an increase in transcription. Consequently, this
quite simple explanation falls short of describing the pleiotropic changes observed after
treatment with HDACi.

Next to histone deacetylation, other target proteins of HDACs also play a role in mod-
ulating gene expression. These include transcription factors, such as p53 and NF-κB, and
proteins involved in cell cycle control, apoptosis, angiogenesis, and cell invasion [92,93,95].

Another modulation of transcription takes place via DNA methylation. Hyperme-
thylation of promoters is linked to transcriptional silencing. Recruitment of HDACs
to methylated regions acts in concert with DNA methylation to repress transcription.
This mechanism is also affected by HDACi treatment, resulting in either increased or
decreased methylation, suggesting complex regulation patterns, which are still poorly
understood [92,96,97].

Additionally, histone acetylation can alter gene expression via the recruitment of
epigenetic readers. Reader proteins recognize the “histone code” via specific protein
domains. The domain identifying acetylated histones is the bromodomain (BRD) [93,98].
This review will elaborate further on bromodomain-containing proteins, such as BRD4,
below in Section 3.2.1.

2.2.3. HDACi: Immune Modulation

A common concern regarding the treatment with HDACi is their impact on the
immune system. HDACi act via diverse mechanisms, which might also interfere in immune
responses. It is well established that many HDACi, such as trichostatin A, vorinostat,
and romidepsin, have anti-inflammatory effects by reducing proinflammatory cytokines’
production [92]. However, an exact immunomodulatory mechanism of action has not yet
been conclusively proven. Another common observation is an increase of regulatory T-cells
and their function upon treatment with HDACi [99]. Particular concern focuses on the
antiviral immunity mediated by virus-specific CD8+ T-cells and how it might be affected
by HDACi. Despite that, in vivo studies with the HDACi valproate have demonstrated a
sustained cytotoxic T-cell response [100,101]. The HDACi chidamide has been shown to
increase immune-cell mediated cytotoxicity, targeting tumor cells [102]. Still, it appears
recommendable to monitor CD8+ T-cell lysis efficiency in further trials.
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2.3. Classes of Histone Deacetylase Inhibitors (HDACi)
2.3.1. HDACi: Overview of Classes

A pharmacophore model describing the typical structure of HDACi has been estab-
lished. The general structure consists of a cap, binding to the surface of the HDAC and
contributing to the ligand–receptor interaction. A hydrophobic linker domain connects the
cap to a zinc-binding group (ZBG), posing as the functional group of the HDACi. The ZBG
chelates and interacts with the zinc cation in the active site of HDACs [103–105].

In accordance with their ZBG, HDACi are divided into structural classes. Although
the classes of HDACi are not always uniformly described, the most widely recognized are
hydroxamates, benzamides, short-chain fatty acids (sometimes referred to as carboxylates
in a broader context), and cyclic peptides. Other groups include epoxyketones, sometimes
referred to as electrophilic ketones and hybrid molecules, and will not be a part of this
review [82,94,103,106]. This review will focus on HDACi, which have been explored in the
context of HTLV-1 infection or latency reversal or which seem to be promising candidates
to the end of a Kill and Kill approach targeting HTLV-1 infected cells (Table 1).

Table 1. Different HDACi that reverse retroviral latency.

HDACi HDAC
Selectivity

Use in Latency Reversal or
Retroviral Infection Result Ref.

HIV-1 HTLV-1 or Related Viruses
Hydroxamates

Trichostatin A
(TSA) pan-HDACi X

HTLV-1 pos. cell lines
(MT-2, SLB-1),
PBMCs from

BLV-infected sheep

• enhancement of global
histone acetylation

• increase of viral transcription
and expression

[69,70,107–109]

Vorinostat
(Suberoylanilide
hydroxamic acid,
SAHA, Zolinza)

pan-HDACi X MT-1-GFP+ reporter cells • induction of Tax expression [105,108,110]

Belinostat
(PXD-101, Beleodaq) pan-HDACi X X

• induction of HIV-1
viral production [84,105,111]

Panobinostat
(LBH589, Farydak) pan-HDACi X MT-1-GFP+ reporter cells

• induction of Tax expression
• greater potency than

other Hydroxamates
[105,110,111]

Benzamides

Entinostat
(MS-275) class I X HTLV-1 pos. cell lines

(MT-1, -2, -4)
• growth inhibition of HTLV-1

pos. cell lines
[95,112,113]

Chidamide
(HBI-8000, Epidaza)

class I,
class IIb X ATLL-derived cells lines

• proapoptotic in ATLL-derived
cells lines

• decrease in cell-associated
HIV-1 DNA

[84,102,114,115]

Short-chain
fatty acids

Butyrates class I,
class IIa X HTLV-1 pos. cell line(SLB-1,

HUT 102)

• enhancement of histone
acetylation at
HTLV-1 promoter

• increase of viral transcription
and Tax protein expression

[70,108,116,117]

Valproate
(Valproic acid)

class I,
class IIa X cell and animal models (BLV,

STLV), HAM/TSP patients

• increase in transcription from
viral promoter

• raise of proviral load
[57,66,101,118–120]

Cyclic peptides
Romidepsin

(FK228,
Depsipeptide,

Istodax)

class I X HTLV-1 pos. cell lines (HUT
102, MT-2)

• increase in histone acetylation
• induction of Tax protein

expression
[84,121,122]

Abbreviations: HDACi, histone deacetylase inhibitor; HDAC, histone deacetylase; HIV-1, human immunodeficiency virus type 1; HTLV-
1, human T-cell leukemia virus type 1; PBMC, peripheral blood mononuclear cells; BLV, bovine leukemia virus; ATLL, adult T-cell
leukemia/lymphoma; STLV, simian T-cell leukemia virus.
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2.3.2. Hydroxamates

As the name suggests, hydroxamates possess hydroxamic acid as ZBG. Most HDACi are
hydroxamates and chelate the active zinc ion of HDACs in a bidentate manner [94,103,104].
One of the first members of this group and one of the first discovered HDACi is trichostatin
A (TSA). TSA is a natural product from Streptomyces. It displays potent anticancer and
antiproliferative effects [103,105,123]. TSA exerts HDAC inhibition in a noncompetitive,
reversible manner in a nanomolar range. Concerning HDAC selectivity, TSA is classified as
pan-HDACi, defined as an inhibitor of class I, class II, and class IV HDAC activity. Still, TSA’s
class I, class IIb HDACs and HDAC 5 inhibition is more potent than its HDAC 4, 7, 9, and 11
inhibition [107,123].

In the context of HTLV-1-infection, the impact of TSA on histone acetylation was demon-
strated in SLB-1 cells, an HTLV-1-transformed T-cell line (Table 1). TSA was able to increase
global histone acetylation of histone H3 and H4. Furthermore, TSA treatment achieved a
1.6-fold increase in viral RNA as measured by S1 nuclease protection assays. Additionally,
MT-2 cells, HTLV-1 positive transformed T-cells, were treated with TSA. After treatment with
TSA, transcripts from the 3′ LTR were also two- to three-fold enhanced [69,70,124]. Beyond
that, TSA can enhance the viral expression of the bovine leukemia virus (BLV). BLV is a
delta-retrovirus closely related to HTLV-1, which naturally infects cattle but is frequently used
to experimentally infect sheep, which develop lymphomas [125]. The increase was assessed
by employing luciferase assays using the BLV LTR and further demonstrated in PBMCs from
BLV-infected sheep [109]. However, treatment of patients with TSA and clinical trials have
not been pursued due to unfavorable side effects and TSA’s toxicity [103].

Another hydroxamate, which is already approved for the clinical treatment of cutaneous
T cell lymphoma (CTCL), is suberoylanilide hydroxamic acid (SAHA, vorinostat, trade name
Zolinza®; Table 1). In contrast to TSA, vorinostat is an irreversible HDACi. However, analo-
gous to TSA, vorinostat is a pan-HDACi, although it displays higher IC50 values for HDAC 4,
5, and 9 [95,105,107]. The antiproliferative effect of vorinostat has also been demonstrated in
HTLV-1 infected cells (MT-1, -2, -4, and HUT102), ranging in the micromolar range. More-
over, vorinostat induced cell cycle arrest and apoptosis. A possible implicated mechanism
is the disruption of NF-κB signaling [112]. Furthermore, vorinostat can enhance Tax expres-
sion in MT-1-GFP+ reporter cells [110]. Research concerning HTLV-1 associated ATLL is up
to now focused on the anticancer effects of vorinostat as opposed to its latency-reversing
abilities [126] (NCT00005634, NCT01116154, and NCT00499811). As an anticancer agent,
Vorinostat achieved a response rate of 29.7% in phase IIb trials in patients, displaying persis-
tent, progressive, or treatment refractory cutaneous T-cell lymphoma [127]. Encouragingly,
the side effect profile of vorinostat is manageable [126–128]. Trials in patients concerning the
Kick and Kill approach have not yet focused on HTLV-1. However, studies with patients
suffering from HIV-1 infection were able to show that vorinostat is moderately potent at
latency reversal of this retrovirus [64,108,129,130]. Despite these promising results, concerns
remain about the limitations of drugs such as vorinostat. Even though vorinostat could raise
HIV transcription, this effect does not necessarily translate to viral protein expression and
virion production, potentially due to a post-transcriptional block [131,132].

Belinostat (PXD-101, trade name Beleodaq) is another HDACi already approved to
treat peripheral T-cell lymphoma (PTCL). It has its pan-HDACi activity in common with the
above-mentioned HDACi and is active at a nanomolar to low micromolar range. Belinostat
displays low toxicity in patients, and side effects are mostly manageable [84,95,133–136].
Belinostat is potent at inhibiting cell proliferation [137] and has successfully stimulated
cell lines and primary CD4+ T-cells, latently infected with HIV-1, to express virus [111]
(Table 1). However, PubMed searches with the keywords “belinostat”/“PXD”/“Beleodaq”
and “htlv” or the related retroviruses BLV “blv” and STLV “stlv” retrieved no results (on
11 May 2021). Clinical research of ATLL is also more focused on the anticancer properties
of belinostat than on latency reversal of HTLV-1 (NCT00354185, NCT02737046).

Another member of the hydroxamic acid-derived HDACi is panobinostat (LBH589,
trade name Farydak), which is approved for the treatment of patients suffering from
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multiple myeloma. Panobinostat is a close analog to LAQ824 [85,105,138]. Like the HDACi
mentioned earlier, it acts as pan-HDACi, active against class I, class II, and class IV HDACs.
The potency of panobinostat lies in the nM range. However, it requires higher IC50 values
for the inhibition of HDAC 4, 7, and 8. In general, panobinostat is well tolerated in the
clinical setting [139–141]. Panobinostat has shown similar effects to vorinostat in HTLV-1
infected cell lines, namely inhibition of proliferation and enhancement of Tax expression
(Table 1). Yet, it is notable that these effects already occur at a nanomolar concentration due
to its greater potency in comparison to vorinostat [110,112]. Similar to vorinostat, blockade
of NF-κB signaling is implicated in panobinostat’s mode of action [112]. Moreover, it has
been shown that the apoptosis of ATLL-derived cell lines is induced via a RAIDD-caspase-
2 pathway [142]. Furthermore, studies in patients, cell lines, and primary cells latently
infected with the related retrovirus HIV-1 demonstrate that panobinostat is significantly
more potent in inducing viral production than other HDACi, such as vorinostat and
valproate. It is worth noting that panobinostat was already active at concentrations below
standard dosing [111,141]. There are currently several ongoing clinical trials, which also
target ATLL, but similar to trials with vorinostat, they mostly focus on the agents’ anticancer
properties (NCT01261247, NCT00962507, NCT00918333, and NCT00699296), but not on
latency reversal or viral reactivation.

2.3.3. Benzamides

Benzamide derivatives also belong to the group of HDACi. Their ability to inhibit
HDACs relies on an amino group as ZBG to chelate the zinc ion of the HDACs [103,105]. They
are, in general, less potent than hydroxamates but possess greater class I selectivity [82,94,104].
Their lead compound is entinostat (MS-275). It inhibits HDAC 1, 2, and 3, representing
a subset of class I HDACs, in a micromolar range. Data on inhibition of HDAC 8 and 9
is inconclusive [95,103,105,143]. In clinical trials, entinostat has been well-tolerated but is
not yet approved for treatment. Its antitumor activity has been demonstrated in vitro and
in vivo [94,103,143]. In HTLV-1 infection, entinostat has been shown to inhibit proliferation
of the HTLV-1 infected cell lines (MT-1, -2, and -4) and primary cells (Table 1). Entinostat
also blocked NF-κB signaling [112]. In cell lines (primary CD4+ T-cells, ACH2, and J-lat 6.3),
latently infected with HIV-1, it has been demonstrated that entinostat can achieve robust viral
replication. In contrast to that, the efficacy of panobinostat differed more between different
cell models. Due to the selective class I inhibition of HDACs by entinostat, fewer side effects
during treatment might be expected [113].

Chidamide (HBI-8000, trade name Epidaza) is another member of the Benzamide
class of HDACi. It inhibits the class I HDAC 1, 2, and 3 and further the class IIb HDAC
10 in a low nM range. Class I HDAC 8 and class IV HDAC 11 are inhibited at a higher
IC50. Chidamide is already approved for the treatment of PTCL in China [84,102]. In ATLL
derived cell lines and primary cells from ATLL patients, chidamide has proapoptotic effects
(Table 1). Interestingly, this effect is associated with the activation of Bim, a proapoptotic
molecule, downregulated by the HTLV-1 Tax protein [144]. A phase 2 trial has evaluated
the safety and efficacy of chidamide in patients suffering from ATLL (NCT02955589). In
the context of HIV-1 infection, chidamide can reactivate the latent viral reservoir through
NF-κB signaling. It is a safe treatment option and can induce intermittent viremia in HIV-1
positive patients and, beyond that, a modest decrease in viral DNA [114,115]. Based on
chidamide’s and entinostat’s ability to reactivate HIV-1 from latency, these agents should
be further evaluated in the context of HTLV-1 latency reversal.

2.3.4. Short-Chain Fatty Acids

In general, the zinc ion binding capabilities of short-chain fatty acids rely on car-
boxylate groups and are weaker than those of the other HDACi groups. Thus, their IC50
values lie in a millimolar range [82,105]. Butyrates, such as sodium butyrate and phenyl-
butyrate, are derivates of butanoic acid. They have been explored for the treatment of
malignancies and show minimal side effects [135,145]. Butyrate is part of a regular diet and
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a metabolite of fermentation in the gut [82,146]. Class I and class IIa HDACs are inhibited
by butyrate [116].

The ability of sodium butyrate to increase histone acetylation at the HTLV-1 promoter
was demonstrated in the HTLV-1 infected T-cell line SLB-1 (Table 1). Moreover, treatment of
the cells with sodium butyrate resulted in a 2.4-fold increase in viral RNA [70]. Furthermore,
sodium butyrate could also robustly induce Tax protein expression in the HTLV-1 infected
T-cell lines 1996, 1657, HUT 102, FS, and A212 [117].

Valproic acid/valproate is an anticonvulsant used for the treatment of epilepsy. Due
to the long time, it has been in use, its pharmacological properties are established, and it is
known to be well-tolerated [94]. Additionally, it has been discovered that valproate also
acts as an HDACi [147,148]. Similar to butyrates, millimolar concentrations are required for
HDAC inhibition, inhibiting class I and class IIa HDACs [105,118]. Proof-of-concept for the
Kick and Kill approach with valproate to eliminate latently infected cells in patients with
HIV-1 infection was achieved in 2005. In patients treated with valproate, the population
of infected resting CD4+ T-cells was reduced [66]. Moreover, it was shown that valproate
treatment is proapoptotic and can increase transcription from the BLV-promoter [109,119]
(Table 1). In BLV-infected sheep, valproate increased and thereafter decreased the viral load,
which strongly suggests and supports the proposed Kick and Kill model [119]. However,
the occurrence of chemoresistance to valproate has also been described. As a consequence,
a modified HDACi, ES8, which possesses a hydroxamic acid as functional group, was tested
in four BLV-infected sheep. In one out of these sheep, ES8 strongly decreased the proviral
load and nearly cleared leukemia [149]. STLV-1 infection poses another good animal model
for HTLV-1 infection. In baboons infected with STLV-1, valproate transiently raised the
proviral load. The combination of valproate and the antiretroviral drug azidothymidine
prevented this increase and achieved an overall decrease in proviral load. This occurrence
is likely due to azidothymidine, preventing new cells’ infection and, additionally, the
host’s immune response [101]. Valproate can also stimulate transcription from the HTLV-1
promoter as shown in HeLa cells and Jurkat T-cells transiently transfected with HTLV-
1 LTR-luciferase plasmids. Interestingly, valproate modulates Tax expression from the
5′ LTR and inversely impacts HBZ expression from the 3′ LTR. The increase of histone
H3 acetylation further underlines the mode of action of valproate as HDACi. Moreover,
valproate was found to induce apoptosis in lymphocytes from HAM/TSP patients, but
also in lymphocytes from healthy persons and non-T-cells. The potency of valproate has
also been demonstrated in vivo. In HAM/TSP patients, valproate transiently increases
the proviral load but thereafter results in an overall decrease of the proviral load [57,120].
Concerns have been raised about the safety of treatment with valproate and, in particular,
the immunomodulatory effects of HDACi (see Section 2.2.3). A 2-year trial demonstrated
the safety of long-term treatment with valproate, and it has shown that the CD8+ T-cell
function is not impaired. However, this trial did not report an overall decrease in the
proviral load of HAM/TSP patients [100]. Thus, it should be determined whether HDACi
more potent than valproate could achieve a more robust decrease in the proviral load of
patients infected with HTLV-1.

2.3.5. Cyclic Peptides

Cyclic peptides are the class of HDACi with the most complex cap groups. Their cap
groups possess macrocycles, which lend them the ability for distinct interactions with the
surface of the HDACs. These interactions pose the basis for selective inhibition [82,104].
Furthermore, they consist of very potent inhibitors, similar to the hydroxamates. Thus,
they are active in a nanomolar range. Cyclic peptides are divided into two subclasses:
containing or lacking an epoxyketone group. HDACi with an epoxyketone act irreversibly,
and without an epoxyketone, they act reversibly on the HDACs [82,94].

The cyclic peptide romidepsin (FK228, depsipeptide, trade name Istodax) is a natural
product from Chromobacterium violaceum. Romidepsin is already approved for the treatment
of CTCL and is well-tolerated [150–152]. Romidepsin does not contain an epoxyketone
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group. Thus, it acts reversibly. Furthermore, romidepsin functions as a pro-drug. It
contains a disulfide bond, which has to be intracellularly reduced by glutathione reductase
to a thiol group. The thiol group is a potent ZBG to chelate the zinc ion at the active site of
the HDACs [94,104]. Romidepsin inhibits the class I HDAC 1, 2, and 3 in a low nanomolar
range. HDACs of class II are only inhibited at a higher concentration [84,104,153,154].

The growth-inhibiting effect of romidepsin was demonstrated in the context of HTLV-
1 infection (Table 1). In HTLV-1 positive cell lines (HUT 102, CaGT, MT-2, MT-1, and
MJ), romidepsin inhibited proliferation and induced apoptosis [121,152,155]. Increased
histone H3 acetylation underlines its mode of action. Romidepsin also enhances Tax protein
expression in the HTLV-1 infected T-cell lines HUT 102 and MT-2 [121]. The antitumor effect
of romidepsin for ATLL has been demonstrated in murine models of ATLL. Romidepsin
inhibited tumor growth and prolonged survival of the animals [121,155]. A clinical trial is
ongoing (NCT04639843). Overall, this suggests that romidepsin is a promising candidate
for the Kick and Kill approach in HTLV-1 infection.

To conclude, the use of HDACi in the latency reversal of HTLV-1 to the end of a Kick
and Kill method presents a promising approach. Further systematic research and analysis
of HDACi is an encouraging step to improve the treatment of HTLV-1 infection.

3. Agents for Targeting P-TEFb Complexes
3.1. Regulation of the RNA Polymerase II

The regulation of gene expression is a highly orchestrated process in mammals. The
main role in this orchestra is played by the RNA Pol II, which forms the basis for all
cellular activities by the transcription of DNA into precursors of messenger RNA [156,157].
Transcription by RNA Pol II is conserved in eukaryotes and is defined by sequential stages
of initiation, elongation, and termination [158]. The activity of RNA Pol II and, therefore,
the progression through these steps of transcription is a highly controlled process with
multiple transcription factors involved [159–161]. A unique selling point of RNA Pol
II is the carboxy terminal domain (CTD) of its subunit Rpb1. The CTD plays a central
regulatory role since it provides a multifunctional interaction platform for factors regulating
RNA Pol II. In humans, the interaction platform consists of 52 repeats of the conserved
consensus sequence YSPTSPS [162,163]. The site and the status of phosphorylation of
this heptapeptide repeat are important for the regulation of RNA Pol II activity. The
RNA Pol II CTD is hypophosphorylated during the recruitment to the gene and gets
phosphorylated at serine 5 (Ser5) by the serine/threonine kinase CDK7, which is associated
with the transcription initiation factor II H (TFIIH), and at serine 2 (Ser2) by CDK9, a
component of P-TEFb [164,165]. The phosphorylation of the CTD at Ser2 (Ser2P) is an
indication for long range-elongation, whereas the phosphorylation at Ser5 (Ser5P) without
Ser2 phosphorylation is mostly seen in the initiation phase of transcription [166,167].
Interestingly, there is a clear shift of high Ser5P to high Ser2P in line with transcription
elongation levels, resulting in a decrease of Ser5P and an increase of Ser2P [166,168–171].

P-TEFb is a heterodimer consisting of the catalytic subunit CDK9 and either cyclin T1
or cyclin T2 as a regulatory subunit [172,173]. In the absence of P-TEFb, RNA synthesis
via the RNA Pol II elongation machinery pauses 30–40 nucleotides downstream of the
transcription start site in most human genes in the absence of P-TEFb [174–176]. While
this promotor proximal pausing (PPP) stabilized by the negative elongation factor (NELF)
and the DRB-sensitivity inducing factor (DSIF), transcription can be reinitiated by phos-
phorylation of Ser2-CTD, of SPT5 (a subunit of DSIF), and of RD (a subunit of NELF) by
P-TEFb [161,177–184].

The RNA synthesis by RNA Pol II is not a ride along non-stop process since the
Ser5P-RNA Pol II elongation machinery pauses 30–40 nucleotides downstream of the
transcription start site in most human genes in the absence of P-TEFb [174–176]. The
negative elongation factor (NELF) and the DRB-sensitivity inducing factor (DSIF) are
stabilizing this promotor proximal pausing (PPP). The release from this PPP is modulated
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by the phosphorylation of Ser2-CTD, of SPT5 (a subunit of DSIF), and of RD (a subunit of
NELF) by P-TEFb [161,177–184].

3.2. Different P-TEFb Modulating Agents

P-TEFb activity is controlled by the interaction with different proteins. The kinase-active
form of P-TEFb is described as a LMW complex and predominantly binds the BRD4, subunits
of the super elongation complex (SEC), or other DNA bound activators [29,162,185,186]
(Figure 3). In contrast, the larger inactive P-TEFb complex with a HMW is associated with the
7SK snRNP and the HEXIM1 protein [187,188]. The ratio between HMW and LMW is highly
modulated [173,189,190].
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In the context of HTLV-1, Tax competitively binds to the cyclin T1 subunit of P-TEFb
to activate viral transcription [29]. Thus, strategies to interfere with the formation of the
LMW or HMW to provide “free” P-TEFb for complex formation with Tax could enhance
viral transcription. In HIV-1 infection, a so-called super elongation complex is recruited to
the viral promoter to foster transcription elongation. This SEC is recruited by Tat to the
viral promoter and composed, amongst others, of the scaffold protein AFF4, P-TEFb, and
ELL2, which is another transcription elongation factor [186,191]. Interestingly, ELL2 is the
stoichiometrically limiting component of this SEC. For HTLV-1, it is unknown whether
a comparable SEC exists. However, ELL2 is strongly and specifically upregulated in
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chronically HTLV-1 infected cells, enhances Tax-mediated viral transactivation of the HTLV-
1 promoter, and ELL2 and Tax are part of a common protein complex [192]. Yet, it is unclear
whether Tax:ELL2 complexes and Tax:P-TEFb complexes are part of a common complex
and how this complex impacts viral reactivation.

3.2.1. Agents Interfering with the LMW-Complex

BRD4 is ubiquitously expressed in the nucleus and can interact with acetylated his-
tones H3 and H4 [193–195]. Moreover, as a member of the BET family, BRD4 is characterized
by its two conserved tandem bromodomains, which are crucial for the histone interaction
and an extraterminal domain [196]. As the main component of the LMW-complex, BRD4
recruits P-TEFb to the promotor so that the kinase CDK9 can mediate transcriptional elon-
gation by phosphorylation of the CTD of the RNA Pol II. It could be shown that BRD4
transactivates not only cellular but also viral promoters [189]. In the context of HTLV-1, Tax
is a viral competitor of BRD4 for the interaction with the P-TEFb subunit cyclin T1, another
main component of the LMW-complex. Besides this, BRD4 also inhibits Tax-dependent
transactivation of the HTLV-1 promotor dose-dependently [29,197]. Together, these find-
ings strongly underline the potential of BRD4 inhibitors or P-TEFb releasing agents as
a possibility to reactivate HTLV-1 from latency. Agents inhibiting bromodomains and
extraterminal domains are commonly known as BETi [198]. Currently, manifold BRD4
inhibitors already exist. However, they have been predominantly used in the context of
HIV-1 rather than HTLV-1.

One of the most famous BRD4 inhibitors is the thienotriazolodiazepine compound
JQ1 (Table 2; Figure 3). The Mitsubishi Tanabe Corporation described thienodiazepine
analogs as antitumor compounds inhibiting the binding of acetylated histones with bromod-
omain containing (BET) proteins, which laid the foundation for compounds like JQ1 [199]
WO/2009/084693). Soon after, JQ1 was described as effective in preclinical animal trials
since JQ1 treatment resulted in tumor regression and improved survival in murine models
of the so-called nuclear protein in testis (NUT) midline carcinoma (NMC) [78]. To further
characterize the functionality, JQ1 stereoisomers were analyzed by fluorescence recovery
after photo bleaching (FRAP) experiments and cocrystal structure analysis, which revealed
that only (+)JQ1 is biochemically active [78]. The potential to interfere with the interaction
of acetylated histones and BET-proteins makes JQ1 therapeutically useful in various dis-
eases. The broad effect of JQ1 on different cancers, including hematological malignancies
and solid tumors, has been confirmed, and the antitumor activity can be explained by the
decreasing effect of JQ1 on the expression of cell proliferating genes [78,200–202]. Moreover,
JQ1 is not only useful in the context of cancer but also tested in viral infections. For HIV-1,
it could be shown that JQ1 promotes HIV-1 transcriptional reactivation with minimal
cytotoxicity while suppressing T-cell activation and inducing histone modification genes
and cyclin T1 [203]. Zhu et al. could extend these findings by showing that JQ1 increases
proviral transcriptional elongation if used in combination with the protein kinase C activa-
tor prostratin or phytohemagglutinin (PHA) [204]. Interestingly, the FDA-approved drug
ingenol-3-angelate (PEP005) can act synergistically with JQ1. The treatment of U1 cells, an
HIV latency model, with PEP005 led to a 25-fold induction of viral transcription, whereas
the combination of PEP005 with JQ1 enhanced the induction 250-fold compared to controls.
Additionally, in ex vivo experiments with CD4+ T-cells from patients receiving ART, the
number of full-length HIV-transcripts increased at least 2-fold in five out of seven patients
6 h after treatment with PEP005 [205]. Furthermore, JQ1 induced apoptosis and cell cycle
arrest in the HTLV-1 infected cell lines Rat-1-Tax, MT-4, C8166, and SLB1 [206]. Notably,
JQ1 raised Tax expression in the HTLV-1 infected MT-1-GFP+ reporter cells. This enhancing
effect on HTLV-1 transcription could be boosted by administering JQ1 in combination with
phorbol 12-myristate 13-acetate (PMA, 12-O-tetradecanoylphorbol-13-acetate, TPA) and
ionomycin [110] (see Section 4.2).
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Table 2. Different P-TEFb-modulating agents that reverse retroviral latency.

Mode of
Action

Use in Latency Reversal or
Retroviral Infection Result Ref.

HIV-1 HTLV
LMW-complex

JQ1 BRD4
inhibitor

HIV-1 pos. cell lines
(A2, A72, J-Lat

clone 10.6)
X

• induction of cyclinT1 expression
• increase of transcription from

HIV-1 promoter
• suppression of proliferation,

blocking of cell cycle progression,
and induction of apoptosis in
Tax-expressing cells

• induction of Tax expression in
MT-1-GFP+ reporter cells

[72,110,203,204,206]

PEP005 BRD4
inhibitor cell line (ART patients) X

• increase of transcription from
HIV-1 promoter synergistically
with JQ1

[205]

iBET151
(GSK1210151A)

BRD4
inhibitor HIV-1 pos. cell lines X • induction of HIV-1 gene

transcription [72,207]

Birabresib
(OTX-015)

BRD4
inhibitor

AML and ALL
cell lines,

cell line (ART patients)
X

• growth inhibition of AML and
ALL cell lines

• greater potency than JQ1
[208,209]

UMB-136 BRD4
inhibitor

HIV pos. cell lines
harboring latent

proviruses
X • induction of HIV-1 viral

production [210]

HMW-complex

HMBA
PI3K/Akt
pathway

activation/

chronically
infected cells

(U1 ACH-2, and J∆K)
X • induction of viral production [71,169,211,212]

Vorinostat
(SAHA)

CDK9
T-loop

phosphory-
lation

resting CD4+ T cells
(aviremic patients) X

• increase of HIV RNA expression
in vivo

• movement of CycT1 and CDK9
from higher (7SK snRNP) to lower
(free P-TEFb) glycerol fractions

[130,169,211,213,214]

Disulfiram
PI3K/Akt
pathway

activation/

cell line
(HAART patients)

dose-escalation study
X

• increase of cell-associated
unspliced HIV RNA [215–217]

Trichostatin
(TSA)

reporter in
293T cells X • 30-fold induced HEXIM1

promotor activity
[169,218]

5-Azacytidine
(AzaC)

analog of
cytidine

HeLa cells
293T cells X

• release of P-TEFb from the 7SK
snRNP

• stimulation of luciferase activity
by 5-fold, similar to levels
achieved by HMBA

[47,185]

Abbreviations: HIV-1, human immunodeficiency virus type 1; HTLV-1, human T-cell leukemia virus type 1; LMW, low molecular weight;
BRD4, bromodomain-containing protein 4; ART, antiretroviral therapy; AML, acute myeloid leukemia; ALL, acute lymphatolastic leukemia;
HMBA, hexamethylene bisacetamide; PI3K, phosphatidyl-inositol 3-kinase; CDK9, cyclin-dependent kinase 9; 7SK snRNP, 7SK small
nuclear ribonucleoprotein; P-TEFb, positive transcription elongation factor b; HAART, highly active antiretroviral therapy; HEXIM1,
hexamethylene bisacetamide inducible protein 1.

Another study not only showed reactivation of HIV from latency upon JQ1 treatment
but also upon I-BET-151 treatment, another BRD4-inhibitor (Table 2; Figure 3). They could
show that both BET inhibitors reactivate HIV from latency in a Tat-independent mechanism
in latently HIV l infected polyclonal Jurkat cell populations and primary T-cell models [72].
The compound I-BET-151 could reactivate HIV-1 in cells in vivo under a combinational
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antiretroviral therapy (cART). Moreover, experiments with humanized mice under cART
treated with I-BET-151 further showed that HIV-1 genes were preferentially CDK9- and
CDK2-dependently expressed in monocytic cells, but not in CD4+ T-cells whereas the
underlying mechanism for this differential effect of I-BET-151 is unknown so far. [207].

A novel thienotriazolodiazepine compound and BETi/BRD4-inhibitor OTX-015 (Birabre-
sib), with less cytotoxic effects, has already entered phase 1b clinical trials (NCT01713582;
Table 2). Even the highest concentration (5 µM) of OTX-015 was responsible for only less than
20% of drug-specific cell death in CD4+ and CD8+ T-cells [219]. In C11 cells, OTX-015 could
dose-dependently stimulate HIV-LTR transcription with a nearly twice as low EC50 value as
compared to JQ1. OTX-015 could dose-dependently stimulate HIV-LTR transcription with a
nearly twice lower EC50 value than JQ1 in C11 cells. Further, OTX-015 could reactivate HIV
from latency with a more than four times lower EC50 value than JQ1 in J.Lat clone A10.6 cells.
OTX-015 could even induce latent HIV-1 expression ex vivo in primary CD4+ T-cells receiving
ART. Additionally, the treatment with OTX-015 corresponded with a nearly 10-fold increased
RNA Pol II CTD Ser2 phosphorylation, and the level of HIV-1 promotor-bound CDK9 was
increased by more than 5-fold. Concluding, the HIV-1 reactivation by OTX-015 in all of these
samples is P-TEFb dependent [209].

A second generation 3,5-dimethylisoxazole BETi derived from an Imidazo [1,2-a]
pyrazine scaffold, named UMB-136, is another promising compound for HIV-1 latency
reversal. Hunag et al. screened 37 UMB-32 derivatives that demonstrated inhibitory
effects on BRD4, combined with easier synthesis than JQ1. Based on UMB-32, the analog
UMB-136 was evaluated as the most promising BETi. Compared to the other analogs,
UMB-136 contains a cyclohexane group and the lowest binding energy for the binding
with BRD4, even lower than JQ1, underlining the great binding potential of UMB-136 to
BRD4. In addition, UMB-136 binds endogenous BRD4 and leads to an enhanced Tat:P-
TEFb interaction. The treatment with UMB-136 reversed HIV-1 latency in most HIV-latency
models, including the cell lines J-Lat 6.3, 8.4, 9.2, 10.4, and THP89-GFP and in naïve CD4+

T-cells analyzed, whereas the treatment with JQ1 alone showed no effect compared to the
controls [210]. Since the combination of different latency reversal agents has shown to
be a promising approach [198,220], synergistic effects of UMB-136 with other LRAs were
compared to JQ1 synergism. In this setting, treatment with UMB-136 revealed to achieve
greater effects compared to JQ1. For JQ1, a tremendous synergism has been reported for
double treatment with the PKC agonist bryostatin-1 [198,220]. A highly synergistic effect
on latency reversal was also observed upon treatment of cells with UMB-136 together with
bryostatin-1, which was again greater than the effects observed upon treatment with JQ1
and bryostatin-1 [210].

Summed up, a considerable repertoire of BRD4 inhibitors already exists, which was
analyzed for latency reversal of HIV-1. Further, a combination of different compound
classes revealed promising results, too. However, neither the novel inhibitors nor the
combinatorial approaches have been tested for HTLV-1.

3.2.2. Agents Interfering with the HMW

Besides agents interfering with the LMW, other compounds releasing P-TEFb indepen-
dent of BRD4 exist. The binding of the negative regulator HEXIM1 and of the small nuclear
RNA species (7SK snRNP) to P-TEFb leads to an inhibition of the kinase activity of pTEFb,
which makes HEXIM1 and 7SK snRNP negative regulators of P-TEFb [221] (Figure 3). The
mechanistic background of this HMW complex formation is defined by the conformational
change of a HEXIM1 homodimer induced by 7SK snRNA binding, which finally facilitates
them to bind to P-TEFb [173,212]. The ratio between HMW and LMW-complexes in the
cell is tightly controlled [173,189,190]. Stress factors, such as actinomycin D, 5,6-dichloro-1-
β-D-ribofuranosylbenzimidazole (DRB), UV-radiation, or inhibition of transcription lead
to a shift from HMW to LMW-complexes, which in turn leads to enhanced transcription
and translation [187,222,223]. In the context of HTLV-1, it could be shown that CDK9 and
Tax are essential for viral transactivation and that Tax competes with key components of
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the LMW and HMW-complexes for P-TEFb binding [29,224]. Since the immunodominant
protein Tax is essential for viral transactivation but is not expressed during latency, P-TEFb
releasing compounds interfering with the HMW could give start-up support (“kick”) for
the viral transcription, allowing the immune system to destroy the latent reservoir (“kill”).

In contrast to the frequently neglected virus HTLV-1, different compounds interfering
with HMW complex formation have already been tested in the context of HIV-1. One of
the oldest known compounds is the hybrid polar compound HMBA [225,226] (Table 2;
Figure 3). In chronically infected T-cell lines, HMBA has demonstrated its huge potential
in reactivating HIV-1 from latency [226,227]. Furthermore, HMBA can strongly increase
the expression of the LMW component HEXIM1 [228,229]. Contreras et al. have shed
more light on the mechanistic background of how HMBA induces viral gene expression.
They reported that HMBA activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway
by interfering with PI3K, leading to the dissociation of the HMW-complex, which in
turn allows the recruitment of P-TEFb to the viral promotor [71]. The induction of viral
production could be shown in chronically infected latency model cell lines (U1, ACH-2,
and J∆K).

Another promising hybrid polar compound of the second generation is suberoylanilide
hydroxamic acid (vorinostat/SAHA; Table 2), which is not only an HDACi (see Section 2.3.2),
but can also activate the PI3K/Akt pathway, thus, affecting viral reactivation by the transient
release of free P-TEFb from 7SK snRNP comparable to HMBA [214,226,230–232]. Interestingly,
in resting CD4+ T-cells vorinostat treatment leads to an increased CDK9 T-loop (Thr-186)
phosphorylation, required for P-TEFb activity [213,214]. In glycerol gradient experiments,
it could be shown that cyclin T1 and CDK9 moved from higher (HMW) to lower (LMW)
glycerol fractions at 90 min after the addition of 5 µM vorinostat [169].

Disulfiram [bis(diethylthiocarbamoyl) disulfide] is FDA approved and was initially
used to treat alcoholism [233,234]. In Bcl-2 transduced CD4+ T-cells, disulfiram leads to a
reactivation of latent HIV (Table 2; Figure 3). Moreover, disulfiram converts to di-ethyl-
di-thio-carbamic acid (DDTC) in vivo, and none of both compounds showed significant
toxicity if administered in concentrations lower than 10 µM [217]. Mechanistically, disulfi-
ram interferes with the PI3K/Akt pathway by depleting phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), which results further downstream in phosphorylation
of HEXIM, the release of P-TEFb, and transactivation of the viral promotor [216]. Inter-
estingly, disulfiram was administered in a dose-escalation study to HIV-infected adults
receiving suppressive antiretroviral therapy, where disulfiram treatment resulted in an
increase of unspliced HIV RNA and was well-tolerated [215].

Another potential compound for retroviral latency reversal is trichostatin a (TSA;
Table 2). Luciferase assays with transfected HeLa cells revealed a 30-fold induction of the
HEXIM1 promotor after 48 h of treatment with TSA [235]. Besides transcriptional activation
of HEXIM1, TSA can also release P-TEFb from the HMW complex [211,230]. Moreover,
TSA was analyzed in combination with nicotinamide (NA). By using a reporter plasmid
in 293T cells, it could be shown that the treatment of TSA/NA leads to a time-dependent
reversible release of HEXIM1 from cyclin T1, and an ex vivo kinase assay revealed enhanced
CDK9 kinase activity [218]. The impact of TSA on HTLV-1 transcription is described in
Section 2.3.2 and Table 1 since TSA is also known as pan-HDACi.

The last P-TEFb releasing agent discussed here is an analog of cytidine named 5-
Azacytidine (AzaC; Table 2). As a nucleoside analog, AzaC interferes with cell proliferation
on a cellular level by being incorporated into DNA [236], but it has also shown potential in
HIV transcription activation [237–239]. The potential of AzaC as a P-TEFb releasing agent
was shown by a so-called V-PAC assay, in which the activation of P-TEFb is visualized via
fluorescence complementation and by a glycerol gradient assay in HeLa cells [185]. In the
context of HTLV-1, the viral reactivation from latently-infected cell lines MT-1 and TL-Om1
has been observed upon treatment with AzaC [47].

In conclusion, besides the use of HDACi, P-TEFb releasing agents represent a potent
alternative for reversing the latency of HTLV-1. These compounds offer the possibility to
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release P-TEFb from the HMW complex or the LMW complex. Since released P-TEFb could
complex with Tax to promote viral transcription, it is reasonable to study the potential
of P-TEFb-modulating agents either individually or in combination with other LRAs to
reactivate HTLV-1 from latency.

4. Other Strategies to Reactivate HTLV-1 from Latency
4.1. Classification of Other Stimuli

Thus far, HDACi and activators of P-TEFb have been outlined as LRAs. Beyond
these agents, other stimuli can also activate HTLV-1 transcription. These include mitogens,
sirtuin inhibitors, and extracellular factors. Moreover, also metabolic circumstances affect
HTLV-1 latency. These regulators of HTLV-1 latency will be briefly reviewed in this section.

4.2. Mitogens

T-cell activating mitogens are known for their potency to enhance Tax protein levels
in HTLV-1 infected T-cell lines (Table 3). Among them are plant lectins and phorbol
esters [117]. Phytohemagglutinin-P (PHA) is a plant lectin that exerts a mitogenic stimulus
on T-cells. It is also used to stimulate PBMCs from HTLV-1 infected patients [240]. In the
HTLV-1 infected T-cell line FS, PHA can induce Tax protein expression [117].

A commonly used phorbol ester to stimulate retroviral LTRs, among them the HTLV-1
LTR, is PMA. PMA acts as a diacylglycerol analog to activate protein kinase C (PKC) [63,241].
However, it has been shown that PKC isoforms are modulated differently by PMA between
cell lines (Jurkat and H9 T-cells) [242]. Concerning HIV-1, it has been established that PKC
stimulates NF-κB signaling, thereby inducing transcription. In contrast, activation of HTLV-1
transcription is not mediated by NF-κB but instead displays an involvement of Sp1, p53, and
CREB upon TPA-treatment [63,242,243].

Apart from that, PKC triggers reactive oxygen species (ROS) production, thereby
causing DNA damage and cell stress [244,245]. As a consequence, PMA also induces
apoptosis. Strikingly, the apoptotic cascade seems to be linked to latency reversal [245].
In HTLV-1 infected T-cell lines (HUT 102, FS, 1996, and 1657), PMA can enhance Tax
protein expression [117]. PMA treatment is often combined with the Ca2+ ionophore iono-
mycin. Ionomycin is a T-cell activator and stimulates latent viral transcription. Moreover,
ionomycin can act synergistically with PMA to activate PKC [246,247]. Since PMA is
carcinogenic, it has not been pursued as an LRA for treatment. Nevertheless, it is fre-
quently used as a positive control for activation of latent viral transcription in in vitro
experiments [111,248].

4.3. Sirtuin Inhibitors

The non-zinc-dependent but rather NAD+-dependent class III of HDACs has been
briefly introduced in Section 2.1.1. This class of HDACs is designated as sirtuins (SIRTs),
consisting of isoforms SIRT 1-7. These isoforms are widely expressed in mammals and
further divided according to their subcellular localization. SIRT 1, 6, and 7 are found in the
nucleus, SIRT 2 in the cytoplasm, and SIRT 3, 4, and 5 in the mitochondrion [92,136,249].
Potential substrates of SIRTs are histone proteins, but also non-histone proteins, such as NF-
κB and p53. Consequently, SIRTs are involved in different physiological processes, ranging
from metabolism to apoptosis. Besides, they are implicated in various diseases [92,249,250].

It has been observed that SIRT 1 is overexpressed in ATL patients and acts as an
antiapoptotic molecule in malignant cells. This is supported by the finding that the SIRT
1/2 inhibitor sirtinol caused growth and cell cycle arrest and apoptosis in PBMCs from
ATL patients and HTLV-1 positive cell lines (S1T, MT-2). Furthermore, sirtinol blocked
NF-κB activity by inhibiting its translocation into the nucleus [249–251].

Interestingly, SIRT 1 can suppress Tax activation of the HTLV-1 LTR. However, SIRT
1 inhibitors, such as sirtinol and Ex527, can reverse this effect (Table 3). Administration
of these agents to HTLV-1 positive cell lines (C8166, MT-2, and MT-4) enhanced the LTR-
driven production of Tax mRNA [252]. Novel small-molecule inhibitors of SIRT 1, such as
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NCO-01 and NCO-04, which have induced apoptosis in cells from ATL patients, might be
even more effective at inducing Tax expression [253]. Therefore, inhibition of SIRT 1 may
also pose an option to reverse HTLV-1 latency.

Table 3. Diverse stimuli that are involved in HTLV-1 latency reversal and transcriptional activation.

Stimulus Mode of Action Use in HTLV-1 Infection Result Ref.
Mitogens

Phytohemagglutinin-P
(PHA)

T-cell
activation

HTLV-1 pos. cell line
(FS)

• induction of Tax
protein expression

[117]

Phorbol 12-myristate
13-acetate

(PMA)

PKC
activation

HTLV-1 pos. cell lines
(HUT 102, FS, 1996, 1657)

• induction of Tax
protein expression

[117]

SIRT inhibitors

Sirtinol SIRT 1 inhibition
PBMCs from

ATLL patients,
HTLV-1 pos. cell lines

• growth and cell cycle
inhibition, apoptosis

• increase of Tax mRNA

[251,252]

Ex527 SIRT 1 inhibition HTLV-1 pos. cell line
(C8166) • increase of Tax mRNA [252]

Extracellular factors and circumstances

Oxidative stress p38 MAPK-
activation

HTLV-1 pos. cell line
(MT-1-GFP+ reporter cells)

• enhancement of Tax
expression

[110]

Physiological hypoxia p38 MAPK-
activation

PBMCs from
HTLV-1 infected patients

• increase in HTLV-1 5′

LTR transcription
[254,255]

Glucose metabolism link to Tax protein
pos. feedback loop

PBMCs from
HTLV-1 infected patients

• imperative for HTLV-1
5′ LTR transcription

[24,254,255]

Abbreviations: HTLV-1, human T-cell leukemia virus type 1; PBMC, peripheral blood mononuclear cells; PKC, protein kinase C; SIRT,
sirtuin; ATLL, Adult T-cell leukemia/lymphoma; MAPK, mitogen-activated protein kinases.

4.4. Extracellular Factors and Circumstances

Once HTLV-1 infected PBMCs are introduced into culture, they display strong sponta-
neous transcriptional reactivation [24,256]. Of late, it has been shown that p38 mitogen-
activated protein kinases (p38 MAPK) are implicated in this phenomenon, as they are sen-
sors of extracellular stress. MAPKs induce the expression of immediate-early genes (IEGs).
Interestingly, the HTLV-1 5′ LTR displays similarities to the promoters of IEGs [24,254,257].
The relevance of MAPKs in the reactivation of HTLV-1 is corroborated by the observation
that reactive oxygen species, causing oxidative stress, induce Tax expression in MT-1-GFP+

reporter cells [110] (Table 3). There are further ramifications in the spontaneous reactivation
of HTLV-1, oxygen availability being a major factor. Physiological hypoxia, which repre-
sents 1–2% oxygen, can be found in anatomical departments, such as parts of the central
nervous system and stem cell niches [258]. These oxygen levels enhance transcription from
the HTLV-1 5′ LTR in HTLV-1 infected PBMCs. This enhancement is likely due to hypoxia
being a trigger for p38 MAPK. Beyond that, hypoxia shifts the glucose metabolism towards
glycolysis [24,254,255]. Remarkably, glucose metabolism was demonstrated to be crucial
for HTLV-1 reactivation. Inhibition of glycolysis or the mitochondrial electron transport
after overnight culture decreased Tax transcription [24,255]. Further investigation of the
circumstances of spontaneous transcriptional reactivation could reveal additional targets
for reversing HTLV-1 latency.

5. Caveats of the Kick and Kill Approach and Open Questions

Despite promising results in cell culture experiments and in ex vivo analyses of fresh
peripheral blood mononuclear cells from HTLV-1-infected patients, the first clinical trials
using HDACi did not lead to a sustained reduction of the proviral load, nor could the
patients be cured. However, until now, most trials in HTLV-1-infected patients have
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been focusing on valproate, which is known to be far less potent than the newer classes
of HDACi that have been developed in the meantime [100]. Thus, future work should
address the impact of novel classes of HDACi and should also consider modifying viral
transcription more specifically by modulating P-TEFb. It may also be feasible to combine
HDACi and P-TEFb modulators, a strategy that has already been shown to have superior
effects on viral reactivation in cell culture models of HIV compared to individual treatment
regimens [198,230]. Although an increase in viral transcription may result in enhanced
immunogenicity of HTLV-1, this approach also has limitations:

• Yet, it is unclear whether increased viral transcription also results under any conditions
in enhanced viral protein expression and antigen presentation. For HIV, several studies
have described post-transcriptional blocks, for HTLV-1, this is unknown [131,132].

• The treatment of HTLV-1-infected patients with HDACi or related compounds does
not specifically target virus-infected cells. Rather, other cells like CTLs themselves may
also be affected by the treatment and may be functionally impaired. Thus, individual
compounds have to be monitored more closely.

• Enhanced viral transcription may result in increased viral replication and worsening
of the phenotype if the CTL response does not work properly. Since viral reactivation
also poses the risk that a yet repressed but harmful HTLV-1-infected T-cell clone
proliferates upon treatment, close monitoring of patients would be required.

• It is unclear whether the combination of antiretroviral therapy with different com-
pounds used for the Kick and Kill strategy could improve clinical parameters compa-
rable to the approaches used in HIV reactivation.

• The outcome of viral reactivation may differ depending on the viral integration sites
in the human genome.

• Viral reservoirs are largely unknown for HTLV-1. Most studies performed thus far
monitored the impact of LRAs on peripheral blood mononuclear cells. However,
whether and how LRAs may impact viral gene expression in other cell types and
tissues and how accessible these viral reservoirs are, is not understood.

• The impact of LRAs on HBZ expression and HBZ-specific CTLs remains to be eluci-
dated in more detail.

Summing up, more work is needed to gain novel insights into host factors and
chemical compounds required for manipulating HTLV-1 gene expression, and thus, the
immunogenicity of HTLV-1. This holds important implications for the Kick and Kill
strategy to relieve the disease burden of ATLL and HAM/TSP.
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