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Abstract
Background: Structural properties of proteins such as secondary structure and solvent
accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but
also when homology information to known structures is available. Structural properties are also
routinely used in protein analysis even when homology is available, largely because homology
modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors
of secondary structure and solvent accessibility are virtually always ab initio.

Results: Here we develop high-throughput machine learning systems for the prediction of protein
secondary structure and solvent accessibility that exploit homology to proteins of known
structure, where available, in the form of simple structural frequency profiles extracted from sets
of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and
with a number of baselines in which secondary structures and solvent accessibilities are extracted
directly from the templates. We show that structural information from templates greatly improves
secondary structure and solvent accessibility prediction quality, and that, on average, the systems
significantly enrich the information contained in the templates. For sequence similarity exceeding
30%, secondary structure prediction quality is approximately 90%, close to its theoretical
maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template
selection noise, and significant for marginal sequence similarity and for short alignments, supporting
the claim that these improved predictions may prove beneficial beyond the case in which clear
homology is available.

Conclusion: The predictive system are publicly available at the address http://distill.ucd.ie.

Background
Protein secondary structure and solvent accessibility pre-
dictions are an important stage towards the prediction of

protein structure and function. Accurate secondary struc-
ture and solvent accessibility information is not only at
the core of most ab initio methods for the prediction of
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protein structure (e.g. see [2]) but is also effective in
improving the sensitivity of fold recognition methods
(e.g. [3-5]), and is routinely used in protein analysis and
annotation [6].

Virtually all modern methods for the prediction of protein
one-dimensional structural features (i.e. those features
which may be represented as a string of the same length as
the primary sequence, such as secondary structure and sol-
vent accessibility) are based on machine learning tech-
niques [7-22], and exploit evolutionary information in
the form of amino acid frequency profiles extracted from
alignments of multiple sequences, generally of unknown
structure. The progress of these methods over the last 10
years has been slow, but steady, and is due to numerous
factors: the ever-increasing size of training sets; more sen-
sitive methods for the detection of homologues, such as
PSI-BLAST [23]; the use of ensembles of multiple predic-
tors trained independently, sometimes tens of them [12];
more sophisticated machine learning techniques (e.g.
[14]); a combination of a number of the above [19].

Predictors of secondary structure and solvent accessibility
are virtually always ab initio (with very few exceptions,
e.g., recently, [22]), meaning that they do not rely directly
on similarity to proteins of known structure. In fact, often,
much care is taken to try to exclude any detectable similar-
ity between training and test set instances when gauging
predictive performances of structural feature predictors.
The main reason for this seems to be a short-circuit, which
happened early on in the field and was never disputed,
between the idea of hypothesis validation by strict train-
ing and test set separation (borrowed from statistical
learning), and the concept of ab initio prediction. For
training and test sets to be strictly distinct, they are
required to not only contain different examples (which is
all the statistical learning principle dictates, together with
independence and identical distribution), but to contain
examples that do not show significant sequence identity
to one another, as detected by a standard BLAST [23]
search. A hint of the historical, more than scientific,
nature of this issue is the fact that when subtler algorithms
for sequence similarity detection became available (e.g.
PSI-BLAST [23]), the criteria for training vs. test set separa-
tion did not always change.

Currently over half of all known protein sequences show
some detectable degree of similarity to one or more
sequences of known structure. Nearly 3/4 of newly depos-
ited structures in the PDB [24] show significant similarity
to previously deposited structures [22]. Over 60% of the
queries received by the server Porter [19] in the first six
months of year 2006 have potential homologues in the
PDB at the moment of submission (PSI-BLAST e-value
smaller than 0.01), and another 25% have marginal sim-

ilarity to some sequence in the PDB (PSI-BLAST e-value
between 0.01 and 10). For the case of clear homology,
direct structural information from the homologous pro-
teins can be exploited for the prediction of structural fea-
tures. For instance, secondary structure extracted from full
three-dimensional comparative models is known to be
significantly more reliable than secondary structure
obtained from ab initio predictors [8,22]. Moreover, even
where alignments to PDB structures are of dubious relia-
bility, or too short to reliably imply homology, these may
carry information. One of the main sources of improve-
ment for fold recognition and ab initio structure prediction
methods over the last few CASP competitions [25-28] has
been the reliance on sets of possible conformations for
short fragments of chain [28], extracted from the PDB.

There is a number of reasons why direct, machine learn-
ing-based predictions of secondary structure or other
structural features incorporating homology information
are useful: nearly all the most reliable public predictors
[6,9,14,29,30] ([22] is an exception, potentially equally
reliable, although currently not tested by independent
assessors such as EVA [31]) do not take structural informa-
tion directly into account, which implies that over half of
the responses provided to users could be improved, often
dramatically; machine learning methods are robust with
respect to noise – selecting a template from a set of candi-
date structures from the PDB may be less of a problem
than in traditional comparative modelling, since a set or a
profile of templates (possibly conflicting) may be pro-
vided to the method, rather than a single template which
might be erroneous; machine learning methods are signif-
icantly faster than full comparative modelling methods –
large-scale predictions may be generated with relatively
modest computational resources, and feed into structure-
based functional similarity algorithms, comparative mod-
elling validation and template selection, protein analysis
and proteome annotation efforts; low-similarity, short-
alignment based predictions may improve on traditional
ab initio ones in fold recognition or even novel fold cases.

Here we develop high-throughput systems for the predic-
tion of protein secondary structure and solvent accessibil-
ity, which exploit similarity to proteins of known
structure, where available, in the form of simple structural
frequency profiles from sets of PDB templates. The sys-
tems have two stages: one in which a set of templates for
a query sequence is generated based on a similarity search
of the PDB; one in which this template information, plus
the primary sequence, and evolutionary information in
the form of multiple alignments is used as input to an
ensemble of recursive neural networks to determine a
query's secondary structure and solvent accessibility.
Although here we use a simple PSI-BLAST-based protocol
to find suitable templates (see Methods section), our sys-
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tems are fully modular and may easily accommodate
more sophisticated stages with better sensitivity to remote
homology (e.g. [5,32]). It is important to stress that, when
homology information is available, the systems we design
here do not simply take it as the final answer, but rather
use it as a further input. This, on average, leads to signifi-
cant improvements over extracting secondary structure
and solvent accessibility directly from the best single PDB
template, and weighed and unweighed averages of the top
10 templates, or all templates identified, suggesting that
the combination of sequence and template information
carries more information than templates alone. Not sur-
prisingly, when only very high quality templates are avail-
able (PSI-BLAST e-value smaller than roughly 10-30),
which are almost guaranteed to be close homologues, the
improvements become marginal.

We also compare the predictive systems to to their state-
of-the-art ab initio counterparts. We show that similarity
information, when available, greatly improves prediction
quality. For sequence similarity exceeding 30%, predic-
tion quality is nearly at its theoretical maximum. Gains
are significant for low sequence similarity when we design
specialised systems for this case, and for alignments
shorter than 20 residues, outside traditional comparative
modelling territory, supporting the claim that these
improved predictions may prove beneficial for fold recog-
nition algorithms.

The predictive systems described in this paper are publicly
available at the address [1], as part of a suite of predictors
of protein structural features. When the user requests sec-
ondary structure (Porter) or solvent accessibility (PaleAle)
predictions, homology-based results are automatically
selected when suitable templates are available. Up to
20,000 queries a day may be served by the 40 CPU cluster
hosting the predictors.

Results and Discussion
The four systems we describe here are: an ab initio second-
ary structure predictor (Porter [19]) in three classes; the
same, but homology-based (Porter_H); an ab initio predic-
tor of relative solvent accessibility in 4 and 2 classes
(PaleAle); the same, but homology-based (PaleAle_H).
All systems are trained and tested in rigorous 5-fold cross-
validation on the December 2003 25% pdb_select list
[33] (for details, see Methods section). We use this set to
make direct comparisons with Porter's published results,
and performances as recorded by EVA [31]. The public
versions of the servers will undergo regular trainings to
keep them up-to-date with the expansion of the PDB.

Porter classifies correctly 79.0% of all residues. Porter has
currently the highest performance of all predictors tested
by independent assessor EVA [31], and is ranked first of all

methods by EVA based on the combination of pairwise
comparisons of servers on identical sets. Overall,
Porter_H classifies correctly 85.7% residues, or nearly 7%
above Porter. If we consider only those residues for which
PDB template information is available (270,110 out of
344,653), Porter_H's performance rises to 88.3%, roughly
9% above Porter. If we further restrict our observation to
those residues for which template information is available
with a BLAST e-value of 0.01 or smaller (250,247 resi-
dues), Porter_H's performance rises to 89.3% (9.5%
above Porter). It is worth reminding that the theoretical
maximum for secondary structure prediction performance
is well below 100% and is bounded by the intrinsic ambi-
guity of mapping three-dimensional atom coordinates
into secondary structure classes. Any two automated pro-
grammes for secondary structure assignment (e.g.
[34,35]) differ on at least 5% residues, with up to 20% res-
idues assigned to different states in some cases [36].
Nonetheless, these larger margins are likely mainly due to
different definitions of secondary structures by different
automated assignment programs, and only by a smaller
amount to actual uncertainties as to what the structure
might be. Once a semantics is chosen (e.g., as in our case,
DSSP) it is possible to classify secondary structure with an
accuracy of more than 90% [37]. Hence the theoretical
maximum for classification accuracy (i.e. classifying as
well as an algorithm which takes as input the experimen-
tal structure) is likely somewhere in the 90–95% region.
As shown in figure 1, about 90% residues are correctly
classified by Porter_H in the 50%-100% similarity (per-
cent identity) region. Nearly 87% are correctly classified
between 30 and 50% similarity. Even in the 20–30% sim-
ilarity region, Porter_H significantly outperforms Porter
(82% average classification performance vs. 79%, with
standard deviations of 0.3%). For similarity below 20%
Porter_H performs slightly worse than Porter. The two
main reasons for this are probably: the better specialisa-
tion of the latter system, which is trained on 2171 tem-
plate-less examples, while the former is trained only on
about 500 examples with no or very low quality tem-
plates; the fact that PSI-BLAST is increasingly inaccurate as
sequence similarity becomes lower and noise in the tem-
plates eventually dominates over signal.

Low-similarity templates
To investigate whether a specialised system can yield
improvements when only low-similarity templates are
available, we re-trained Porter_H twice, with the further
constraint that only templates with at most 30% and 20%
sequence similarity are adopted, i.e. all PDB templates
showing more than 30% (resp. 20%) sequence similarity
to the query are eliminated. We refer to the system with
maximum 30% similarity templates as Porter_H30 and
with maximum 20% similarity templates as Porter_H20.
The constraint imposed on template quality implies that
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many more examples are provided for which no template
or only marginal templates are available. Porter_H30's
performances in the 0–30% similarity range increase and
improve over Porter for all template lengths (see figure 2).
Porter_H30 improves consistently over Porter for
sequence similarity greater than 17%. Porter_H20
improves consistently over Porter for sequence similarity
greater than 13%. Overall, Porter_H30 is not statistically
distinguishable from Porter in the 10–20% similarity
range, while Porter_H20 actually outperforms Porter in
this range. These results suggest that, although noisy, PSI-
BLAST-based templates in the 10–20% similarity region
still retain information that can be sifted out by a machine
learning system, provided that enough examples are avail-
able. This also suggests that more subtle similarity tools
(e.g. [5,32]) are likely to yield better results in marginal/
fold recognition regions if coupled with our predictor. We
are in the process of investigating this further point. An
example of prediction by Porter_H is reported in Figure 3.

Porter_H vs. templates
Table 1 reports the comparison between Porter_H and a
baseline which simply assigns a residue's secondary struc-
ture by copying it from the best template available in the
PDB (i.e. that ranked highest by PSI-BLAST). The results
are measured only on those residues for which templates
exist. Porter_H outperforms the baseline by significant

margins for all template qualities allowed: by 2.1% when
trained on templates with sequence similarity of up to
95%; by 6.1% for similarity of up to 30%; by 9.3% for
similarity of up to 20%.

We also tested different baselines in which, instead of just
the top template, respectively, the top 10 templates (as
ranked by PSI-BLAST) and all the templates are used to
predict the secondary structure of a protein. In both cases
the prediction is obtained as a majority vote among the
templates covering each residue. We tested both an
unweighed vote (i.e. one in which each template counts
the same) and a vote in which each template is weighed
by its sequence similarity to the query, cubed. The latter
weighing scheme is identical to the one used to present
the templates to the network (see Methods section for
details), and we refer to it as baseline_input. In all cases
the predictions are worse than those obtained by only
considering the top template (by at least 2% for the 95%
maximum similarity case, and at least 3% for the 30% and
20% maximum similarity cases), hence at least 4% worse
than Porter_H.

When we consider templates with sequence similarity of
up to 95% and exclude marginal hits (BLAST e-value
greater than 0.01), Porter_H still outperforms the baseline
by a significant margin, although reduced (0.8%). This
continues to be true when the threshold for excluding hits
is lowered, down to 10-40, beyond which the differences
between the best baseline and the predictors become neg-
ligible. Table 4 reports the level of disagreement between

Distribution of secondary structure prediction accuracy as a function of the length of the best hit in PSI-BLAST templatesFigure 2
Distribution of secondary structure prediction accuracy as a 
function of the length of the best hit in PSI-BLAST templates. 
Maximal 30% identity between template and query allowed. 
The blue bars represent predictions using templates, the red 
bars template-less predictions. See text for details.
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Distribution of secondary structure prediction accuracy as a function of sequence similarity to the best hit in PSI-BLAST templatesFigure 1
Distribution of secondary structure prediction accuracy as a 
function of sequence similarity to the best hit in PSI-BLAST 
templates. The blue bars represent predictions using tem-
plates (maximal sequence similarity allowed is 95%), the red 
bars template-less predictions (Porter). See text for details.
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Porter_H and baseline_input, which is the baseline it
agrees most with. Disagreement is measured simply as the
percentage of residues on which Porter_H's and
baseline_input's predictions are different. The overall dis-
agreement is 9.9%, which decreases to 8.6% on residues
for which templates exist with e < 0.01, and grows to over
30% when templates with e < 0.01 are excluded.

These results suggest that combining sequence and struc-
ture information is a better choice than only relying on
templates, i.e. the sequence contains enough information
to resolve at least some of the ambiguity contained in sets
of templates retrieved by sequence similarity.

The distribution of prediction performances as a function
of the quality of the best hit (measured as X-ray resolution
+ R-factor/20) is shown in figure 4. Homology-based pre-
dictions are better for all intervals of quality, but not sur-
prisingly the gains decrease with the decrease in quality of
the templates. Somewhat surprisingly in the case of NMR
templates the gains (but not the overall prediction per-
formances, possibly due to the different distribution of
NMR proteins) are comparable to those obtained with
high quality templates from X-ray crystallography.

We also checked whether the presence of membrane pro-
teins in the sets we use for training and testing has any
influence on the results. In total there are 64 membrane
proteins out of 2171 in the set, covering roughly 5% of all
amino acids. On these proteins Porter_H outperforms
Porter by 5.1% (82.1% correct prediction vs. 77%), less
than on the whole set. Removing membrane proteins
from the set changes the performances of both Porter and

Porter_H by less than 0.1%, and keeps the difference
between the methods statistically unchanged.

Lastly, we tested Porter_H on the EVA common2 set as
available in November 2004, containing 134 proteins. On
this set, a version of Porter retrained from scratch, after
having excluded from its training set all sequences with
more than 25% similarity to any sequence in the set,
achieves 76.8% correct prediction, better by at least 1.9%
than all the other servers evaluated. On the same set, a
similarly retrained Porter_H achieves 81.5% correct pre-
diction when templates with more than 95% sequence
similarity to the query are ignored. In this set for 68 out of
134 sequences the best template is below 30% sequence
similarity and for 44 below 20%.

Solvent Accessibility prediction
Similar results are obtained for solvent accessibility pre-
diction, as shown in figures 5 and 6, and table 2. The fig-
ures and table refer to 4-class solvent accessibility
prediction. The template-less predictor (PaleAle) achieves
53.3% correct 4-class prediction. If the 4 classes are reas-
signed into 2 with a 25% accessibility threshold (simply
by merging the first two classes and the last two classes)
the performance rises to 78.9%. Although comparisons
on different sets are always not entirely fair, this is at least
as good as the most recent 2-class predictors adopting the
same class threshold, e.g. [21] (78.1%), [20] (77.7%),
[38] (78.5%), [18] (76.7%).

Table 3 reports a comparison of PaleAle on the Manesh set
[39], containing 215 proteins, against a number of other
predictors (data from [21]). For this test we retrained

Table 1: Performances of the template-based secondary structure predictor (Porter_H) compared with a baseline predictor which 
copies the secondary structure of the best template (baseline) and with the ab initio secondary structure predictor (Porter). 

maxID baseline Porter_H Porter

95% 86.2% 88.3% 79.6%
30% 77.6% 83.7% 80.2%
20% 73.1% 82.4% 80.5%

Templates up to 95%, 30% and 20% maximum similarity allowed (maxID) for baseline and Porter_H. Performances measured only on residues for 
which a template has been identified. Results in 5-fold cross-validation on the S2171 set (see text for details).

An example of prediction by Porter_H compared to Porter, DSSP assignments, and best templateFigure 3
An example of prediction by Porter_H compared to Porter, DSSP assignments, and best template. Best template sequence 
similarity is 22%. Porter_H correctly identifies the first helix (from the template – strand in Porter), but does not follow the 
template and assigns correctly the second strand (helix in the template).
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PaleAle after having excluded from its training set all
sequences with over 25% sequence similarity to any
sequence in the Manesh set (this reduced the size of the
set from 2171 to 1662 proteins). After retraining, PaleAle
achieves 79.2% correct prediction on the set (52.5% in 4
classes), or at least 1.1% better than any of the other pre-
dictors tested. The template-based predictor (PaleAle_H)
classifies correctly 61.8% of all residues (82.6% for the 2-
class problem), gaining significantly for template identity
above 20%, and slightly underperforming compared to
PaleAle for best template identity below 20%. On the
270,110 residues for which template information is avail-
able, the performance grows to 64.8%. On the Manesh
set, the 2-class, retrained version of PaleAle_H classifies
correctly 86.0% of all residues (68.0% for 4 classes), or
6.8% better than PaleAle (15.5% for 4 classes). Gains and
losses are all of the same sign and of similar magnitude as
in the secondary structure case, counter to the assumption
that solvent accessibility is less clearly conserved than sec-
ondary structure, hence harder to fathom from templates.
Even in the case of solvent accessibility, gains over a base-
line predictor copying the accessibility of the best tem-
plate are large for all levels of maximal sequence similarity
allowed: 3.7% for maximal similarity of 95%; 7.9% for
30%; 9.9% for 20%. In all three cases the template-based
predictor outperforms, on average, its ab initio variant.
For solvent accessibility we also tested different baselines
in which the top 10 templates and all templates found by
PSI-BLAST are considered, both unweighed and weighed
by the cube of their sequence similarity to the query
(baseline_input), as in the case of secondary structure. In
this case, though, instead of a having a majority vote, for
each residue we computed the (weighed or unweighed)
average of the solvent accessibility values from the tem-
plates and then used this average to determine the solvent
accessibility class. As in the secondary structure case, these
baselines yielded lower performances than the one based
on the top template, by at least 1% for the 95% maximum
similarity case, and 2% for both the 30% and 20% maxi-
mum similarity case, or always at least 3% worse than
PaleAle_H. When we focus only on more reliable tem-
plates (PSI-BLAST e-value smaller than 0.01) PaleAle_H
still outperforms all the baselines by significant margins
(at least 1.2%) on the residues covered, and disagrees on
14.4% of residues with its closest baseline
(baseline_input. See Table 4). When we tighten the e-
value threshold to exclude hits from 0.01 down to e < 10-
20, PaleAle_H still significantly outperforms all the base-
lines. Beyond e < 10-20 PaleAle_H's improvements over
the baselines become marginal. As in the case of second-
ary structure, removing membrane proteins from the sets
leaves the results statistically unchanged.

Conclusion
We have developed high-throughput systems for the pre-
diction of protein secondary structure and solvent accessi-
bility, exploiting similarity to proteins of known structure.
These systems, based on machine learning techniques,
greatly outperform their ab initio counterparts when PDB
templates are available, are capable of combining
sequence information and structural information from
multiple templates, and outperform simpler strategies
such as the extraction of the structural properties in ques-
tion from the best available template in the PDB, or from
weighed and unweighed profiles of templates. Moreover,
they are entirely automated, and can be run on multi-
genomic or bioengineering scales. On a small cluster of
machines, hundreds of thousands of protein structural
features may be predicted in days.

What is especially encouraging is that performance gains
are significant even for marginal sequence similarity when
we design specialised systems for this case. This suggests
that our strategy may feed into fold recognition systems,
which currently rely on ab initio secondary structure pre-
dictors. A closed-loop strategy in which the results of fold
recognition searches are fed back into the predictors is
also possible, and is the object of our current investiga-
tion.

All predictive systems are available at the address [1].
Template-based predictions are automatically returned by
the secondary structure prediction server (Porter) and the
solvent accessibility server (PaleAle) when templates
showing more than 20% sequence similarity to the query
are detected. Given the current distribution of queries, this
will yield greatly improved predictions for well over half
of all requests.

Methods
Training set
The data set used in our simulations is extracted from the
December 2003 25% pdb_select list [33]. We assign each
residue's secondary structure and solvent accessibility
using the DSSP program [34]. The relative solvent accessi-
bility of a residue is defined as the accessibility in Å2 as
computed by DSSP, divided by the maximum observed
accessibility for that type of residue. Secondary structure is
mapped from the 8 DSSP classes into three classes as fol-
lows: H, G, I → Helix; E, B → Strand; S, T,. → Coil. Relative
solvent accessibility is mapped into 4 classes where class
thresholds are chosen to be maximally informative, i.e. to
split the set into (roughly) equally numerous classes: [0%,
4%), [4%, 25%), [25%, 50%) and [50%, ∞) exposed.

We remove all sequences for which DSSP does not pro-
duce an output due, for instance, to missing entries (e.g. if
only the Cα trace is present in the PDB file) or format
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(page number not for citation purposes)



BMC Bioinformatics 2007, 8:201 http://www.biomedcentral.com/1471-2105/8/201
errors. After processing by DSSP, this set (S2171) contains
2171 proteins and 344,653 amino acids. All the tests
reported in this paper are run in 5-fold cross validation on
S2171. The 5 folds are of roughly equal sizes, composed
of 434–435 proteins and ranging between 67,345 and
70,098 residues. The datasets are available upon request.

Prediction from a multiple alignment of protein
sequences rather than a single sequence has long been rec-
ognised as a way to improve prediction accuracy for virtu-
ally all protein structural features: secondary structure
[9,10,14,19,22,29,40], solvent accessibility [11,13,15-
18,20,21], beta-sheet pairing [41,42], contact maps [43-
45], etc. We exploit evolutionary information in the form
of frequency profiles compiled from alignments of multi-
ple homologous sequences, extracted from the NR data-
base. Multiple sequence alignments for the S2171 set are
extracted from the NR database as available on March 3
2004 containing over 1.4 million sequences. The database
is first redundancy reduced at a 98% threshold, leading to
a final 1.05 million sequences. The alignments are gener-
ated by three runs of PSI-BLAST [23] with parameters b =
3000 (maximum number of hits), e = 10-3 (expectation of
a random hit) and h = 10-10 (expectation of a random hit
for sequences used to generate the PSSM).

Data sets, training/test folds and multiple alignments are
identical to those used to train and test the ab initio sec-
ondary structure predictor Porter [19].

Template generation
For each of the proteins in S2171 we search for structural
templates in the PDB. We base our search on PDBFIND-
ERII [46] as available on August 22 2005. An obvious
problem arising is that all proteins in the S2171 set are
expected to be in PDB (barring name changes), hence
every protein will have a perfect template. To avoid this,
we exclude from PDBFINDERII every protein that appears
in S2171. We also exclude all entries shorter than 10 resi-
dues, leading to a final 66,350 chains. Because of the PDB-
FINDERII origin, only one chain is present in this set for
NMR entries.

To generate the actual templates for a protein, we run two
rounds of PSI-BLAST against the version of the redun-
dancy-reduced NR database described above, with param-
eters b = 3000, e = 10-3 and h = 10-10. We then run a third
round of PSI-BLAST against the PDB using the PSSM gen-
erated in the first two rounds. In this third round we delib-
erately use a high expectation parameter (e = 10) to
include hits that are beyond the usual Comparative Mod-
elling scope (e < 0.01, at the CASP6 competition [28]). We
further remove from each set of hits thus found all those
with sequence similarity exceeding 95% over the whole
query, to exclude PDB resubmissions of the same struc-
ture at different resolution, other chains in N-mers and
close homologues.

The distribution of sequence similarity of the best tem-
plate, and average template similarity is plotted in figure
7. Roughly 15% of the proteins have no hits at more than
10% sequence similarity. About 20% of all proteins have

Distribution of 4-class (4%, 25% and 50% exposed thresh-olds) solvent accessibility prediction accuracy as a function of sequence similarity to the best hit in PSI-BLAST templatesFigure 5
Distribution of 4-class (4%, 25% and 50% exposed thresh-
olds) solvent accessibility prediction accuracy as a function of 
sequence similarity to the best hit in PSI-BLAST templates. 
The blue bars represent predictions using templates (maxi-
mal sequence similarity allowed is 95%), the red bars tem-
plate-less predictions. See text for details.
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Distribution of secondary structure prediction accuracy as a function of quality of the best hit in PSI-BLAST templatesFigure 4
Distribution of secondary structure prediction accuracy as a 
function of quality of the best hit in PSI-BLAST templates. 
Quality measured as Resolution+Rfactor/20. The blue bars 
represent predictions using templates, the red bars template-
less predictions (Porter). See text for details.
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at least one very high quality (better than 90% similarity)
entry in their template set.

Although the distribution is not uniform, all similarity
intervals are adequately represented: for about 40% of the
proteins no hit is above 30% similarity; for nearly 20% of
the proteins the best hit is in the 30–50% similarity inter-
val. Overall 74,543 residues (21.6% of the set) are not
covered by any template. The average similarity for all
PDB hits for each protein, not surprisingly, is generally
low: for roughly 75% of all proteins in S2171 the average
identity is below 30%.

To test template-based predictions in marginal similarity
conditions we also extract two further template sets from
which all hits are excluded that exceed, respectively, 30%
and 20% sequence similarity. In this case the number of

residues not covered by any template climbs, respectively,
to 148,124 (43% of the total) and 193,921 (56.3%).

Predictive architectures

To learn the mapping between our input space  and

output space  we use two-layered architectures com-
posed of Bidirectional Recurrent Neural Networks
(BRNN)(Also known as 1D-RNN, e.g. in [44]) [10] of the
same length N as the amino acid sequence. Similarly to
[19] we use BRNNs with shortcut connections. In these
BRNNs, connections along the forward and backward
hidden chains span more than 1-residue intervals, creat-
ing shorter paths between inputs and outputs. These net-
works take the form:

where ij (resp. oj) is the input (resp. output) of the network

in position j, and  and  are forward and backward

chains of hidden vectors with . We para-

metrise the output update, forward update and backward
update functions (respectively (O), (F) and (B))
using three two-layered feed-forward neural networks.

Encoding sequence and template information
Input ij associated with the j-th residue contains primary
sequence information and evolutionary information, and
direct structural information derived from PDB templates:

where, assuming that e units are devoted to sequence and
evolutionary information, and t to structural information:
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Table 2: Performances of the template-based 4-class solvent accessibility predictor (PaleAle_H) compared with a baseline 
predictor which copies the solvent accessibility of the best template (baseline) and with the ab initio solvent accessibility predictor 
(PaleAle). 

maxID baseline PaleAle_H PaleAle

95% 61.1% 64.8% 53.8%
30% 49.2% 57.1% 54.3%
20% 45.6% 55.5% 54.4%

Templates up to 95%, 30% and 20% maximum similarity allowed (maxID) for baseline and PaleAle_H. Performances measured only on residues for 
which a template has been identified. Results in 5-fold cross-validation on the S2171 set (see text for details).

Distribution of 4-class (4%, 25% and 50% exposed thresh-olds) solvent accessibility prediction accuracy as a function of quality of the best hit in PSI-BLAST templatesFigure 6
Distribution of 4-class (4%, 25% and 50% exposed thresh-
olds) solvent accessibility prediction accuracy as a function of 
quality of the best hit in PSI-BLAST templates. Quality meas-
ured as Resolution+Rfactor/20. The blue bars represent pre-
dictions using templates, the red bars template-less 
predictions. See text for details.
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and:

Hence ij contains a total of e + t components.

As in [19]e = 25: beside the 20 standard amino acids, B
(aspartic acid or asparagine), U (selenocysteine), X
(unknown), Z (glutamic acid or glutamine) and · (gap)
are considered. The input presented to the networks is the
frequency of each of the 24 non-gap symbols, plus the
overall frequency of gaps in each column of the align-
ment. I.e., if njk is the total number of occurrences of sym-
bol j in column k, and gk the number of gaps in the same
column, the jth input to the networks in position k is:

for j = 1...24, while the 25th input is:

This input coding scheme is richer than simple 20-letter
schemes and has proven effective in [19].

In the case of secondary structure prediction we use t = 10
for representing structural information from the tem-
plates. Hence the total number of inputs for a given resi-
due is e + t = 35. The first 8 structural input units contain
the average 8-class (DSSP style) secondary structure com-
position in the PDB templates, while the last 2 encode the
average quality of the template column. Assume that sp,j is
an 8-component vector encoding the DSSP-assigned

8-class secondary structure of j-th residue in the p-th tem-
plate as follows:

H = (1, 0, 0, 0, 0, 0, 0, 0)

G = (0, 1, 0, 0, 0, 0, 0, 0)

I = (0, 0, 1, 0, 0, 0, 0, 0)

E = (0, 0, 0, 1, 0, 0, 0, 0)

B = (0, 0, 0, 0, 1, 0, 0, 0)

S = (0, 0, 0, 0, 0, 1, 0, 0)

T = (0, 0, 0, 0, 0, 0, 1, 0)

· = (0, 0, 0, 0, 0, 0, 0, 1)

Then, if P is the total number of templates for a protein:

Where wp is the weight attributed to the p-th template. If
the identity between template p and the query is idp and
the quality of a template (measured as X-ray resolution +
R-factor/20, as in [33] – the lower the better) is qs, then it
is:

Taking the cube of the identity between template and
query drastically reduces the contribution of low-similar-
ity templates when good templates are available. For
instance a 90% identity template is weighed two orders of
magnitude more than a 20% one. In preliminary tests
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Table 4: Percentage of residues on which Porter_H and 
PaleAle_H disagree with the template-based part of their 
input (profile of secondary structure/solvent accessibility 
frequency from templates, in which each template is weighed 
by its cubed sequence similarity to the query – see Methods 
section for details). 

Porter_H PaleAle_H

e < 0.01 8.6% 14.4%
e > 0.01 30.8% 21.6%

All 9.9% 21.2%

Results on all residues for which a template exists (All), residues for 
which a template exists with BLAST e-value smaller than 0.01 (e < 
0.01) and all residues for which a template exists after having 
removed templates with BLAST e-value smaller than 0.01 (e > 0.01). 
Results in 5-fold cross-validation on the S2171 set (see text for 
details).

Table 3: Performances of the two-class PaleAle and PaleAle_H 
compared with a number of recent methods on the Manesh 
dataset [39]. 

Method

PaleAle_H 86.0%
PaleAle 79.2%

NETASA [15] 70.3%
[21] 78.1%

PP [47] 78.1%
PredAcc [11] 70.7%

JNET [13] 75.0%
ACCpro [16] 77.2%
SABLE [17] 77.6%

Performances of the various methods from [21]. The class threshold 
is 25% for all methods. Templates up to 95% adopted by PaleAle_H.
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(not shown) this measure performed better than a
number of alternatives.

The final two units of ij encode the weighted average cov-
erage and similarity of a column of the template profile as
follows:

where cp is the coverage of the sequence by template p (i.e.
the fraction of non-gaps in the alignment), and

It is worth noting how both structural information from
templates and the two indices of template quality above
are residue-based. For this reason, the case in which only
templates covering fragments of a protein exist does not
pose a problem for the method – the residues not covered
by templates will simply have the section of the input with
template information blank, and predictions will be
based only on the sequence (and on sequence and tem-
plate information transmitted by the forward and back-
wards memory chains). Template information for solvent
accessibility is encoded similarly to secondary structure,
except that 4 units are adopted to represent average sol-

vent accessibility from PDB-derived templates (4 approx-
imately equal classes). The two units encoding the profile
quality are the same as in the secondary structure case. For
the comparative experiments without templates, exactly
same architectures are adopted, except that the part of the

inputs  representing the template profile is set to zero.

Filtering BRNN
We adopt a second filtering BRNN, similarly to [19]. The
network is trained to predict secondary structures (or sol-
vent accessibilities) given first-layer secondary structure
(resp. accessibility) predictions. The i-th input to this sec-
ond network includes the first-layer predictions in posi-
tion i augmented by first stage predictions averaged over
multiple contiguous windows. That is, if cj1,...cjm are the
outputs in position j of the first stage network correspond-
ing to estimated probabilities of secondary structure or
solvent accessibility j being in class m, the input to the sec-
ond stage network in position j is the array Ij:

where kf = j + f (2w + 1), 2w + 1 is the size of the window
over which first-stage predictions are averaged and 2p + 1
is the number of windows considered. In the tests we use
w = 7 and p = 7, as in [19]. This means that 15 contiguous,
non-overlapping windows of 15 residues each are consid-
ered, i.e. first-stage outputs between position j - 112 and j
+ 112, for a total of 225 contiguous residues, are taken
into account to generate the input to the filtering network
in position j. This input contains a total of 16m real num-
bers: m representing the m-class output of the first stage in
position j; 15m representing the m-class outputs of the
first-stage averaged over each of the 15 windows. m is 3 in
the case of secondary structure prediction and 4 for (4-
class) solvent accessibility prediction.

Training, Ensembling
Five two-stage BRNN models are trained independently
and ensemble averaged to build the final predictor. Differ-
ences among models are introduced by two factors: sto-
chastic elements in the training protocol, such as different
initial weights of the networks and different shuffling of
the examples; different architecture and number of free
parameters of the models. The training strategy is identical
to that adopted for Porter [19]: 1000 epochs of training
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Distribution of best-hit (blue) and average (red) sequence similarity in the PSI-BLAST templates for the S2171 setFigure 7
Distribution of best-hit (blue) and average (red) sequence 
similarity in the PSI-BLAST templates for the S2171 set. Hits 
above 95% sequence similarity excluded.
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are performed for each model; the learning rate is halved
every time we do not observe a reduction of the error for
more than 50 epochs. The size and architecture of the
models, apart from differences caused by the different
number of inputs, is the same as Porter's. The number of
free parameter per model ranges between 5,800 and
8,000. The template-based models are only slightly larger
(on average 7% more free parameters) than the corre-
sponding ab initio ones. Averaging the 5 models' outputs
leads to classification performance improvements
between 1% and 1.5% over single models. Furthermore a
copy of each of the 5 models is saved at regular intervals
(100 epochs) during training. Stochastic elements in the
training protocol (similar to that described in [14]) guar-
antee that differences during training are non-trivial. An
ensemble of a total of 45 such models yields a further
slight improvement over the ensemble of 5 models.
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