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Abstract

Accounting for time‐varying confounding when assessing the causal effects of time‐
varying exposures on survival time is challenging. Standard survival methods that

incorporate time‐varying confounders as covariates generally yield biased effect

estimates. Estimators using weighting by inverse probability of exposure can be

unstable when confounders are highly predictive of exposure or the exposure is

continuous. Structural nested accelerated failure time models (AFTMs) require

artificial recensoring, which can cause estimation difficulties. Here, we introduce

the structural nested cumulative survival time model (SNCSTM). This model

assumes that intervening to set exposure at time t to zero has an additive effect on

the subsequent conditional hazard given exposure and confounder histories when

all subsequent exposures have already been set to zero. We show how to fit it using

standard software for generalized linear models and describe two more efficient,

double robust, closed‐form estimators. All three estimators avoid the artificial

recensoring of AFTMs and the instability of estimators that use weighting by the

inverse probability of exposure. We examine the performance of our estimators

using a simulation study and illustrate their use on data from the UK Cystic Fibrosis

Registry. The SNCSTM is compared with a recently proposed structural nested

cumulative failure time model, and several advantages of the former are identified.
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1 | INTRODUCTION

Observational studies that attempt to assess the effect of a
time‐varying exposure on a survival outcome typically suffer
from time‐varying confounding bias. Such bias is the result
of time‐varying factors that both influence exposure and are
associated with survival, thereby distorting the association

between the two. For example, studies of the effect of
hospital‐acquired pneumonia on time to death (since
hospital admission) in critically ill patients are confounded
by disease severity, because disease severity influences
susceptibility to pneumonia infection and is strongly
associated with mortality (Bekaert et al., 2010). Time‐varying
confounders (eg, disease severity) are often affected by
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earlier exposures (eg, pneumonia infection). This induces
feedback relationships between exposures and confounders
over time that cannot be untangled via traditional survival
analysis regression methods that adjust for time‐varying
covariates, such as a history of exposure and confounders, at
each timepoint (Robins et al., 2000). The reason for this is
twofold. First, such adjustment procedures eliminate the
indirect effects of early exposures on survival that are
mediated through those confounders. For example, it would
be undesirable to eliminate the effects of hospital‐acquired
pneumonia on survival that are mediated through disease
severity, as scientific interest is primarily in the overall effect
of infection. Second, such adjustment procedures are prone
to collider‐stratification biases that can render exposure and
outcome dependent even in the absence of an exposure
effect. See Daniel et al. (2013) for a review of these
difficulties.

Time‐varying confounding has received much attention
in the causal inference literature. For survival time out-
comes, the two main approaches are based on structural
nested accelerated failure time models (AFTMs) (Robins and
Tsiatis, 1991; Robins and Greenland, 1994) and marginal
structural models (MSMs) (Robins et al., 2000). The latter
approach is more popular, because of its greater simplicity
and flexibility. In particular, accounting for noninformative
censoring in MSMs does not, unlike in structural nested
AFTMs, require an “artificial recensoring” procedure in
which originally uncensored subjects may become censored.
Avoiding this recensoring is advantageous, because recen-
soring causes information loss, which can result in poor
estimators and difficulties solving the estimating equations
(Joffe et al., 2012). However, fitting MSMs relies on inverse
weighting by the probability of exposure, which has it own
drawback: estimators prone to large finite‐sample bias and
variance when confounders are highly predictive of the
exposure, or when the exposure is continuous or discrete
with many levels.

More recently, Young et al. (2010) and Picciotto et al.
(2012) proposed a new class of discrete‐time structural
nested cumulative failure time models, which parameterize
the effect of the exposure at each time t on the outcome at
each later time in terms of the ratio of two (possibly)
counterfactual cumulative failure risks at that later time
under exposure regimes that differ only at time t . Their
procedure has the desirable properties of structural nested
AFTMs—viz. by avoiding inverse probability weighting, it
handles continuous exposures without estimators being
subject to large bias and variance, and it allows modeling of
effect modification by time‐varying covariates—while avoid-
ing the need for artificial recensoring.

Here, we use developments by Martinussen et al. (2011)
and Dukes et al. (2019) (hereafter DMTV). The former
showed how to adjust for time‐varying confounding when

the effects of exposure and confounders are parameterized
on the additive hazard scale. They focused on the simple
setting where interest is in estimating the direct effect of a
binary baseline exposure on a survival outcome, that is, the
effect not mediated by a given intermediate variable, and
where there are no baseline confounders. DMTV proposed
an additive hazards model for the effect of a baseline
exposure on survival time conditional on baseline confoun-
ders and derived the efficient score when (as assumed by
Martinussen et al. 2011) the confounders act additively on
the hazard; this additivity assumption is not needed for
consistency of their estimators.

Here, we propose a novel class of semiparametric
structural nested cumulative survival time models
(SNCSTMs), of which the models of Martinussen et al.
(2011) and DMTV are special cases, and propose three
estimators of its parameters. Our model allows baseline and
time‐varying confounders, binary or continuous exposure,
any number of exposure measurement times and the option
of constraining exposure effects to be common at different
times; it does not parameterize the effects of confounders on
the baseline hazard. It also allows investigation of exposure
effect modification by time‐varying factors. The SNCSTM is
closely related to Picciotto et al.’s model, and our estimators
share the forementioned desirable properties of the latter.
The SNCSTM generalizes Picciotto et al.’s model to
continuous time and parameterizes relative survival risks
instead of failure risks. Our approach has several advantages
over that of Picciotto et al. One of our estimators (method 1)
can be calculated using GLM software. Our other two
estimators (methods 2 and 3) are more efficient, double
robust and available in closed form. All three estimators
automatically handle random censoring. Also, because of
being parameterized in continuous time, SNCSTMs can
handle irregular measurement times and allow the inter-
pretation of parameters in terms of hazards.

We define notation and state fundamental assumptions
in Section 2. A simple version of our SNCSTM is introduced
in Section 3. In Section 4, we propose three methods for
estimating its parameters. The general SNCSTM is described
in Section 5. In Section 6, we discuss random censoring. A
simulation study is described in Section 7. Section 8
describes an analysis of data from the UK Cystic Fibrosis
(CF) Registry, looking at the effect of treatment with DNase
on survival in people with CF. We conclude with a
discussion in Section 9.

2 | NOTATION AND
ASSUMPTIONS

Consider a study in which, for each of n subjects, a time‐
varying exposure and vector of possibly time‐varying
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confounders are measured at time zero and at up to K
follow‐up visits. Until Section 5 we assume the follow‐up
times are regular, that is, the same for all individuals, and
(for notational simplicity) are K1, 2, …, , and that all
individuals are administratively censored at time K + 1.
Until Section 6 we assume there is no censoring apart
from this administrative censoring. If visits are regular
but not at times K1, …, , or if administrative censoring
occurs at a time different from K + 1 or not at all, this
can easily be accommodated by rescaling the time
variable within each interval between consecutive visits.

Let Ti denote individual i’s failure time, and Aki and
Lki denote, respectively, his exposure and vector of
confounders measured at time k (k K= 0, …, ). Let

⩾R t I T t( ) = ( )i i be the at‐risk indicator. If individual
i fails before his kth visit, Aki and Lki are defined
as zero. Let ⊤ ⊤A A A L L L¯ = ( , …, ) , ¯ = ( , …, )ki i ki ki i ki0 0 , and

≡A i−1, ∅. The causal ordering of the variables
is ∧ ∧ ∧L A T L A T L A T K{ , , 1, , , 2, …, , , ( + 1)}K K0 0 1 1 ,
where ∧x y means the minimum of x and y.

Define T A( ¯ , 0)i ki as individual i’s (possibly) counter-
factual failure time that would have applied if his
exposures up to the kth visit had been as observed
and his exposures from the k( + 1)th visit onward had
been set to zero by an intervention. We make the
consistency assumption that T T A= ( ¯ , 0)i i ki with prob-
ability one for individuals with ⋯A A= = = 0k i Ki+1, .
Note ⩾T A k( ¯ , 0)i k i−1, if and only if ⩾T A k( ¯ , 0)i li for all
l k K= , …, , that is, intervening on an exposure can only
affect survival after the time of that exposure. It follows
that events ⩾T t{ }i and ⩾T A t{ ( , 0) }i ki are equivalent
when ∈t k k[ , + 1). We assume A L T( ¯ , ¯ , )Ki Ki i (i n= 1, …, )
are i.i.d. and henceforth omit the subscript i unless
needed.

We make the following sequential no unmeasured
confounders assumption (NUC): T A( ¯ , 0)k−1 ⊥⊥Ak
∣ ⩾L T k k K¯ , Ā , ( = 0, …, )k k−1 (Robins, 1986). That is,
among individuals who are still alive (or event‐free) at
time k, the assigned exposure Ak at time k may depend
on Lk̄ and Āk−1, but given these, has no residual
dependence on the remaining lifetime that would apply
if all future exposures were set to zero.

3 | STRUCTURAL NESTED
CUMULATIVE SURVIVAL TIME
MODEL

We first introduce a simple version of the SNCSTM that
does not allow for exposure effect modification. The more
general SNCSTM is described in Section 5.

For each k K= 0, …, , let k be the model defined by
the restriction

⩾ ∣ ⩾
⩾ ∣ ⩾

⊤P T A t A L T k
P T A t A L T k

A v t ψ{ ( ¯ , 0) ¯ , ¯ , }
{ ( ¯ , 0) ¯ , ¯ , }

= exp{− ( ) },k k k

k k k
k k k

−1
(1)

∀ ⩾t k, where ⊤ψ ψ ψ ψ= ( , , …, )k k k k k k K( ) ( +1) ( ) is a
vector of K k− + 1 unknown parameters, and
v t( )k equals ⊤t k( − , 0, …, 0) if ∈t k k[ , + 1), equals

⊤t k(1, − − 1, 0, …, 0) if ∈t k k[ + 1, + 2), and equals
⊤t k(1, 1, − − 2, 0, …, 0) if ∈t k k[ + 2, + 3), and so

forth. So, for any ⩽ ⩽ ⊤k l t l v t ψ< + 1, ( )k k equals
⋯ψ ψ ψ t l+ + + ( − )k k k l k l( ) ( −1) ( ) .

Equation (1) means that among the survivors in the
population at the kth visit time, in the stratum defined by
any given A L( ¯ , ¯ )k k the proportion who survive to a later
time t when exposures from visit k + 1 onward (ie,
A A, …,k K+1 ) have already been set to zero would be
multiplied by ⊤A v t ψexp{ ( ) }k k k if exposure Ak were also
set to zero. Hence, ⊤v t ψ( )k k is the (controlled) direct effect
of Ak on the probability of survival to time t given
survival to visit k, that is, the effect of Ak not mediated
through the later exposures A A, …,k l+1 . For example, if
ψ ψ, …,k k k K( ) ( ) are all positive and A > 0k , then interven-
ing to set A = 0k is beneficial, that is, exposure is
harmful. Conversely, if ψ ψ, …,k k k K( ) ( ) are all negative,
exposure is beneficial. This SNCSTM assumes the direct
effect ⊤v t ψ( )k k is the same for any history A L( ¯ , ¯ )k k−1 . In
Section 5 we extend the SNCSTM to allow the effect to
depend on the history.

By taking logs of each side of Equation (1) and
differentiating with respect to t , it can be shown that
Model k can also be written as

∣ ⩾
∣ ⩾

{ }
{ }

E dN t A L T A t

E dN t A L T A t A ψ dt

( ) ¯ , ¯ , ( ¯ , 0)

= ( ) ¯ , ¯ , ( ¯ , 0) −

A k k k

A k k k k k l

( ¯ ,0) −1

( ¯ ,0) ( )

k

k

−1

(2)

for ∈t l l[ , + 1) (with l k K= , …, ), where N t( )A( ¯ ,0)k⩽I T A t= { ( ¯ , 0) }k is the counting process for T A( ¯ , 0)k .
Equation (2) can be interpreted as follows. In a stratum
defined by A L( ¯ , ¯ )k k and ⩾T k, the hazard of failure at any
time between visits l and l + 1 ( ⩾l k) when A A, …,k l+1
have already been set equal to zero would be reduced by
A ψk k l( ) if Ak were also set to zero.

Note that Model k treats E ∣dN t A L T{ ( ) ¯ , ¯ ,A k k( ¯ ,0)k−1⩾A t( ¯ , 0) }k−1 —which, by NUC, equals E dN t{ ( )A( ¯ ,0)k−1∣ ⩾A L T A t¯ , ¯ , ( ¯ , 0) }k k k−1 −1 —as a totally unspecified “base-
line” hazard, rather than parameterizing its dependence
on Āk−1 and Lk̄. One advantage of this is that the
danger of incompatibility between Models , …, K0 
is avoided. To illustrate this danger, suppose it
were assumed that ⩾E dN t A L T t ϕ t{ ( )| ¯ , ¯ , } = ( ) +1 1 10⊤ϕ t A ϕ t L ψ A( ) + ( ) ¯ +A L1 0 1 ¯ 1 1(1) 10 1

for all ⩾t 1. This,

SEAMAN ET AL. | 3



SEAMAN et al. 475

together with NUC, implies 1 holds. However, it also
implies a restriction on the association between A0 andT ,
a restriction which might conflict with that of 0 . Such
conflict would be the result of there being no coherent
overall model.

4 | ESTIMATION METHODS

In order to estimate ψk l( ), we introduce nuisance
Models k (k K= 0, …, ). Model k is a generalized
linear model (GLM) for Ak given A L¯ , ¯k k−1 and ⩾T k
with ⩾ ⊤g E A A L T k α H{ ( | ¯ , ¯ , )} =k k k k k−1 0 , where αk0 is an
unknown finite‐dimensional parameter and H =k
H A L( ¯ , ¯ )k k k−1 is a known vector function of A L( ¯ , ¯ )k k−1
whose first element equals 1, For example, H =k

⊤ ⊤A L(1, , )k k−1 . The dispersion parameter ϕk is assumed
not to depend on Āk−1 or Lk̄, and g is the canonical
link function. The methods described in Sections 4.1 to
4.3 consistently estimate ψk l( ) when Models k and
k (k K= 0, …, ) are correctly specified. Method 1 can

be applied using standard GLM software. Methods 2
and 3 improve on method 1 by using more efficient
estimators that are closely related to that described by
DMTV in the setting of a single baseline exposure.
Method 3 gives consistent estimation under slightly
weaker conditions than method 2, but is more
computationally intensive.

4.1 | Method 1: Fitting the GLM implied
by Models k and k

Model k states that Ak given A L¯ , ¯k k−1 and ⩾T k obeys a
GLM. Bayes’ rule shows (see Web Appendix A) that
Models , , …,k k K   and NUC together imply that for
any ⩾t k A, k given A L¯ , ¯k k−1 and ⩾T A t( ¯ , 0)k obeys the
same GLM but with the intercept shifted by a function
of t . Specifically, for ⩾t k,

⩾ ⊤ ⊤g E A A L T A t α H α v t{ ( | ¯ , ¯ , ( ¯ , 0) )} = + ( ),k k k k k k k k−1 0

(3)

where ⊤α α α= ( , …, )k k k k K( ) ( ) and α ψ ϕ= −k l k l k( ) ( )
(l k K= , …, ). Our first estimation method for ψk l( )
involves fitting this GLM to estimate αk l( ) and calculating

∕ψ α ϕ= −k l k l k( ) ( ) . We now explain in more detail.
First we estimate ψk k( ) (k K= 0, …, ) as follows. For

∈t k k[ , + 1), events ⩾T A t{ ( ¯ , 0) }k and ⩾T t{ } are
equivalent, and so Equation (3) implies g E A{ ( k

⩾ ⊤A L T t α H α t k| ¯ , ¯ , )} = + ( − )k k k k k k−1 0 ( ) for any ∈t
k k[ , + 1). Hence, a consistent estimate α̂k k( ) of αk k( )
can be obtained as follows. For each of a number (we
used 10) of equally spaced values of t between k and

k + 1 (including k and k + 1), identify the set of
individuals with ⩾T t and, for each of these individuals,
create a copy (a “pseudo‐individual”) with the same
value of A L( ¯ , ¯ )K K and with new random variable
Q equal to t . Fit the GLM g E A A L Q{ ( | ¯ , ¯ , )} =k k k−1⊤α H α Q k+ ( − )k k k k0 ( ) to the resulting set of (up to n10 )
pseudo‐individuals. A consistent estimate of ψk k( ) is

then ∕ψ α ϕˆ = − ˆk k k k k( )
M1

( ) . When ϕk is unknown, it can be
estimated by fitting Model k to those of the original n
individuals with ⩾T k. In the simulation study of Section
7, we also tried using 50 values of t to construct the set of
pseudo‐individuals instead of 10, but found this made
very little difference to the estimates.

Next we estimate ψk k( +1) (k K= 0, …, − 1). When
∈t k k[ + 1, + 2), Equation (3) is g E A A L T{ ( | ¯ , ¯ ,k k k−1

⩾A t( ¯ , 0) )} =k
⊤αk0H +k α +k k( ) αk k( +1) t k( − − 1). If Ti

(Ā , 0)ki were known for all i ψ, k k( +1) could be estimated
just as ψk k( ) was, but it is not. However, as shown in Web
Appendix B, , …,k K  imply that for ⩾t k + 1,

⩾ ⩾
⩾

P T A t A L T A k
E R t w t A L T k

{ ( ¯ , 0) | ¯ , ¯ , ( ¯ , 0) }
= { ( ) ( )| ¯ , ¯ , },

k k k k

k k k (4)

where ∏ ⊤w t A v t ψ( ) = exp{ ( ) }k j k
K

j j j= +1 . That is, within the

population stratum defined by any given value of A L( ¯ , ¯ )k k
and by ⩾T A k( ¯ , 0)k (or equivalently ⩾T k), the propor-
tion of individuals with ⩾T A t( ¯ , 0)k is equal to the
proportion of individuals with ⩾T t after weighting
each individual by w t( )k . Remembering that the first
element of Hk equals one for all individuals, it follows
that a consistent estimate α̂k k( +1) of αk k( +1) can be
obtained by fitting the GLM g E A A L Q{ ( | ¯ , ¯ , )} =k k k−1

⊤αk0
H α Q k+ ( − − 1)k k k( +1) to a set of pseudo‐individuals
constructed as described above but using 10 values of
t between k + 1 and k + 2 (rather than k and k + 1) and
using weights wk Q A ψ Q k( ) = exp{ ( − − 1)}k k k+1 +1( +1) .
The weights w Q( )k depend on ψk k+1( +1), which is
unknown, and so we replace it by its previously obtained
estimate ψ̂k k( )

M1
. A consistent estimate of ψk k( +1) is then

∕ψ α ϕˆ = − ˆk k k k k( +1)
M1

( +1) .
In general, ψk l( ) ( ⩽ ⩽ ⩽k l K0 ) is estimated by

∕ψ α ϕˆ = − ˆk l k l k( )
M1

( ) , where α̂k l( ) is the estimate of αk l( )
obtained by fitting the GLM

⊤g E A A L Q α H α Q l{ ( | ¯ , ¯ , )} = + ( − )k k k k k k l−1 0 ( ) (5)

to a set of pseudo‐individuals constructed using 10 equally
spaced values of t between l and l + 1 and using weights
w Q( )k , with ψj m( ) replaced by ψ̂j m( )

M1
. For later reference, we

denote the fitted value of E A A L Q t( | ¯ , ¯ , = )k k k−1 thus

4 | SEAMAN ET AL.
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obtained as e A L tˆ ( ¯ , ¯ , )k l k k( ) −1 . This is an estimate of

⩾E A A L T t( | ¯ , ¯ , (Ā , 0) )k k k k−1 . Note that ψ̂j m( )
M1

( ⩽k j m<
⩽ l) must be calculated before ψ̂k l( )

M1
. If ϕk is unknown, it is

estimated by fitting Model k to the original individuals
with ⩾T k.

Although this estimation procedure involves weights
w t( )k , these are different from the inverse probability
of exposure weights used to fit MSMs and do not suffer
the same instability that can plague the latter weights.
In particular, if ⋯ψ ψ= = = 0k k k K( ) ( ) , that is, Ak has
no direct effect on survival, then w t( ) = 1k . The variance
of the weights can be reduced by using modified
(or “stabilized”) weights w Q( )*k in place of w Q( )k , where

∑ ⊤{ }w t v t ψ( ) = exp Δ ( )* *k j k
K

j k j j= +1 ( ) and Δ*j k( ) =A −j E
⩾A A L T j( | ¯ , ¯ , )j k k−1 ( j k K= + 1, …, ). This may improve

efficiency, especially when Aj is precisely predicted by
A L( ¯ , ¯ )k k−1 . The ratio ∕w Q w Q( ) ( )*k k depends only on Āk−1
and Lk̄, and as model (5) is conditional on these, α̂k l( )
remains consistent. Since E ⩾A A L T j( | ¯ , ¯ , )j k k−1 ( j k= +

K1, …, ) is unknown, a working model j k( ) is specified
for it and its parameters estimated from the set of
individuals still at risk at time j. Note that j k( ) does not
need to be correctly specified for ψ̂k l( ) to be consistent;
indeed j k( ) need not be compatible with k .

4.2 | Method 2: G‐estimation

The principle underlying the following estimator of
ψk l( ) is that after removing the effects of Ak and later
exposures from the increment in the counting process

⩾N t I T t( ) = ( ), NUC implies that the resulting “blipped
down” increment at any time ⩾t k is independent of Ak
conditional on Āk−1 and Lk̄ and being still at risk.

First estimate ψk k( ) (k K= 0, …, ) by solving unbiased
estimating equation

∫∑ R t t dN t A ψ dt( )Δ ( ){ ( ) − } = 0,
i

n

k

k
i ki i ki k k

=1

+1
( ) (6)

where ⩾t A E A A L T A tΔ ( ) = − ( | ¯ , ¯ , ( ¯ , 0) )k k k k k k−1 . The
expectation ⩾E A A L T A t( | ¯ , ¯ , ( ¯ , 0) )k k k k−1 is unknown,
so we replace it by e A L tˆ ( ¯ , ¯ , )k k k k( ) −1 , obtained exactly as
in method 1. The next paragraph provides a rationale for
Equation (6).

NUC implies that the counting process N t( ) =A( ¯ ,0)k−1⩽I T A t( ( ¯ , 0) )k−1 for T A( ¯ , 0)k−1 is conditionally inde-
pendent of Ak given A L¯ , ¯k k−1 and ⩾T A k( ¯ , 0)k−1 . We do
not observe N t( )A( ¯ ,0)k−1 but Equation (2) relates N t( )A( ¯ ,0)k−1

to N t( )A( ¯ ,0)k , the counting process for T A( ¯ , 0)k , and we do
observe N t( )A( ¯ ,0)k when ∈t k k[ , + 1), because then it
equals ⩽N t I T t( ) = ( ), the counting process for the

observed failure time T . In particular, Equation (2)
implies that, for any ∈t k k[ , + 1) and conditional on
A L( ¯ , ¯ )k k , the expected increment in N t( )A( ¯ ,0)k−1 during
short time interval t t δ( , + ] given ⩾T A t( ¯ , 0)k−1 can be
unbiasedly estimated by the corresponding mean of the
observed increments in N t( ) minus A ψ δk k k( ) among the
survivors at time t . Hence, the adjusted observed
increment N t δ N t A ψ δ( + ) − ( ) − k k k( ) should be un-
correlated with Ak given A L( ¯ , ¯ )k k−1 and ⩾T t.

DMTV derived the semiparametric efficient estimat-
ing equation for ψk k( ) under Model k assuming known
distribution of Ak given A L( ¯ , ¯ )k k−1 and ⩾T k. This
equation involves inverse weighting by the hazard
function; such weighting also features in efficient
estimating equations of other additive hazards models.
In practice, accurate estimation of the hazard function is
difficult and increases the computational complexity of
the procedure, and so this weighting is commonly
omitted by standard fitting procedures for additive
hazards models. Results of DMTV imply (see Web
Appendix C) that if this is done with the semiparametric
efficient equation for ψk k( ) under Model k and if

⩾ ⊤E dN t A L T A t γ H{ ( )| ¯ , ¯ , ( ¯ , 0) } =k k k k k k(Ā ,0) −1 ( )k−1 for all
∈t k k[ , + 1), the result is Equation (6).
To make Equation (6) invariant to additive transfor-

mations of Ak, we replace A ψki k k( ) by k ψΔ ( )ki k k( ).
Since ⩾E A A L T A k( ¯ , ¯ , ( ¯ , 0) )k k k k−1 is a constant given
A L( ¯ , ¯ )k k−1 , this does not affect the unbiasedness of the
estimating equations. Let ψ̂k k( )

M2
denote the resulting

estimator of ψk k( ).
Next estimate ψk k( +1) using estimating equation

∫∑ R t A ψ t k t dN( )exp{ ( − − 1)}Δ ( )[i
n

k
k

i k i k k ki i=1 +1
+2

+1, +1( +1)
t A ψ k ψ dt( ) − { + Δ ( + 1) } ] = 0k i k k ki k k+1, +1( +1) ( +1) . The
unknown ⩾E A A L T A t( | ¯ , ¯ , ( ¯ , 0) )k k k k−1 and ψk k+1( +1)

are replaced by e A L tˆ ( ¯ , ¯ , )k k k k( +1) −1 and ψ̂k k+1( +1)
M2

. The
next paragraph provides a rationale for this estimating
equation.

Again we exploit the conditional independence of
N t( )A( ¯ ,0)k−1 and Ak (NUC) and the relation between
N t( )A( ¯ ,0)k−1 and N t( )A( ¯ ,0)k but now over time interval
k k[ + 1, + 2). An added complication is that N t( )A( ¯ ,0)k is
not observed when t k> + 1. However, we know from
Equation (2) that when ∈t k k[ + 1, + 2) the intensities
of N t( )A( ¯ ,0)k and N t N t( ) = ( )A( ¯ ,0)k+1 differ by A ψk k k+1 +1( +1)
and (as noted in Section 4.1) there are w t( ) =k

A ψ t kexp{ ( − − 1)}k k k+1 +1( +1) times as many individuals
with ⩾T A t( ¯ , 0)k in the population as there are with

⩾T A t( ¯ , 0)k+1 . So, we can unbiasedly estimate the
expected increment in N t( )A( ¯ ,0)k−1 over small interval
t t δ[ , + ) as the weighted mean of the increments in N t( )
minus A ψ A ψ δ( + )k k k k k k+1 +1( +1) ( +1) with weights

A ψ t kexp{ ( − − 1)}k k k+1 +1( +1) . This justifies the above
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estimating equation but with A ψki k k( +1) in place of
k ψΔ ( + 1)ki k k( +1). We use k ψΔ ( + 1)ki k k( +1) instead for

the same reason that we replaced A ψki k k( ) by k ψΔ ( )ki k k( )
in Equation (6).

In general, the consistent estimator ψ̂k l( )
M2

of ψk l( )
( ⩾l k) is obtained by solving

⎪ ⎪

⎪ ⎪
⎡

⎣
⎢
⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦
⎥
⎥

∫∑
∑

R t w t t

dN t A ψ l ψ dt

( ) ( )Δ ( )

× ( ) − + Δ ( ) = 0

i

n

l

l
i ki ki

i
j k

l

ji j l ki k l

=1

+1

= +1
( ) ( )

(7)

with ⩾E A A L T A t( ¯ , ¯ , ( ¯ , 0) )k k k k−1 replaced by
e A L tˆ ( ¯ , ¯ , )k l k k( ) −1 and ψj l( ) ( j k> ) replaced by ψ̂j l( )

M2
; this

requires that ψj m( ) ( ⩽ ⩽k j m l< ) be estimated before

ψk l( ). The estimator ψ̂k l( )
M2

is available in closed form (see
Web Appendix E for formulae when g (.) is the identity or
logistic link function).

In Web Appendix F we prove ψ̂k l( )
M2

is double robust in
the following sense. Let e A L t( ¯ , ¯ , )*k l k k( ) −1 denote the limit
as → ∞n of e A L tˆ ( ¯ , ¯ , )k l k k( ) −1 , and let Model k l( ) ( ⩾l k)
be defined by the restriction E dN t A L T{ ( )| ¯ , ¯ ,A k k( ¯ ,0)k−1

⩾A t( ¯ , 0) } =k−1
⊤γ H e A L k ψ{ − ( ¯ , ¯ , ) }*k l k k l k k k l( ) ( ) −1 ( ) dt ∀t

∈ l l[ , + 1), where γk l( ) are unknown parameters. ψ̂k l( )
M2

is
consistent if (a) , …,k l  , (b) either k or k l( ) , and (c)
for each j k l= + 1, …, , either j or all of , …,j j j l( ) ( ) 
are correctly specified. The term e A L k ψ( ¯ , ¯ , )*k l k k k l( ) −1 ( ) in
Model k l( ) arises because of the use of l ψΔ ( )k k l( ), rather
than A ψk k l( ), in Equation (7) (see proof). Note that
if ψ = 0k l( ) or k is a linear regression, so that
e A L k ψ( ¯ , ̄ , )*k l k k k l( ) −1 ( ) is a linear function of Hk, it can
be omitted. As in method 1, efficiency may be gained by
using stabilized weights w t( )*ki in place of w t( )ki in

Equation (7). Also, to make ψ̂k l( )
M2

invariant to additive
transformations of A A, …,k l+1 , the term A ψji j l( ) can be
replaced by ψΔ*j k i j l( ), ( ).

4.3 | Method 3: Improved G‐estimation

If we use a different estimator e A L tˆ ( ¯ , ¯ , )k l k k( ) −1 of
⩾E A A L T A t( ¯ , ¯ , ( ¯ , 0) )k k k k−1 for the tΔ ( )k and lΔ ( )k

terms in Equation (7), then the estimator solving (7)
remains consistent under a more general version of
Model k l( ) . In methods 1 and 2, e A L tˆ ( ¯ , ¯ , )k l k k( ) −1
is calculated by fitting a single GLM to a set of pseudo‐
individuals, with time since lth visit,Q l− , as a covariate.
In method 3, we instead fit a separate GLM at each time
since the lth visit. That is, for any ⩾t k, we calculate
e A L tˆ ( ¯ , ¯ , )k l k k( ) −1 by fitting the GLM g ∣E A A L{ ( ¯ , ¯ )} =k k k−1

⊤α t H( )k k0 to the set of individuals with ⩾T t, using
weights w t( )k . This set changes only at times t at which
an individual leaves the risk set, and so the GLM needs to
be fitted only at these times. This is the approach taken
by DMTV, who denoted the resulting estimator of ψk k( ) as

“ψ̂TV PS‐DR” and, on the basis of results from a simulation
study, recommended it over three alternatives. As in
method 2, we can use stabilized weights and replace
A ψj j l( ) by ψΔ*j k j l( ) ( ). As shown in Web Appendix F,
method 3 has the same double robustness property as
method 2 but with the parameters γk l( ) in Model k l( ) now
allowed to be a function of t l− .

4.4 | Constraining exposure effects

In some applications, it may be desirable to impose
the constraint that ψ ψ=k k m k k m( + ) ′( ′+ ) for all k k m, ′, , that
is, the effect of exposure measured at one visit k
on the hazard m visits later is the same for all k.
This reduces the number of parameters and, as we see
in Section 7, increases the precision of their estimates.
In Web Appendix G we explain how estimation
may be performed under this constraint. See Vansteelandt
and Sjolander (2016) for how to impose other constraints.

5 | THE GENERAL SNCSTM

In this section, we extend the SNCSTM to allow visit
times to be irregular, that is, to vary from one individual
to another, and effect modification, that is, the effect of
exposure on survival to depend on the exposure and
confounder histories.

Let Ski denote the time of individual i’s kth follow‐up
visit (k K= 1, …, ), and let S = 0i0 (i n= 1, …, ) and S ̄ =i

⊤S S( , …, )i Ki1 . Until now, we have assumed ∀S k i=ki .
We assume visit times S ̄ are planned or randomly chosen
at baseline using only baseline confounder information
L0, and we modify NUC to be ⊥⊥T A( ¯ , 0)k−1

⩾A L A S T S k K| ¯ , ¯ , ¯, ( = 0, …, )k k k k−1 . Also, let SK i+1, de-
note an administrative censoring time common to all
individuals (until now, we assumed S K= + 1K i+1, ). If
there is no such time, let ∞S =K i+1, . To allow effect
modification, we define ⊤ ⊤Z Z= (1, )k l k l( ) ( ) , where Zk l( ) is a
known (possibly vector) function of A L S( ¯ , ¯ , ¯)k k−1 (“int”
stands for “interactions”), and let ⊤ ⊤ ⊤Z Z Z= ( , …, )k k k k K( ) ( ) .

For each k K= 0, …, , let k be the model defined by
the restriction

⩾ ⩾
⩾ ⩾

⊤

P T A t A L S T S
P T A t A L S T S

A v t Z S ψ

{ ( ¯ , 0) | ¯ , ¯ , ¯, }
{ ( ¯ , 0) | ¯ , ¯ , ¯, }
= exp{− ( , , ¯) },

k k k k

k k k k

k k k k

−1

(8)
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where v t Z S( , , )̄k k equals ⊤ ⊤t S Z(( − ) , 0, …, 0)k k k( ) if ∈t
S S[ , )k k+1 , equals ⊤ ⊤ ⊤S S Z t S Z(( − ) , ( − ) , 0, …, 0)k k k k k k k+1 ( ) +1 ( +1)

if ∈t S S[ , )k k+1 +2 , and equals ⊤S S Z(( − ) ,k k k k+1 ( ) S S( − )k k+2 +1
⊤Z ,k k( +1)

⊤ ⊤t S Z( − ) , 0, …, 0)k k k+2 ( +2) if ∈t S S[ , )k k+2 +3 , and
so forth. If S k=k and Z = 1k l( ) , Equation (8) reduces to
Equation (1). Model k can also be written
as ⩾E dN t A L S T A t E dN{ ( )| ¯ , ¯ , ¯, ( ¯ , 0) } = {A k k k A( ¯ ,0) −1 ( ¯ ,0)k k−1

⩾ ⊤t A L S T A t A ψ Z dt( )| ¯ , ¯ , ¯, ( ¯ , 0) } −k k k k k l k l( ) ( ) for ∈t
S S[ , )l l+1 .

The modifications to methods 1 and 2 needed to fit the
general SNCSTM are simple (see Web Appendix D).
Modifying method 3 is simple when visit times are
regular; it is possible for irregular visit times but is fiddly.
In the simulation study reported in Section 7 we found
little benefit from method 3 relative to method 2 when
visit times were regular, and so did not implement it for
irregular times.

6 | CENSORING

We now allow for censoring before the administrative
censoring time. Let Ci and T̃i denote individual i’s censoring
and failure times, respectively. Redefine Ti and N t( )i as

∧T T C= ˜i i i and ⩽N t I T t T C( ) = ( , < )i i i i ; R t( )i is un-
changed except that Ti has this new meaning. With these
changes, methods 1 to 3 remain valid, provided two further
conditions hold (Vansteelandt and Sjolander, 2016). First, the
censoring hazard does not depend on the exact failure time
or future exposures or confounders. That is, the counting
process, ⩽N t I C t( ) = ( )C , for the censoring time satisfies

⩾ ∀⌊ ⌋ ⌊ ⌋ ⌊ ⌋ ⌊ ⌋{ }E dN t C t A L S T t T λ t A L S t( )| , ¯ , ¯ , ¯, ˜ > , ˜ = ( , ¯ , ¯ , ¯)C T T t t˜ ˜ ,
where ⌊ ⌋Ā t and ⌊ ⌋L̄ t are the exposure and confounder
histories up to time t and ⌊ ⌋ ⌊ ⌋λ t A L S( , ¯ , ¯ , ¯)t t is some function
only of ⌊ ⌋ ⌊ ⌋t A L S( , ¯ , ¯ , ¯)t t . The second condition, which
can be weakened by using censoring weights (see Web
Appendix H), is that ⌊ ⌋ ⌊ ⌋λ t A L S λ t L S( , ¯ , ¯ , ¯) = ( , , ¯)t t 0 , so
censoring depends only on baseline confounders.

7 | SIMULATION STUDY

We used a simulation study to investigate the bias
and efficiency of the methods. There were K + 1 = 4
visits and two time‐dependent confounders (ie, dim
L( ) = 2k ). These and the exposure were generat-
ed as: ⊤L N A N L~ ((0, 0), Σ), ~ (3 + (0.2, 0.1) , 0.9 ),0 0 0

2

⊤L N L A~ (Ω + (0.1, 0.05) , Σ)k k k−1 −1 and Ak N~ (3+
⩾⊤L k(0.1, 0.05) , 0.7 ) ( 1)k

2 , where Σ = ⎡
⎣⎢

⎤
⎦⎥

0.5 0.2
0.2 0.5 and

⎡
⎣⎢

⎤
⎦⎥Ω = 0.2 0.2

0.1 0.1 . The hazard of failure during

the interval between the kth and k( + 1)th

visits was 0.34 + ⊤(0.03, 0.03) L −k A0.04 −k A0.0145 k−1I
k( ⩾ 1) − A0.0055 k−2I ⩾k( 2) A− 0.00245 k−3I k( = 3). For

this data‐generating mechanism, k (k K= 0, …, )
is correctly specified with no effect modification (ie,
Z = 1k l( ) ) and the true exposure effects are ψ = −0.04,k k( )
ψ ψ= −0.01, = −0.004k k k k( +1) ( +2) and ψ = −0.002k k( +3) .

We considered three scenarios: two with regular and
one with irregular visit times. For regular visits, S k=ik .
For irregular visits, inter‐visit times S S−k i ki+1, were
independently uniformly distributed on [0.5, 1.5]. There
was administrative censoring at time 4. In one of the
regular visit scenarios, there was no random censoring. In
the other, and in the irregular visit scenario, there was an
exponentially distributed random censoring time with
mean 5. For the regular visit scenario without random
censoring, the expected percentages of individuals observed
to fail between visits 0 and 1, 1 and 2, 2 and 3, and between
visit 3 and time 4 were 20%, 14%, 11%, and 9%, respectively.
For the regular and irregular visit scenarios with random
censoring, these percentages were 18%, 10%, 6%, and 4%,
and the corresponding expected percentages of individuals
censored were 16%, 11%, 8%, and 5%. For each scenario, we
generated 1000 data sets, each with n = 1000 individuals.
Estimation was done with and without the constraint,
which is true here, that ψ ψ=k k m k k m( + ) ′( ′+ ).

Tables 1 and 2 show for the regular visit scenario
without and with random censoring, respectively, the
mean estimates and standard errors (SEs) for methods 1
to 3. Results for the irregular visit scenario are in Web
Appendix L. We see that all the estimators are
approximately unbiased, though there is some bias for
ψ ψ,0(2) 0(3), and ψ1(3), parameters for which there is
relatively little information in the data. Comparing SEs,
we see that methods 2 and 3 give very similar results and
that these methods are more efficient than method 1.
This difference in efficiency is much greater when there
is random censoring (it is even greater when visit times
are irregular—see Web Appendix L). This may be
because method 1, unlike 2 and 3, does not distinguish
between failure and censoring (or occurrence of next
visit). Although methods 2 and 3 use fitted values from
the same GLM that is used in method 1, the estimating
equations for methods 2 and 3 involve increments dN t( ),
which equal one only when a failure occurs. For methods
1 and 2, coverage of 95% bootstrap confidence intervals
(using 1000 bootstraps) was close to 95% (see Table 3).
Coverage was not evaluated for method 3, as it is
computationally intensive to bootstrap this method for
1000 simulated data sets. Imposing the constraint that
ψ ψ=k k m k k m( + ) ′( ′+ ) reduced SEs, as expected.

In this simulation study, censoring times are inde-
pendent of exposures and confounders, and so censoring
weights (Section 6) are not required for consistent

SEAMAN ET AL. | 7



SEAMAN et al. 479

estimation of the ψk l( )’s. However, applying method 1
with censoring weights improved its efficiency (see
method 1cw in Tables 1 and 2), probably because chance
associations between exposures and censoring events are
reduced in the weighted sample. Coverage of bootstrap
confidence intervals (Table 3) was close to 95% for most
parameters, but there was overcoverage for some para-
meters. Using censoring weights had no effect on the
efficiency of method 2.

Web Appendix L shows results for n = 250 or for a
shorter follow‐up time with times between visits divided
by four and administrative censoring at time 1 (and so
fewer failures). These are qualitatively similar to the
results in Tables 1 and 2, but with the relative inefficiency
of method 1 being even more marked in the scenarios
with shorter follow‐up time. Web Appendix L also
describes a simulation study that demonstrates the
double robustness of methods 2 and 3.

8 | ANALYSIS OF CYSTIC
FIBROSIS REGISTRY DATA

The UK CF Registry records health data on nearly all
people with CF in the UK at designated approximately
annual visits (Taylor‐Robinson et al., 2018). To illustrate
the use of the SNCSTM, we used data on 2386 individuals
observed during 2008 to 2016 to investigate the causal
effect of the drug DNase on survival. DNase has been
found to have a beneficial effect on lung function,
including using Registry data (Newsome et al., 2019), but
its effect on survival has not been studied. Baseline visit

was defined as an individual’s first visit during 2008 to
2015, and there were up to K = 8 follow‐up visits. The
(irregular) visit times were defined as years after baseline
visit; the median time between visits was 1.00 years
(interquartile range 0.93–1.07). Individuals were defined as
“treated” if they had used DNase since the previous visit
and “untreated” otherwise. Individuals treated at a visit
prior to their baseline visit were excluded, as were visits
prior to age 18. Administrative censoring was applied at
the end of 2016 and nonadministrative censoring when an
individual had a transplant or had not been seen for
18 months. The percentage of treated patients increased
from 14% at the baseline visit to 52% at visit 8, and most
patients who began using DNase continued to use it. There
were 137 deaths during follow‐up and 653 nonadminis-
trative censorings (including 36 transplants). Of those who
died, 74 (63) were treated (untreated) at the time of death.
Total follow‐up was 12 380 person‐years (py), and death
rates while treated and untreated were, respectively, 0.019
(74/3930) and 0.0075 (63/8450) py−1. The ratio of the
probabilities of surviving for one year while treated and
untreated is thus ∕0.981 0.9925 = 0.989. However, this
may be due to confounding: sicker patients being more
likely to receive treatment.

We estimated the effect on survival of delaying
initiation of treatment by one year. To do this, we (re)
defined Ak as A = 0k for those treated at visit k, and
A = 1k for those untreated. Now ψexp(− )k k( ) represents
the multiplicative causal effect of intervening to start
treatment at visit k rather than at visit k + 1 on the
probability of surviving for at least one year after visit k,
among patients who survive to, and are untreated at, visit

TABLE 1 Means (×10) and SEs (×10) of parameter estimates when n = 1000, visits are regular and the only censoring is administrative

Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)
True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

Means
1 No 0.393 0.098 0.031 0.025 0.391 0.096 0.034 0.403 0.098 0.383
2 No 0.396 0.100 0.032 0.024 0.394 0.097 0.033 0.408 0.100 0.392
3 No 0.395 0.100 0.031 0.023 0.392 0.096 0.033 0.406 0.099 0.388
P No 0.394 0.107 0.030 0.021 0.394 0.094 0.049 0.408 0.102 0.387
1 Yes 0.386 0.096 0.032 0.024 0.386 0.096 0.032 0.386 0.096 0.386
2 Yes 0.397 0.099 0.032 0.023 0.397 0.099 0.032 0.397 0.099 0.397
3 Yes 0.395 0.098 0.032 0.023 0.395 0.098 0.032 0.395 0.098 0.395
P Yes 0.394 0.104 0.030 0.029 0.394 0.104 0.030 0.394 0.104 0.394

SEs
1 No 0.177 0.187 0.199 0.218 0.243 0.254 0.260 0.251 0.273 0.272
2 No 0.169 0.180 0.191 0.204 0.237 0.246 0.253 0.240 0.262 0.267
3 No 0.169 0.179 0.190 0.204 0.236 0.245 0.252 0.239 0.260 0.265
P No 0.196 0.290 0.349 0.397 0.265 0.376 0.452 0.270 0.384 0.300
1 Yes 0.113 0.131 0.158 0.217 0.113 0.131 0.158 0.113 0.131 0.113
2 Yes 0.109 0.129 0.151 0.203 0.109 0.129 0.151 0.109 0.129 0.109
3 Yes 0.109 0.128 0.150 0.203 0.109 0.128 0.150 0.109 0.128 0.109
P Yes 0.126 0.206 0.306 0.494 0.126 0.206 0.306 0.126 0.206 0.126

Note: “Mtd” is method (“P” is Picciotto et al.’s method—see Section 9) and “Con” is whether constraint ψ ψ=k k m k k m( + ) ′( ′+ ) is imposed.
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k and conditional on confounder history Lk̄. More
generally, ∑( )ψexp − l k

k m
k l=

+ −1
( ) is the effect on the prob-

ability of surviving at least m years after visit k if visits
are exactly annual. We imposed the constraint
ψ ψ=k k m k k m( + ) ′( ′+ ). (Potential) confounders at visit k were
baseline variables sex, age, and genotype class (low, high,
and not assigned), and time‐varying variables FEV1%, body
mass index, days of IV antibiotic use, and binary indicators
for four infections (Pseudomonas aeruginosa, Staphylococ-
cus aureus, Burkholderia cepacia complex, and Aspergillus),
CF‐related diabetes, smoking, and use of other mucoactive
treatments and oxygen therapy. The same variables (and
treatment) were included in models for the inverse
probability of censoring weights.

Figure 1A shows estimates of ∑( )ψexp − l k
k m

k l=
+ −1

( )
from method 2. These suggest that starting treatment
now rather than waiting may cause a small decrease
in the probability of survival, at least for the first 5
years: ∑( )ψexp − = 0.997l k

k m
k l=

+ −1
( ) , 0.996, 0.997, 0.994,

and 0.988 for m = 1, …, 5, respectively. However, the
confidence intervals (obtained by bootstrapping) in-
clude 1, that is, no treatment effect. This lack of a
significant treatment effect may be because we have
focused on a subset of the population (adults not
previously treated with DNase) and/or because there
are unmeasured confounders. As expected, method 1
was very inefficient in this situation of irregular visits
and substantial censoring. The confidence intervals

TABLE 2 Means (×10) and SEs (×10) of parameter estimates when n = 1000, visits are regular and censoring is random

Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)
True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

Means
1 No 0.394 0.108 0.021 0.054 0.396 0.105 0.055 0.403 0.111 0.383
1cw No 0.396 0.102 0.020 0.054 0.393 0.096 0.054 0.408 0.097 0.383
2 No 0.396 0.104 0.036 0.033 0.399 0.096 0.038 0.411 0.098 0.393
3 No 0.396 0.103 0.036 0.033 0.396 0.095 0.038 0.407 0.096 0.385
P No 0.397 0.117 0.024 0.050 0.399 0.095 0.078 0.405 0.117 0.390
1 Yes 0.391 0.106 0.031 0.053 0.391 0.106 0.031 0.391 0.106 0.391
1cw Yes 0.392 0.099 0.031 0.054 0.392 0.099 0.031 0.392 0.099 0.392
2 Yes 0.398 0.099 0.037 0.032 0.398 0.099 0.037 0.398 0.099 0.398
3 Yes 0.396 0.099 0.037 0.032 0.396 0.099 0.037 0.396 0.099 0.396
P Yes 0.395 0.108 0.035 0.051 0.395 0.108 0.035 0.395 0.108 0.395

SEs
1 No 0.265 0.313 0.372 0.467 0.400 0.483 0.569 0.462 0.563 0.577
1cw No 0.201 0.234 0.373 0.469 0.298 0.346 0.572 0.348 0.424 0.406
2 No 0.180 0.211 0.252 0.304 0.276 0.313 0.380 0.317 0.385 0.373
3 No 0.180 0.211 0.251 0.303 0.275 0.310 0.375 0.314 0.380 0.367
P No 0.219 0.389 0.571 0.728 0.334 0.557 0.855 0.385 0.652 0.457
1 Yes 0.186 0.241 0.311 0.463 0.186 0.241 0.311 0.186 0.241 0.186
1cw Yes 0.140 0.179 0.313 0.465 0.140 0.179 0.313 0.140 0.179 0.140
2 Yes 0.130 0.162 0.211 0.303 0.130 0.162 0.211 0.130 0.162 0.130
3 Yes 0.130 0.161 0.210 0.301 0.130 0.161 0.210 0.130 0.161 0.130
P Yes 0.157 0.282 0.475 0.802 0.157 0.282 0.475 0.157 0.282 0.157

Note: “Mtd” is method (“1cw” is method 1 with censoring weights; ‘P’ is Picciotto et al.’s method—see Section 9) and ‘Con’ is whether constraint
ψ ψ=k k m k k m( + ) ′( ′+ ) is imposed.

TABLE 3 Coverage (%) of 95% bootstrap confidence intervals for methods 1, 2, and 1cw (ie, method 1 with censoring weights) when
n= 1000, visits are regular, either there is only administrative censoring or there is random censoring, and the constraint ψ ψ=k k m k k m( + ) ′( ′+ )
is not imposed

Mtd ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)
No censoring

1 96.0 96.0 95.5 94.7 94.4 95.5 96.6 95.4 95.7 94.5
2 96.5 96.4 95.4 95.7 94.9 95.6 96.5 96.0 95.8 94.7

Random censoring
1 95.0 95.6 96.4 94.8 95.3 95.5 95.9 95.6 96.0 95.4
1cw 96.5 96.8 96.6 95.2 95.9 97.9 95.9 97.1 97.8 97.7
2 95.7 95.7 95.9 96.1 94.9 95.9 96.7 95.9 96.6 96.1
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were between 4 and 9 times wider than those from
method 2.

For illustration, we also fitted an SNCSTM with an
interaction between treatment and FEV1%. Figure 1B to
1D shows the estimated ratios of survival probabilities for
three values of FEV1%: 40, 75, and 100 (the 10th, 50th,
and 90th centiles of the distribution at baseline). Figure
1D suggests the ratio may actually be greater than 1 for
FEV1%=100, that is, starting treatment now may be better
than waiting for patients with high FEV1%. However, the
interaction terms are not significant.

9 | DISCUSSION

One advantage of SNCSTMs is that, in contrast to MSMs,
they can cope well with situations where the inverse
probabilities of exposure are highly variable. Indeed, they
can even be used when the so‐called experimental treatment

assignment assumption is violated, that is, when some
individuals are, on the basis of their time‐varying covariate
information, excluded from receiving particular exposure
levels. For these individuals, tΔ ( ) = 0i , meaning they do not
contribute to the estimating functions of methods 1 to 3.

Another advantage of SNCSTMs is that they can be
used to investigate time‐varying modification of exposure
effects on survival time. Although it is, in principle,
possible to do this using structural nested AFTMs,
estimation difficulties caused by artificial recensoring
mean that such models are usually kept simple and
interactions are not explored.

The SNCSTM can also be used to estimate the
counterfactual exposure‐free survivor function, that is,

⩾P T t{ (0) }, as ∑ ∏ ⊤n R t A v t Z S ψ( ) exp{ ( , , ̄ ) }i
n

i j
K

ji j ji i j
−1

=1 =0 .
This is because Equations (4) and (8) imply

⩾ ∏ ⊤P T t E R t A v t Z S ψ{ (0) } = [ ( ) exp{ ( , , ¯) }]j
K

j j j j=0 . If there
is censoring before time t R t, ( )i should be inversely
weighted by an estimate of ⩾ ∣ ⌊ ⌋ ⌊ ⌋P C t A L S( ¯ , ¯ , ¯ )i t i t i i .

(A) (B)

(D)(C)

FIGURE 1 Estimates of the ratio of the survival probabilities when treatment is initiated immediately compared to initiation being
delayed by one year. A: from the model with no interaction. B, C and D: from the model with interaction between treatment and FEV%1
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A limitation is that, like other additive hazards models,
the SNCSTM does not constrain hazards to be nonnegative,
and so does not exclude survival probabilities greater than
one. Similarly, Picciotto et al.’s (2012) structural nested
cumulative failure time model does not exclude failure
probabilities greater than one.

Method 1 appears to be less efficient than methods 2
and 3 but has the appeal that it can be applied using
standard GLM software. In our simulation study, the
efficiency loss was fairly small when the only censoring
was administrative and visit times were regular. This
method became much less competitive, however, when
there was random censoring, and even more so when
visit times were irregular. By not distinguishing between
failure and censoring, method 1 may also be more
sensitive than methods 2 and 3 to violation of the
assumption that ⌊ ⌋ ⌊ ⌋λ t A L S λ t L S( , ¯ , ¯ , ¯) = ( , , ¯)t t 0 . Of the
three, method 3 gives consistent estimation under the
weakest assumptions. However, it needs more computa-
tion than methods 1 and 2, especially when visit times are
irregular and the exposure is binary. In our simulation
study, methods 2 and 3 performed similarly, and so the
theoretical advantage of method 3 may not be worth the
extra computation. An R function for implementing our
methods, with examples, is described in Web Appendix I.

DMTV discuss the close connection between their
model for a point exposure (which is equivalent to the
SNCSTM with K = 0) and Picciotto et al.’s (2012)
cumulative failure time model. Although the latter is a
discrete‐time model for the probability of failure, it is easy
to finely discretize time so as to approximate continuous
time and (as Picciotto et al. note) to reformulate it as a
model for the probability of survival. As DMTV explain, a
drawback of Picciotto et al.’s method is the difficulty of
deriving the efficient estimating equation. This difficulty
arises because their class of estimating functions uses
correlated survival indicators. By instead using indepen-
dent increments of a counting process, DMTV were able to
derive the efficient estimating function. Methods 2 and 3
are extensions to time‐varying exposures of DMTV’s
recommended method, and are, therefore, expected also
to be more efficient than Picciotto et al.’s method. In Web
Appendix J we elaborate on DMTV’s discussion of Picciotto
et al.’s model and reformulate it as a model for the
probability of survival. Tables 1 and 2 show mean estimates
and SEs for the resulting Picciotto et al. estimator
(described in Web Appendix J and denoted “Method P”
in tables). The SEs are larger than those of methods 2 and
3, suggesting methods 2 and 3 are indeed more efficient.
Methods 2 and 3 also have the advantages of using closed‐
form estimators, handling random censoring automatically
(because estimating functions are framed in terms of
increments, which are observable up to the time of

censoring), and being double robust. Picciotto et al. use
an iterative Nelder‐Mead algorithm, employ inverse prob-
ability of censoring weighting to handle random censoring,
even when this censoring is completely at random, and
their estimator is not double robust.

In Web Appendix K we outline how the SNCSTM can
handle competing risks.
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