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Abstract

DNA methylation and demethylation are opposing processes that when in balance create
stable patterns of epigenetic memory. The control of DNA methylation pattern formation by
replication dependent and independent demethylation processes has been suggested to
be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have
been proposed suggesting that 5hmC influences either replication dependent maintenance
of DNA methylation or replication independent processes of active demethylation. Using
high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the
amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethyla-
tion in mouse ESCs. We develop an extended hidden Markov model capable of accurately
describing the regional contribution of 5hmC to demethylation dynamics. Our analysis
shows that 5hmC has a strong impact on replication dependent demethylation, mainly by
impairing methylation maintenance.

Author Summary

Oxidation of 5mC by Ten-eleven translocation (Tet) enzymes leads to the formation of
5hmC and other higher oxidized forms in the DNA. Several findings indicate that oxida-
tion induces demethylation processes, but the mechanistic contribution of 5hmC to this
process remains unclear. Using an innovative combination of 5ShmC detection chemistry
and high resolution sequencing, we generate data that can be used for a novel hidden Mar-
kov modeling approach. This new model for the first time incorporates 5hmC dynamics
and allows to test certain scenarios of demethylation mechanisms. Our findings support
the conclusion that 5mC oxidation compromises the copying of DNA methylation pat-
terns across generations in ES-cells.
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Introduction

DNA methylation is an epigenetic modification essential for the regulation of genome stability
and genome function [1, 2]. During development the distribution of DNA methylation is
under strict control to maintain a temporal and cell type specific persistence of epigenetic
information [3]. The methylation of DNA in mammals is restricted to the C-5 position of cyto-
sine and is predominantly found in a CpG sequence context [4, 5].

Our current knowledge suggests that DNA methylation patterns (5mC) are mainly estab-
lished by DNA methyltransferases Dnmt3a and Dnmt3b [3, 6]. The palindromic nature of a
CpG sequence in which 5mC occurs allows a recognition of the 5mC hemimethylated state
after semi-conservative replication and a copying of the parental methylation pattern to the
newly synthesized DNA strand (see Fig 1). A series of experiments revealed that Dnmt1 in con-
junction with Uhrfl are responsible for this copying also referred to as maintenance methyla-
tion. Dnmt1 and Uhrfl have a high preference for binding to hemimethylated CpG substrates
[7-9]. Together they assure the maintenance symmetric CpG methylation patterns after each
round of replication.

In contrast to Dnmtl, Dnmt3a and Dnmt3b act on hemi- as well as unmethylated CpGs
and their activity is not coupled to DNA replication. Both enzymes are highly regulated and
regarded as the main enzymes to establish new methylation patterns and are therefore classi-
fied as de novo DNA methyltransferases. However, recent data shows that Dnmt1 may also de
novo methylate unmethylated dyads and that Dnmt3a and Dnmt3Db are also involved in rees-
tablishing (thus “maintaining”) complete methylation patterns at certain loci [10]. In sum-
mary, the persistence of methylation patterns is controlled by a coordinated action of de novo
and maintenance functions of all three enzymes.

Besides the establishment and the persistence of methylation its removal is also of great bio-
logical importance. Demethylation events can occur on a local scale in case of individual gene
activation but also on a global genome wide level like in the early zygote and the germ line,
where genomes are reprogrammed for new developmental functions [11, 12]. In both cases
demethylation can be achieved either by an active mechanism (direct removal), a passive repli-
cation-dependent loss or a combination of both.

Recent findings suggest that the oxidation of 5mC modulates active and passive demethyla-
tion processes. 5-hydroxymethyl cytosine (5hmC) is generated by oxidation of 5mC in an
enzymatic reaction catalyzed by the oxoglutarate- and Fe(ii)-dependent ten-eleven trans-loca-
tion dioxygenases (Tetl, Tet2, and Tet3) [13]. Tet enzymes also catalyze further oxidations to
5-formylcytosine (5fC) and to 5-carboxycytosine (5caC), which have been shown to promote
processes of active demethylation [14-16]. Still 5ShmC is the most prevalent oxidation type and
widely discussed to having an influence on DNA methylation pattern stability in dividing cells.
5hmC not only alters the chemical properties but also the biological recognition of the base.
Dnmtl binds to 5hmC with a much lower efficiency than to 5mC. This may impair the replica-
tion dependent copying of 5mC [17].

In mouse ES cells (mESCs), in the early mouse embryo and in the early germ cells DNA
demethylation stability is influenced by the conversion of 5mC into 5ShmC. Disturbances or
depletion of Tet enzymes in these phases result in massive changes of 5ShmC and lead to devel-
opmental consequences [18-20]. These findings indicate that the controlled alteration of DNA
methylation patterns across DNA replications is dependent on 5ShmC. However, the underly-
ing mechanisms are still under debate. Mouse ESCs are a well established system to study these
effects as they rapidly lose DNA methylation on a genome wide scale when the cells are trans-
ferred from conventional serum medium containing LIF (primed state) to a synthetic 2i
medium [21, 22]. This loss of 5mC is coupled to a temporary gain of 5hmC. In our study we
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5mC to 5hmC may interfere with the maintenance machinery causing a (partial) loss of CpG methylation after DNA replication. DNA strands are
indicated by lines whereas the CpG are shown as colored circles.
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follow the dynamic of DNA demethylation in mESCs over time and DNA replications using a
novel combination of hairpin sequencing with bisulfite sequencing (BS) and oxidative bisulfite
sequencing (0xBS). This method allows us to determine the methylation status of both comple-
mentary DNA strands at individual chromosomes and the status of 5hmC levels at given time
points [10, 23, 24].

We propose a stochastic model that describes the evolution of both methylation and
hydroxylation patterns over time. Our model allows that methylation can be lost due to cell
replication and methyl groups can be added due to either maintenance or de novo enzyme
activity [10, 25]. In addition, we assume that all methylated sites can be hydroxylated.

Based on these assumptions we define a hidden Markov model (HMM) for each data set
and construct likelihood functions on the basis of the two sequencing methods. The combina-
tion of the two likelihoods allows us to derive estimations for the levels of (hydroxy-)methyla-
tion based on observations at four different time points. Finally, we determine unknown
parameters of the model, i.e., methylation and hydroxylation efficiencies as well as the initial

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004905 May 25, 2016 3/16



©PLOS

COMPUTATIONAL

BIOLOGY

The Influence of Hydroxylation on Maintaining CpG Methylation Patterns

distribution of the hidden states. Despite its simplicity, the model accurately predicts the evolu-
tion of the (hydroxy-)methylation patterns and allows us to test different assumptions about
the activities of the involved enzymes.

Methods
Hairpin oxidative bisulfite sequencing

Currently no comprehensive data are available allowing to model the fate of 5hmC at a single
base resolution level. Therefore, extending the method described in Fitz et al. 2014 and Arand
etal. [10, 21] we established a workflow enabling us to produce such data. To obtain base reso-
lution information of the modification status we apply hairpin bisulfite sequencing on DNA
samples split into oxidative (0xBS-Seq) and non oxidative standard bisulfite reaction (BS-Seq)
data sets. The use of the hairpin linker strategy allows us then to determine the levels of 5ShmC
and 5mC on both DNA strands [23] and to determine the methylation status (hemimethylated,
unmethylated or fully methylated) at each individual CpG dyad within the sequenced loci at
single molecule resolution. To obtain a sufficient coverage (>1000x) per CpG we use very deep
NGS based sequencing of selected loci. The deep sequencing enables us to determine accurate
rates and error rates for each modification. To cover larger parts in the genome we included
the analysis of mobile elements which occur in multiple identical copies across the genome and
to which we refer as “repetitive elements”. In fact our analysis covers about 91% of all anno-
tated IAP(IAPLTR1a_mM) (N = 1635), 20% of L1md_A (N = 3287), 12% for LImd_T

(N =2784) and 30% of MUuERVL (N = 725). In this case the >1000x coverage has to be seen as
the aggregate of about a 5x coverage of each individual copy of a given repetitive element. Fig 2
outlines the main experimental steps of the procedure.

In the first step genomic DNA is digested using restriction enzymes which generate cuts
close to the gene/locus selected for methylation analysis. In a following reaction both DNA
strands are ligated to a back-folding “hairpin”-oligonucleotide. Next the DNA is unfolded and
subjected to a bisulfite or oxidative bisulfite treatment followed by a locus specific PCR amplifi-
cation. PCR primers contain Mi-Seq (Illumina) compatible extensions to perform deep (paired
end 2x300bp) sequencing (up to 10K/product). Sequencing data are processed using our in
house software BiQ-HT and a python script. In the bisulfite only reaction 5mC and 5hmC
remain as cytosines, while in the oxidative bisulfite reaction 5ShmC is converted to uracil/thy-
mine. Each individual sequence covers the hairpin linker which contains modified and unmod-
ified cytosines at known positions. This allows us to monitor the efficacy of bisulfite and
oxidative bisulfite reactions per molecule (note that all unmodified cytosines are converted to
thymines) and calculate exact error rates by dividing the number of unconverted bases by the
total number of analyzed cytosines. Additional information about the protocol is given in S1
Text together with reference-, primer- and linker-sequences.

Hidden Markov model

Our model considers a CpG site (alternatively dyad) over time and describes its state as a (dis-
crete time) Markov chain {X(¢), t € N} taking values in S = {u, m, h}z. Each state (s, s,) (for
s1> $2 € {u, m, h}) encodes whether the upper strand (lower strand) is unmethylated (u), methyl-
ated (m) or hydroxylated (h). For instance, in state (s, s,) = (1, 1) the upper strand is unmethy-
lated and the lower strand is hydroxylated. We will often simply write (s; s,) instead of (sy, s,).
The time parameter t corresponds to the number of cell divisions and the state transitions

are triggered by three consecutive events: cell division, methylation and hydroxylation. The
corresponding transition probability matrices are D(), M(¢), and H(?), respectively. Thus, the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004905 May 25, 2016 4/16
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Fig 2. Schematic outline of hairpin bisulfite (BS) and oxidative bisulfite sequencing (oxBS) methods: The method is based on enzymatic
digestion of genomic DNA and the covalent connection of upper and lower DNA strands by ligating a hairpin oligonucleotide. PCR enrichment
of the BS/oxBS treated sample is used for amplicon generation followed by sequencing and data analysis.

doi:10.1371/journal.pcbi.1004905.9002

combined transition probability matrix of X is defined as
P(t) = D(r) - M(¢) - H(t),

with entries P;(t) that equal the probabilities that given X'(t) = i = (s,s,), the next state is
X(t+1)=j=(ss,) foralli,j € S. Note here we assume that hydroxylation occurs after
methylation to ensure that between two cell divisions a transition from u to m and then to h is
possible. Moreover, note that we allow P(#) to change over time, so that we capture the case
that the (hydroxy-)methylation efficiencies do not remain constant over time. In the sequel we
give a detailed description of D(¢), M(t), and H(f). For a formal definition of the matrices, we
refer to SI Text.

Demethylation through cell division. With each cell division and DNA replication one
new DNA strand is synthesized resulting in a temporary situation where only unmodified cyto-
sines are present in the new strand. Since the epigenetic pattern of the parental strand remains
unchanged a previously methylated CpG site keeps half of the (hydroxy-)methylated state in
the two daughter cells. By averaging over the daughter cells, if the current state is (#mm) then
after cell division the new state is (um) or (mu) each with probability 0.5 (depending on
whether the newly synthesized strand is the upper or the lower strand). Similarly, with
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probability 0.5 the process enters (uh) or (hu) from (hh). Thus, DNA replication/cell division
may result in a direct loss of methyl or hydroxyl groups. The transition probabilities of the
remaining states are defined in a similar way and we illustrate the corresponding matrix D(f)
in Fig 3a).

Methylation. The loss of methylation by DNA replication is counteracted by a restored
methylation due to the combined activity of the three methyltransferases Dnmt1, Dnmt3a and
Dnmt3b. We distinguish between maintenance methylation catalyzed by Dnmt1 and de novo
methylation catalyzed by Dnmt3a and Dnmt3b. We assume that a cytosine of an unmethylated
dyad can only be methylated by a de novo event, while both maintenance and de novo methyl-
ation are possible on a hemimethylated dyad. Based on related in vitro experiments [3] and our
recently published work [10], we assume that Dnmt3a/b act on hemimethylated sites with the
same efficiency as on unmethylated sites.

We define y,,(f) and p,(t) as the probabilities of maintenance and de novo methylation of a
cytosine, respectively, where the corresponding methylation event occurs within the ¢-th cell
division cycle (t € {1, 2, .. .}). In addition, we define A(¢) to be the total methylation efficiency
on a hemimethylated site. It holds that

At) = p,(8) + 1(t) — 1, () - 1y(2),

because maintenance is associated with the replication machinery and happens immediately
after replication with efficiency p,,(#). In case maintenance methylation by Dnmt1 is not
successful the site can still be methylated with de novo methylation efficiency y,(t) which
then gives A() = p(t) + (1 — p(8)) - pa(t). Wewrite i, (1) = 1 — p, (¢), i (1) = 1 — py(2)
and 4(t) = 1 — A(t) for the complements of the above probabilities and we omit the time
parameter t whenever it is not relevant.

Note that if a CpG site has two unmethylated cytosines then two de novo methylation
events are possible. Assuming independence between them, all transition probabilities of the
corresponding state (uu) are the product of two event probabilities. We illustrate the corre-
sponding methylation matrix M(¢) in Fig 3b). Here p is the probability that maintenance meth-
ylation is not applied to the states (hu) and (uh), i.e., the hydroxyl group prevents the
maintenance process, i.e., the methylation of the unmodified cytosine on the opposite strand.
As aresult, from these states the states (hm) and (mh) can only be entered via de novo
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methylation. In the opposite case, with probability p = 1 — p, states (hu) and (uh) are seen as
hemimethylated during maintenance and can enter states (hm) and (mh) with probability A for
both maintenance and de novo methylation (see Fig 3b). Besides, the states (mh), (hm), and
(hh) have only self-loops since the Dnmts do not modify hydroxyl groups.

Hydroxylation. Let 7(¢) be the probability that before the (¢ + 1)-th cell division a methyl-
ated position becomes hydroxylated, i.e, the probability of a transition from m to h. Similarly
as above, we write 7 () for 1 — (¢) and omit ¢ whenever convenient. Assuming again indepen-
dence between two hydroxylation events, the corresponding matrix H(#) is illustrated in Fig
3¢). Note that without an active hydroxylation mechanism (7 > 0) the level of 5ShmC would
half after each replication since newly synthesized strands do not inherit the hydroxyl groups
of the mother strand.

Hydroxylation is the last modification that we consider before the next cell division. Thus,
between two cell divisions an unmethylated position may transition from u to m and then to h.

Observable states and conversion errors. In order to define the observable states and the
corresponding emission probabilities, we first describe the details of hairpin sequencing and
(oxidative) bisulfite sequencing. First the DNA is cut by a restriction enzyme. The DNA frag-
ments are then linked covalent to a Hairpin linker resulting in the connection of upper and
lower strand. The resulting hairpin fragments are divided into two halves, one is treated with a
standard bisulfite reaction and the other is subjected to an oxidation followed by bisulfite treat-
ment. Both 5mC and 5hmC are not affected by the (non-oxidative) bisulfite treatment and
appear after sequencing as cytosines. In the oxidative case 5ShmC is oxidized to 5fC which is
converted during bisulfite treatment to 5fU and represents itself after sequencing as thymine
(see Fig 4).

We incorporated unmodified cytosine as well as 5mC and 5ShmC into the hairpin linker to
precisely estimate the conversion errors (see also S1 Text) that influence the transition proba-
bilities between the hidden and the observable states. These controls allow us to correct for
technical errors in individual measurements.

In Fig 4 the transitions from a site’s possible hidden states to the observable ones are shown.
Each base will eventually transform into a thymine (T) or a cytosine (C). Thus, the set of the
observable states for a CpG site with two cytosines is S,,, = {T, C}”. The red dashed arrows cor-
respond to conversion errors and assuming all errors are zero, i.e., the probabilities c=d=e=f
of a correct conversion are all one, a C will eventually transform to T and a 5mC will transform
to C in both bisulfite and oxidative bisulfite setups. However, a hydroxylated cytosine (5hmC) is
ideally mapped to a C during BS and to a T during oxBS. The entries of the corresponding emis-
sion matrices Ey () and E,(t) for the transitions from hidden to all observable states can be

BS oxBS

5mC 5th C 5mC 5hmC
(ox.) bis. el 'd el 'd 'f
treatment , S
oenc ||| [
g T C C T C T

Fig 4. Schematic outline of the conversion of Cytosine, 5mC and 5hmC during BS and oxBS treatment
and after sequencing: In the bisulfite reaction a cytosine (C) is converted to uracil (U), whereas 5mC
and 5hmC remain untouched. In the oxidative bisulfite sequencing only 5mC remains untouched and
cytosine as well as 5hmC is converted to uracil (U). The conversion errors are illustrated as dashed red
arrows and c, d, e, f are the conversion probabilities.

doi:10.1371/journal.pcbi.1004905.9004
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found in Table A in S1 Text and the values of the conversion errors from all analyzed loci for
each of the experimental setups are listed in S1 and S2 Tables. Note that the values of ¢ and d can
differ between the two treatments and that the conversion probabilities can also differ over time.

Estimation of model parameters. Given the number of times 1;(j, £) and n,,(j, t) that
statej € S,,. = {T, C}” has been observed during independent BS and oxidative BS measure-
ments at time t we use a maximum likelihood approach to estimate the unknown parameters
of the HMMs, that is, the initial distribution of the hidden states, S = {u, m, h}>, the unknown
functions p (1), p,,,(t) and n(¢), as well as the probability p at which CpG sites with one hydroxyl
group are not considered during maintenance.

Formally, let 71(t) be the row vector of the state probabilities of the hidden states after ¢ cell
divisions, i.e., 71(0) is the initial distribution of the hidden states. For i € Slet n(i, t) =
P(X(t) = i) denote the entry of 7(¢) that corresponds to state i. The probability of observing
statej € S, at time ¢ is given by

P(O(t) = j) = ) _P(O(t) = j| X(t) = i) - n(i, 1),
i€S
where O(t) is the random variable for the state observed at time t and P(O(¢t) =j | X(t) = i)
is the emission probability. In matrix-vector form this yields

m(t) = n(t) - E, () and 7, () = n(t) - B, (t)

for the two sequencing experiments (BS and oxBS, respectively). Here, m,,(¢) and 7,,(f) are
the vectors with the distribution over the observable states at time t. Note that both HMMs
have the same distribution 7(#) for the hidden states (as for both experiments the same cell
population is used) but different emission probabilities and that 7(t) is given by
n(t) = 7(0) - [T, P(k).

First, we estimate the initial distribution 7(0) based on the initial independent BS and oxida-
tive BS measurements under conventional serum conditions by considering the combined like-
lihood

L,(n(0)) = Hnbs(j, 0)"=00 . (j, 0)"=, "

J€Sobs

The above likelihood depends only on the unknown vector 7(0) and the emission matrices and
allows us to determine the initial distribution of the hidden states. We maximize the likelihood
subject to the constraint ¥, 71(i, 0) = 1, i.e., 7(0)" = arg max, , £, (n(0)), where 7(0) ranges
over all vectors that sum to one. Then, given an estimate for 77(0), we compute for t € {1, 2, .. .}
the state probabilities 7(¢) of the hidden states and consider the common likelihood

£,0) =TT TTmaGoty™o -0y 2)

t€Tps\{0} j

for the observations at all remaining observation time points ¢ € T, Note that here we assume
that the cells divide every 24 hours, hence  ranges over all days at which measurements were
made (see also S1 Text). In addition, we can assume independence between the observations
because during the measurement only a small fraction of cells is taken out of a large pool and
thus it is unlikely that we pick two cells with a common descendant.

The likelihood £,(v) depends on the matrices P(f) and thus on the unknown functions
Ua(t), (1), n(t) and the probability p. We assume that the enzymes’ efficiencies are linear in ¢,
i.e., each function is of the form S, + f; - t, which yields a vector v of seven unknown parame-
ters in total. For estimating v we use again a maximum likelihood approach, i.e., we determine

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004905 May 25, 2016 8/16
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v* = arg max L,(v), under the appropriate constraints (see S1 Text). The maximization of
the likelihoods in Eqs (1) and (2) is a (global) optimization problem for which it is convenient
to minimize the negative logarithm of the likelihood. Deriving expressions for the first and sec-
ond derivatives of the log-likelihood is straightforward and yields fast convergence of the gradi-
ent descent optimization routine with multiple starting values. Due to the large number of
samples we expect our maximum likelihood estimators (MLEs) to be approximately unbiased
and normally distributed. Moreover, we can compute the observed Fisher information matrix
(FIM) and thus derive confidence intervals for all parameters (for details see S1 Text).

Results

Previous genome wide analyses showed a high or moderate decrease of DNA methylation in
ESCs transferred from serum into 2i medium [21, 22]. Furthermore, it was shown that the oxi-
dation of 5mC to 5hmC is likely to contribute to this DNA demethylation [21]. The goal of our
work was to develop a model which describes the 5hmC dependent molecular mechanisms
that cause this loss of DNA methylation upon consecutive rounds of replication. For the
modeling we generated an ultra deep DNA methylation data set of selected loci in mouse ES
cells (ESCs) collected at defined time points after cultivation in 2i.

For our analysis we chose five multicopy, repetitive elements, IAPs (intracisternal A parti-
cle), LImdA and L1mdT (both Long interspersed nuclear elements), MuERVL (Murine endog-
enous retrovirus) and mSat (major satellite), as well as four single copy loci in the genes Afp,
Snrpn, Ttc25 and Zim3. It was already known that some of these repetitive elements are subject
to demethylation. Ttc25 and Zim3 where previously shown to exhibit a less pronounced loss of
methylation in the absence of Tet1/Tet2 in 2i medium. [21]. Imprinted genes such as Snrpn
were shown to be “resistant” to demethylation in 2i.

Deep locus specific DNA methylation profiles were generated from mESCs grown in con-
ventional serum/LIF medium (day0) and after their transfer and cultivation into 2i medium for
24h (dayl), 72h (day3) and 144h (day6), respectively. During this period the ESCs undergo a
maximum of six cell divisions (as inferred from cell densities). For each time point and locus
we performed consecutive bisulfite and oxidative hairpin bisulfite reactions using high cover-
age Mi-Seq sequencing (see Methods section). Following sequence processing (alignment,
trimming, QC filtering) we obtained two data sets for each locus: one describing the combined
5mC+5hmC status (BS-Seq) and one describing the 5mC status alone (oxBs-Seq). The hairpin
refolding of sequences then let us determine the accurate double stranded CpG methylation
status at a given locus (hemi-, fully- or unmethylated).

With this data we used our HMMs (described in the Methods section) to estimate the
amount of 5mC and 5hmC in these loci and to predict the efficiencies of maintenance methyla-
tion, de novo methylation and hydroxylation over time. In our modeling we analyzed both
aggregated and single CpG behavior for each locus. Both average and single CpG modeling
gave similar results. The single CpG data, summarized in the supplementary information (see
S3 and S4 Figs), gave slightly increased confidence intervals compared to averaged data. In our
further analysis we use averaged data for model interpretation.

Using the estimated values of the model’s unknown parameters we could predict the proba-
bilities of the observable states and compare them to the measured data at various time points.
The model accurately describes the dynamics for all loci except for some underestimations of
two states CC and TT for oxBs in Ttc25 and Zim3, respectively. (Fig 5 and S1 Fig).

Fig 6 shows the probabilities of the hidden states in LimdT, mSat, Afp, and Zim3, where the
parameters are chosen according to the results of the maximum likelihood estimation. The left
bar diagram shows the probabilities of all fully methylated (), hemimethylated (um and mu)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004905 May 25, 2016 9/16
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and unmethylated (uu) sites, as well as the total amount of the hydroxylated CpG dyads, i.e.,
those containing at least one 5hmC. The detailed level of all hydroxylated sites is depicted in the
right diagram.

From previous experiments it was known that 5ShmC levels initially increase during cultiva-
tion in 2i [21, 22]. However, precise levels had not been determined per locus. Our analysis
provides the first accurate locus specific determination of 5hmC changes. Our estimation of
5hmC confirms an initial increase of hydroxylated cytosines over time for most loci besides
L1mdA and Snrpn. LImdA shows a low level of 5mC and 5ShmC, which only slightly decreases
in 2i. Snrpn also shows a relatively low level of 5mC and a non significant amount of 5hmC,
which do not change in 2i over time (S2 Fig). The highest hydroxylation levels are found in the
single copy genes Zim3 and Afp with a maximum level of 0.30 and 0.20. For Afp, mSat, IAP
and MuERVL (see Fig 6 and S2 Fig), the maximum hydroxylation level is seen at day6, while
for L1mdT, Ttc25 and Zim3 at day3. The latter can be explained by the particularly low 5mC
levels between day3 and day6 in these loci which naturally reduces the potential substrates for
the Tet enzymes. However, the level of 5ShmC (orange bar in Fig 6 and S2 Fig, left) relative to
the total modification level (5hmC + 5mC) (red, orange and green bars), becomes maximal on
the sixth day for all loci that show a loss of 5mC. This points towards an increasingly important
role of 5hmC in the loss of methylation over time.

Indeed, the probability p (see HMM subsection) that a 5hmC site is not recognized by
Dnmtl (or the Dnmt1/Uhrfl complex), which corresponds to states (hu) and (uh) in the
model, is estimated to be 1 with very small standard deviations for all the loci that show signifi-
cant 5ShmC levels. We estimated smaller values for p only for those loci where hydroxylation is
nearly absent (mSat, MuERVL, Snrpn).

In Fig 7 we plot the functions u,,(t), ua(t), n(t) and A(f) over time together with their esti-
mated standard deviations. Note that the estimated standard deviations of all the efficiencies are
very small (maximum half width of all confidence intervals is 0.031). For the exact estimates
and their standard deviations see S3 and S4 Tables. From the above efficiencies we can deduce
the impact of de novo methylation activity on the hemimethylated dyads as the difference
between the total methylation efficiency and maintenance methylation, i.e., A(¢) — u,,(t) =
&, (t) - i (t) (see Fig 7). Our data indicates that persistence of DNA methylation at Afp, mSat,
IAP and MuERVL elements clearly depends also on de novo enzymes acting on hemimethylated
CpGs.

For each efficiency, we performed a statistical test with a confidence level of 1% for the null
hypothesis that the slope of the corresponding linear function is zero, i.e., that the efficiencies
are constant over time (see in addition S1 Text). Furthermore, to eliminate the possibility of
overfitting due to the linear assumption, we performed leave-one-out cross-validation
(LOOCYV) to estimate the test error of our model with constant efficiencies against a linear
model. Results in S5 Table show that the linear assumption improves the prediction up to
38.3%. Further tests concerning the sensitivity of the model w.r.t. the parameters showed that
the model is also sufficiently robust (see S1 Text).

Opverall, the estimation of the efficiency functions reveals some common and some locus
specific features that accompany the DNA demethylation dynamics over time in 2i. As a com-
mon feature we observe that the total methylation on hemimethylated sites, A(f), decreases
over time in all examined loci but at different rates. Along with this decrease we observe also a
drop of de novo methylation activity at all loci besides Ttc25 and Zim3. In contrast, hydroxyl-
ation activity increases for most loci over time (except for Snrpn). Interestingly, the largest
increase of 7(t) occurs in L1mdT and the two DMRs in the genes Ttc25 and Zim3, where we
also observe low or even total absence of de novo activity. On the other hand, a weaker hydrox-
ylation activity in mSat, as well as IAP and MuERVL (S2 Fig), is accompanied by a strong
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doi:10.1371/journal.pchi.1004905.9g007

decrease of ji4(t) in the same loci, while in Afp both de novo methylation and hydroxylation
show a moderate decrease and increase, respectively. At last, maintenance methylation seems
to differ among loci. For all repetitive multicopy loci and Afp maintenance activity remains
nearly constant while for Ttc25 and Zim3 it shows a significant decrease. For the imprinted
Snrpn locus, where the methylation level remains constant, our model accurately predicts the

apparently constantly high maintenance efficiency of 1.0. Altogether, these findings point

towards a major impairment of maintenance methylation by 5hmC. Additionally, for each

locus this impairment is modulated by a distinct combination of decreasing (e.g. Dnmt3a,b) or
increasing (e.g. Tet) activities in a locus specific manner. Some of the locus specific differences
may also have their origin in the particular methylation and (hydroxy-)methylation status

present in serum/LIF before the shift into 2i.
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Discussion

The goal of our study was to investigate the role of 5hmC in the process of progressive DNA
demethylation at single copy and mulitcopy loci across the genome. As a model system we
used the DNA of ES cells grown under conditions where the cells experience a genome wide
reduction of DNA methylation [21, 22].

Using time dependent comparative bisulfite and oxidative bisulfite hairpin sequencing data
we generated two HMMs: one that represents the dynamics of total modifications (5mC and
5hmC in BS) and the other only representing the 5mC levels (in 0xBS). The comparison
allowed us to accurately determine the amount and changes of 5ShmC at certain genomic loci,
to estimate the transient distribution of both 5mC and 5hmC in the DNA and to compute sta-
tistically reliable estimates for the efficiencies of maintenance and de novo methylation, as well
as for hydroxylation over time.

Our first finding is that 5hmC changes over time and can be modeled along with the overall
changes in symmetric DNA methylation at CpGs. Our estimates give us an exact knowledge of
5hmC dynamics, which is congruent with the finding that several Tet enzymes are up-regu-
lated in 2i medium [21, 22]. The calculation of the hidden state probabilities and the efficien-
cies of the different enzyme-driven processes show that the 5ShmC dependent demethylation
rates differ considerably from locus to locus. However, the dynamics of the (hydroxy-)methyla-
tion levels for the CpGs of the same locus show a certain homogeneity (see S3 and S4 Figs).

The second major finding is that loci with an enrichment of 5hmC such as Afp, LimdT and
IAP show higher demethylation rates compared to mSat or Snrpn. Hence, 5hmC containing
DNA strands are indeed more likely to lose DNA methylation over time. Our modeling
strongly supports the hypothesis that ShmC is less well recognized by the maintenance methyl-
ation machinery (Dnmt1/Uhrfl complex) as indicated by the estimation of the corresponding
non-recognition probability p. The accumulation of 5ShmC then causes a passive dilution
mechanism of CpG methylation with each DNA replication/cell cycle, despite of the fact that
the model predicts a constant behavior of maintenance activity in most of the analyzed loci. In
ES cells maintained in 2i medium this mechanism appears to be the main driving force for a
rapid and linear DNA demethylation.

Interestingly, in contrast to the previously shown unchanged mRNA expression of Dnmt1
and Uhrfl in 2i [21, 22] we observe a strong decrease of maintenance function for the single copy
genes Ttc25 and Zim3 (see Fig 7 and S2 Fig, red line). Since the influence of 5hmC on the mainte-
nance mechanism is reflected by the recognition probability p, the observed decrease is indepen-
dent of the high 5hmC levels at these loci. This indicates an additional impairment or absence of
the maintenance machinery at these loci. However, we cannot exclude the possibility that with
the strong decrease in maintenance efficiency our model, at least to some extent, compensates for
active demethylation which we cannot capture with our current experimental/model design.

Being able to estimate the de novo methylation impact of Dnmt3a/b on hemimethylated
sites, the third observation of our model is that all analyzed elements show a compromised de
novo methylation activity as an additional factor contributing to an enhanced local DNA
demethylation. The predicted behavior for the involved enzymes’ activities appears to follow
their relative expression in 2i medium, in which both Dnmt3a and Dnmt3b are clearly down
regulated [21, 22]. Our observations, thus, suggest that the down regulation of Dnmt3a and
Dnmt3b activities appears to enhance the 5ShmC dependent CpG demethylation. This may be
either directly due to a decreased methylation efficiency on hemimethylated sites or due to a
lower abundance of the enzymes.

In summary, we present a novel HMM method that allows to precisely measure and
describe effects related to the influence of 5ShmC on the persistence of DNA methylation in

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004905 May 25, 2016 13/16



©PLOS

COMPUTATIONAL

BIOLOGY

The Influence of Hydroxylation on Maintaining CpG Methylation Patterns

the mammalian genome. The modeling allows us to decipher complex DNA methylation pat-
terns and enables us to accurately infer enzymatic activities. In its current form the model
already captures a fraction of possible demethylation dynamics and scenarios most likely
reflecting many loci in the genome. A genome wide application of our modeling is possible. It
comes, though, at the expense of locus specific accuracy since with the existing whole genome
hairpin sequencing methods data is difficult to generate and will not reach a sufficient
sequencing depth. However, our approach can also be used to accurately model 5hmC depen-
dent methylation dynamics in diseases, e.g. certain cancers and in aging processes of long
lived cells. By integrating novel precise sequencing methods, which detect other oxidized
modifications the model can be enhanced to additionally capture active demethylation and
describe the involved processes.
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