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Quantitative Proteomics of Hepatic Drug-
Metabolizing Enzymes and Transporters in 
Patients With Colorectal Cancer Metastasis
Areti-Maria Vasilogianni1,*, Zubida M. Al-Majdoub1, Brahim Achour1,2, Sheila Annie Peters3, Jill Barber1 
and Amin Rostami-Hodjegan1,4

The impact of liver cancer metastasis on protein abundance of 22 drug-metabolizing enzymes (DMEs) and 
25 transporters was investigated using liquid chromatography-tandem accurate mass spectrometry targeted 
proteomics. Microsomes were prepared from liver tissue taken from 15 healthy individuals and 18 patients 
with cancer (2 primary and 16 metastatic). Patient samples included tumors and matching histologically 
normal tissue. The levels of cytochrome P450 (CYPs 2B6, 2D6, 2E1, 3A4, and 3A5) and uridine 5′-diphospho-
glucuronosyltransferases (UGTs 1A1, 1A6, 1A9, 2B15, 2B4, and 2B7) were lower in histologically normal tissue 
from patients relative to healthy controls (up to 6.6-fold) and decreased further in tumors (up to 21-fold for CYPs 
and 58-fold for UGTs). BSEP and MRPs were also suppressed in histologically normal (up to 3.1-fold) and tumorous 
tissue (up to 6.3-fold) relative to healthy individuals. Abundance of OCT3, OAT2, OAT7, and OATPs followed similar 
trends (up to 2.9-fold lower in histologically normal tissue and up to 16-fold lower in tumors). Abundance of NTCP 
and OCT1 was also lower (up to 9-fold). Interestingly, monocarboxylate transporter MCT1 was more abundant (3.3-
fold) in tumors, the only protein target to show this pattern. These perturbations could be attributed to inflammation. 
Interindividual variability was substantially higher in patients with cancer. Proteomics-informed physiologically-based 
pharmacokinetic (PBPK) models of 50 drugs with different attributes and hepatic extraction ratios (Simcyp) showed 
substantially lower drug clearance with cancer-specific parameters compared with default parameters. In conclusion, 
this study provides values for decreased abundance of DMEs and transporters in liver cancer, which enables using 
population-specific abundance for these patients in PBPK modeling.

Colorectal cancer is the second most lethal type of cancer,1 present-
ing with metastases to the liver in half of the patients,2 which leads 
to poor prognosis.3 Genetic and epigenetic alterations contribute 

to its manifestation.4 Colorectal liver metastasis (CRLM) origi-
nates from the colon and metastasizes to the liver through the por-
tal vein, whereas primary liver cancer has hepatic origin. Primary 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Predicting the fate of drugs in patients with cancer using 
physiologically-based pharmacokinetic (PBPK) models requires 
knowledge of changes in such populations. Changes in hepatic 
drug-metabolizing enzymes (DMEs) and transporters are not 
fully characterized in metastatic liver cancer.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Protein abundance of DMEs and transporters in healthy 
controls, histologically normal, and tumorous livers from pa-
tients was measured and compared among the groups, and in-
terindividual variability was assessed. Scaled abundance data to 
tissue levels were used to inform PBPK predictions in cancer.

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This study provides for the first time population-specific 
abundance data of DMEs and transporters for patients with 
metastatic liver cancer that are necessary for PBPK modeling.
HOW MIGHT THIS CHANGE CLINICAL PHARMA­
COLOGY OR TRANSLATIONAL SCIENCE?
 This study highlights an overall decreased abundance of 
DMEs and transporters in liver cancer. These unique data 
are a valuable resource for PBPK models, which are not fully 
informed with data on specific populations. This may enable 
more accurate predictions of pharmacokinetics in patients with 
cancer.
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liver cancer is another leading cause of cancer-related mortality, 
with its main types being hepatocellular carcinoma (HCC) and 
intrahepatic cholangiocarcinoma.1

Whereas liver cancer is ideally treated by surgical resection, this 
is seldom possible, hence chemotherapy is used instead.5,6 Because 
the liver is the main site of metabolism, the presence of cancer can 
affect drug pharmacokinetics (PKs) and pharmacodynamics. Both 
histologically normal and tumorous tissue contribute to drug me-
tabolism and disposition. Drug-metabolizing enzymes (DMEs), 
especially cytochrome P450 (CYP) enzymes and uridine 5′-diphos
pho-glucuronosyltransferases (UGT), in the tumor are responsible 
for activation and disposition of anticancer prodrugs.7 However, 
most anticancer drugs are cleared by DMEs, and their decreased 
abundance could lead to higher local exposure. Drug transporters 
are also critical for anticancer drug resistance, which occurs with 
increased levels of efflux transporters and suppression of uptake 
transporters.8

Physiologically-based pharmacokinetic (PBPK) models are 
gaining wider acceptance in regulatory decision making in on-
cology, where recruitment of patients and ethical/safety issues 
are of great importance.9 These models require system and drug 
data for accurate prediction of drug PKs.10 Cancer populations 
are very heterogeneous, leading to variable PK profiles (e.g., clear-
ance, exposure, and absorption), owing to changes in various sys-
tem parameters, including plasma protein, comorbidities,11 renal 
function,12 microsomal protein per gram liver (MPPGL),13 and 
abundance of DMEs14 and transporters.15 These differences may 
be driven by inflammation in patients with cancer, where cytokines 
may lead to downregulation of DMEs.16,17

Protein abundance data in liver cancer are limited, with most stud-
ies reporting immunohistochemistry or mRNA data. Yan et al.14,18 
have, however, reported quantitative measurement of CYPs and 
UGTs in patients with HCC using liquid chromatography-mass 
spectrometry (LC-MS) proteomics and highlighted perturba-
tions in cancer. LC-MS proteomics has also been used to quantify 
transporters in HCC.15 Despite the high incidence of CRLM, 
quantitative data in liver tissue from patients with CRLM is 
largely unavailable. The qualitative profiles of CYPs,19 among 
other DMEs, in histologically normal and cancerous tissues from 
patients with CRLM20 highlighted a potential impact of cancer 
on drug metabolism. Studies on transporter proteins are more 
scarce, with a focus on mRNA measurement of OATPs21 or com-
parisons of abundance between healthy and histologically normal 
livers from patients with CRLM.22 A preliminary experiment 
measured the abundance of DMEs and transporters in CRLM 
pooled samples.23 Understanding the range of values in individual 
patients is necessary for projecting potential clinical consequences 
of the changes in a probabilistic rather than deterministic PBPK 
predictions.24

In this study, we quantified DMEs and transporters in healthy 
livers from healthy donors and compared with matched histolog-
ically normal and cancerous livers from patients with cancer. To 
our knowledge, this is the most comprehensive report of absolute 
quantitative measurements of DMEs and transporters using LC-
MS proteomics in CRLM to date. Additionally, the abundance 
data for individual samples were scaled up to liver tissue content 

in CRLM using experimentally derived MPPGL in each individ-
ual.13 Finally, we applied scaled data in PBPK simulations to pre-
dict the PKs of 50 drugs with varying degrees of metabolism and 
transporter liability by different enzymes and transporters, differ-
ent hepatic extraction ratios and attributes (e.g., protein binding in 
plasma), in order to assess the impact of cancer-specific abundance 
of DMEs and transporters in patients with CRLM when conduct-
ing PBPK.

MATERIALS AND METHODS
Detailed methods are described in Supplementary Methods.

Human liver samples
Matched cancerous and histologically normal liver tissue from adult 
patients with cancer undergoing hepatectomy (n  =  18; HCC primary 
cancer (n = 1), intrahepatic cholangiocarcinoma primary cancer (n = 1), 
and CRLM (n = 16)) were sourced from Manchester University NHS 
Foundation Trust (MFT) Biobank, Manchester, UK. Ethics were cov-
ered by MFT Biobank generic ethics approvals (NRES 14/NW/1260 
and 19/NW/0644). Healthy human liver microsomes (tumor-free) from 
15 subjects were collected postmortem and provided by Pfizer as micro-
somes (Groton, CT). These samples were supplied by Vitron (Tucson, 
AZ) and BD Gentest (San Jose, CA). Ethical approval was covered by 
the suppliers. Tables S1 and S2 present donor demographic and clinical 
details.

QconCAT (MetCAT and TransCAT) standards
Two stable isotopes labeled QconCAT standards were used in this study, 
as previously described25: the MetCAT and a modified TransCAT23 for 
the quantification of DMEs and transporters, respectively.

Preparation of samples for proteomics
Liver tissue samples were fractionated to microsomes.13,23 Each sample 
was spiked with known amounts of QconCATs, and prepared using 
filter-aided sample preparation.26,27 Unlabeled peptide standards were 
added to quantify the QconCATs. A pool of healthy samples was pre-
pared for quality control.

Liquid chromatography-tandem mass spectrometry
Sample peptides were analyzed by an UltiMate 3000 Rapid Separation 
LC system (Dionex Corporation, Sunnyvale, CA) coupled to a Q 
Exactive HF Hybrid Quadrupole-Orbitrap MS (Thermo Fisher 
Scientific, Waltham, MA).

Analysis and annotation of proteomic data
Proteomic data were processed using MaxQuant 1.6.7.0 (Max Planck 
Institute, Martinsried, Germany), and searched against a customized da-
tabase, comprising a human UniprotKB database (74,788 sequences) and 
QconCAT sequences. For targeted analysis, accurate mass and retention 
time methodology was used, based on light-to-heavy intensity ratios and 
QconCAT concentrations to calculate protein amounts.27,28 Peptides se-
lected for the quantification are presented in Tables S3–S8.

Statistical data analysis
Statistical data analysis was performed using GraphPad Prism 8.1.2 (La 
Jolla, CA), Microsoft Excel 2016, and R 3.6.3. Nonparametric statistics 
were used because data did not follow normal distribution. Differences 
in absolute abundances between the groups were assessed using Mann–
Whitney U test. The P value cutoff for statistical significance was set at 
0.05. Principal components analysis (PCA) was performed for proteome-
level similarity based on percentage identical peptide and percentage 
identical protein.29
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Physiologically-based pharmacokinetic simulations
The effect of applying the experimentally determined DMEs and trans-
porters abundance levels from this study in combination with previously 
determined scaling factors13 was assessed using PBPK modeling with 
Simcyp V20 Release 1 (Certara, Sheffield, UK). Fifty substrates with dif-
ferent attributes and hepatic extraction ratios were used (Table S9). The 
compound files were available within the Simcyp simulator. PBPK simula-
tions were performed using default system parameters available in Simcyp 
for healthy (“Sim-Healthy Volunteers”) and cancer (“Sim-Cancer”) 
virtual populations, without or with changing MPPGL,13 abundances 
of CYPs, UGTs, transporters measured here, and previously measured 
flavin-containing monooxygenases and carboxylesterases (pooled sam-
ples).23 Here, we use targeted quantification and flavin-containing mono-
oxygenase and carboxylesterase that were not measured. Differences in 
abundance and changes in coefficients of variation, between healthy and 
histologically normal or cancerous samples were incorporated into the 
models. The effects of abundance changes on drug exposure following 
oral administration were assessed using previously described models13:

Model 1 (Healthy): default MPPGL and abundance data for healthy 
population (Simcyp).

Model 2 (Cancer-D): default MPPGL and abundance data for cancer 
population (Simcyp).

Model 3 (New Cancer-ALN): Scaling based on MPPGL from histo-
logically normal tissue (39.0 mg/g)13 and abundance of DMEs and 
transporters (relative difference between normal and healthy tissue) 
were used for the cancer population, assuming the whole liver is 
histologically normal (maximum metabolic capacity of microsomal 
enzymes).

Model 4 (New Cancer-ALC): Scaling based on MPPGL in cancerous 
tissue (24.8 mg/g)13 and abundance of DMEs and transporters (rela-
tive difference between tumors and healthy tissue) were used for the 
cancer population, assuming the whole liver is cancerous and liver 
mass unchanged.

The relative ratios of the clearance (CL) were compared: CL in healthy/
CL in new cancer-ALN or ALC, CL in cancer-D/CL in new cancer-ALN 
or ALC, and CL in new cancer-ALN/CL in new cancer-ALC.

RESULTS
Comparison of absolute abundance of CYPs, UGTs, and 
transporters in healthy, histologically normal and tumor 
samples
Abundance of CYP2B6, CYP2D6, CYP2E1, CYP3A4, and 
CYP3A5 (Figure 1a) in histologically normal samples from pa-
tients with cancer was significantly lower than in healthy livers 
(Mann–Whitney U test, P < 0.05). Abundance of most CYPs in 
tumors was massively lower relative to healthy (P < 0.05) and his-
tologically normal tissues (P < 0.05).

Similarly, most UGTs were significantly decreased in histologi-
cally normal tissues compared with healthy controls and in tumors 
compared with healthy controls and histologically normal tissues 
(P < 0.05; Figure 1b).

Among ATP-binding cassette (ABC) transporters, P-gp, BSEP, 
MRP2, MRP3, and MRP6 decreased in tumorous and histo-
logically normal liver tissue from patients with cancer relative to 
healthy controls (P  <  0.05). A significant decrease in the abun-
dance of BSEP and MRP2 was observed in tumors compared with 
matched histologically normal livers (P < 0.05).

Similarly, the abundance of most solute carriers (SLC) was lower 
in livers from patients with cancer. Organic cation transporter 

(OCT) 1, organic anion transporter (OAT) 2, OAT7, and organic 
anion transporting polypeptide (OATP) 1B1 and OATP2B1 were 
significantly downregulated in histologically normal and tumor 
livers compared with healthy controls and in tumors relative to his-
tologically normal tissues (P < 0.05). The abundance of monocar-
boxylate transporter 1 (MCT1) was significantly higher in tumors 
than in normal tissue, whereas Na(+)/NTCP was significantly 
downregulated (P < 0.05).

Interestingly, the abundance of all DMEs and transporters in 
our primary tumorous samples was always within the range of 
the abundance in metastatic tumors (CRLMs). There were, how-
ever, only two samples, so the generality of this finding needs 
verification.

The abundance of DMEs and transporters did not correlate 
with the age for any of the groups of livers. Our previous study13 
similarly failed to reveal correlations between age and scaling fac-
tors for the same normal and tumor samples.

The lower limit of quantification was 0.02 pmol/mg microso-
mal protein, with high precision and accuracy, based on replicate 
measurements in a pool of healthy samples (Figure S3). The ab-
solute abundance values in individual samples are provided in 
Tables S3–S8. Leukocyte markers were also quantified; CD45 
and CD47 were 1.7- and 1.2-fold higher in tumors compared 
with healthy controls, indicating little difference in infiltration 
of immune cells.

Proportion of CYPs and UGTs in the three sets of HLMs
The pie charts (Figure 2) represent the proportion of DMEs in 
healthy, histologically normal and tumor samples. CYP2C9 was 
the most abundant CYP in all groups. In the healthy and histolog-
ically normal samples, CYP3A4 was the second most abundant, 
followed by CYP2E1 and CYP2C8. In tumors, the order was 
CYP2C8  >  CYP2E1, CYP3A4. Among UGTs, UGT2B7 was 
the most abundant in all groups. The second most abundant UGT 
was UGT1A1 in healthy and UGT2B15 in histologically normal 
and tumor samples.

Proportion of transporters in the three sets of HLM samples
The most abundant ABC transporter quantified in healthy con-
trols and histologically normal livers was MRP6, followed by 
MRP2, and BSEP (Figure 3). However, the most abundant ABC 
transporter in liver tumors was P-gp, followed by MRP6 and 
MRP3.

The most abundant SLCs quantified in healthy and histologi-
cally normal livers were OCT1, NTCP, and OATP2B1. However, 
MCT1 was most abundant in tumors.

Relative abundance of CYPs, UGTs, and transporters in HLM 
from healthy controls and histologically normal and tumor 
tissues
Figure 4 depicts the relative abundance of proteins (based on mean 
values) expressed as ratios (fold change). The y-axis starts at 1 (no 
change). CYP2B6, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 
were more than two-fold lower in histologically normal livers relative 
to controls, suggesting downregulation of CYPs in tissue surround-
ing liver tumors, with more significant decrease in tumors.
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Most UGTs were suppressed by more than two-fold in normal 
compared with healthy livers, and in tumor relative to healthy 
liver (up to 58-fold) and histologically normal specimens (up to 
19-fold).

By contrast, some ABC transporters were more abundant in tu-
mors (mean values). BCRP increased in tumors relative to healthy 
controls and P-gp abundance was higher in tumors relative even 
to histologically normal tissue. However, other efflux transporters 
(BSEP, MRPs, and MDR3) were suppressed in tumors (up to 6-
fold) relative to healthy controls. MRPs were reduced in histologi-
cally normal (up to 3.1-fold) relative to healthy controls.

Abundance of SLCs in histologically normal tissue relative 
to healthy controls (Figure  4d) was lower for MCT1, OAT7, 
OATP1A2, OATP1B3, and OCT3. Ratios of NTCP, OATs, 
OATPs, and OCTs in tumors relative to healthy tissue indicated 
up to 16-fold decrease in cancer. By contrast, a two-fold increase 
was observed for OST-α in tumors. Last, abundance of NTCP, 

OATs, OCT1, OATP1B1, and OATP2B1 in tumors compared 
with histologically normal tissue reflected a decrease of up to 9-
fold in cancer, whereas abundance of MCT1 was 3.3-fold higher 
in tumors.

Relative abundance of CYPs, UGTs, and transporters in 
paired tumor and normal tissue samples
Figure 5 presents the ratios of the abundance in histologically nor-
mal relative to matched tumor livers for each individual for CYPs 
(Figure 5a), UGTs (Figure 5b), ABC transporters (Figure 5c), and 
SLCs (Figure 5d). The absence of a data point means the abundance 
of the target was not determined in one or both of the matched sam-
ples. The graphs show that changes in abundance of each target in 
tumors compared with matched histologically normal tissue were 
not consistent across samples. The disease did not affect the targets 
uniformly, and ideally the incorporation of such individual data 
into models should generate more accurate simulations.

Figure 1  Absolute abundance of cytochrome P450 enzymes (CYPs) (a), UDP-glucuronosyltransferases (UGTs) (b), ATP-binding cassette (ABC) 
transporters, ATPase subunit alpha-1 (Na+/K+-ATPase; ATP1A1) and cadherin-17 (CDH17) (c), and solute carriers (SLCs) (d) in HLM from 
healthy (n = 15), histologically normal (n = 18) and tumorous (n = 18) tissues. Abundances are represented as box and whiskers plots with 
the whiskers reflecting the minimum and maximum values, the boxes showing the 25th and 75th percentiles, the lines showing the medians, 
and the + signs showing the means. Mann-Whitney test was used to assess differences between healthy and histologically normal, between 
healthy and tumorous livers and between histologically normal and tumorous livers for each enzyme. *P < 0.05, **P < 0.01, ***P < 0.001, 
and ****P < 0.0001.
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Scaling of microsomal abundance of CYPs, UGTs, and 
transporters up to liver tissue content
Using MPPGL data in each individual sample determined previ-
ously,13 individual abundance data for normal and tumor livers 
were scaled up to tissue levels (Figure  S2). In Simcyp, popula-
tion values of enzyme or transporter abundance are entered per 
mg of microsomal protein or per number of cells and their vari-
abilities. Similarly, MPPGL is created based on the average val-
ues in the population and associated variability. However, there 
is no possibility to define the abundance based on gram of tissue 
and its variability. Individual MPPGL and corresponding abun-
dance in the same individual give true values of abundance per 
gram of tissue and its associated variability. The average levels of 
abundance per gram of tissue and associated variability may vary 
under linking the individual value compared with the case when 
values are not linked. For example, the abundance of CYP3A4 in 
tumor livers is 153 ± 250 pmol of protein/g of liver on a basis of 
individually linked values whereas without linking (using average 
MPPGL) these would be 145  ±  243  pmol of protein/g of liver. 
Nonetheless, the ranking of different liver samples for the abun-
dance of CYP3A4 was hardly affected by applying the individual 
MPPGL values (Figure 6). Similar trends are observed across all 
the proteins.

Principal component analysis
Percentage identical peptides and percentage identical proteins 
were calculated as previously described,27,29 and the results were 
analyzed by PCA (Figure  S1). The healthy and normal liver 
samples formed two distinct clusters, indicating homogeneity. 
However, little clustering was observed for the cancer liver sam-
ples reflecting the nature of cancer as a phenotypic range rather 
than one phenotype.

Physiologically-based pharmacokinetic simulations
Simulations for 50 substrates with different attributes and he-
patic extraction ratios were performed. Four models were used 
(Figure  7): model 1 (healthy) based on default MPPGL and 
abundances of DMEs and transporters (Simcyp) with a healthy 
population; model 2 (cancer-D) based on default MPPGL and 
abundances (Simcyp) with a cancer population; model 3 (new 
cancer-ALN) based on MPPGL values and abundances measured 
here for histologically normal tissue (cancer population); and 
model 4 (new cancer-ALC) based on MPPGL13 and abundances 
measured here in cancer tissue (cancer population). CL predicted 
using the model new cancer-ALC was substantially lower for 66% 
(up to 22-fold) and 74% (up to 31-fold) of the substrates than CL 
obtained using the cancer-D and healthy models, respectively, 

Figure 2  Pie charts representing the proportion of CYPs (a–c), and UGTs (d–f) in healthy, histologically normal and tumorous HLMs, 
respectively.
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suggesting increase in systemic exposure to several substrates in 
the case of advanced cancer (most of the liver is cancerous). The 
most significant change in CL was observed in esomeprazole. The 
31-fold decrease in new cancer-ALC compared with healthy is ex-
plained by the substantial decrease in the abundance of CYP2C19, 
CYP2C9, CYP3A4, and CYP2A6 that metabolize esomeprazole. 
Table S10 summarizes the updated parameters specific for cancer 
that should be used for PBPK modeling.

DISCUSSION
Quantitative proteomics provides useful abundance data for 
PBPK models in cancer and other disorders.30 To our knowledge, 
this is the first comprehensive study on protein abundance of 
human liver DMEs and transporters in healthy, histologically nor-
mal adjacent to tumor and tumorous tissue, and their interindi-
vidual variation (as opposed to our previous pilot study in pooled 
samples).23 The current analysis confirmed the general trends ob-
served with pooled samples but, importantly, provided a range of 
protein abundance values and interindividual variability required 
for population-based predictions.

CYPs and UGTs are involved in the clearance of more than 
90% of drugs,31 with CYPs metabolizing 80% of clinically used 
drugs.32 Although CYPs and UGTs were previously measured 

in HCC,14,18 to our knowledge, there are no reports on individ-
ual abundance data in CRLM. Our data highlight suppression 
of most CYPs and UGTs in histologically normal compared 
with healthy controls and in cancerous tissue compared with 
histologically normal and healthy samples. The extensive down-
regulation of DMEs in the cancerous tissue implies severe im-
pairment of drug metabolism in these patients, leading to higher 
exposure to CYP and UGT substrates. The exposure of drugs 
used in CRLM treatment, such as irinotecan (metabolized by 
CYP3A4/5 and UGT1A1/933,34) and regorafenib (metabo-
lized by CYP3A4 and UGT1A935), may increase significantly 
in these patients, especially when a high proportion of their liver 
is cancerous. This means that lower drug doses may be required 
for patients with CRLM to avoid toxicity. Interestingly, a meta-
analysis showed that decreased abundance of CYPs in a virtual 
cancer population provides better PK predictions for CYP sub-
strates.36 Our data also highlight that healthy livers from non-
cancer subjects are better controls. Cancer environment affects 
abundance in histologically normal livers from patients with 
cancer, making them less suitable controls.

Drug transporters are important in drug/metabolite disposition 
and drug–drug interactions37 and may be involved in chemother-
apeutic drug resistance.8 Transporters involved in drug disposition 

Figure 3  Proportion of ABC transporters (a–c), and SLCs (d–f) in HLM from healthy, histologically normal and tumorous livers, respectively.
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Figure 4  Relative mean abundances of CYPs (a), UGTs (b), ABC (c), and SLC (d) transporters in HLMs. Each panel presents the ratios of mean 
abundance in histologically normal to healthy controls, tumor to healthy controls, and tumor to histologically normal livers. The y-axis starts at 
1 (no change between the sets). The mean abundances were expressed as pmol of protein per mg of total liver microsomal protein.
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relevant to CRLM include P-gp, BCRP, MRP1, MRP2, and 
OATP1B1 for irinotecan33,34 and regorafenib.38 Our data re-
vealed lower levels of SLCs in histologically normal tissue relative 
to healthy controls, and a more significant decrease in cancerous 
livers. Interestingly, the monocarboxylate transporter MCT1 was 
the only transporter that increased. Reports suggest that overex-
pression of MCT1 facilitates lactate efflux, protecting cancer cells, 
and its inhibition could be useful in drug-resistant cancers.39 Most 
ABC transporters quantified here were either downregulated or 
unchanged in cancer tissue relative to healthy controls. However, 
BCRP increased in tumors compared with healthy controls and 
P-gp (relative mean abundances) in tumors compared with histo-
logically normal livers from patients with cancer. This may lead to 
decreased drug accumulation in the tumor cells and could indicate 
resistance to chemotherapeutic substrates of BCRP and P-gp. Our 
data are generally in line with our pilot.23 Our current study is the 
first to quantify ABC and SLC transporters in CRLM and report 
interindividual variability. Overall, our data suggest altered drug 
disposition in CRLM and recommend MCT1, BCRP, and P-gp 
as potential targets for cancer treatment.

The most abundant CYPs and UGTs in all liver sets were simi-
lar, with varying percentages of abundance across different groups, 
consistent with the literature.26,40–43 The most abundant ABC 
transporters (in agreement with previous studies)26,44 and SLCs 
were the same in healthy and normal livers, but different in can-
cerous livers. Investigating the relative abundance of these proteins 
is key to understanding differences in drug–drug interactions in 
patients with CRLM compared with healthy subjects.

The protein profiles, as evidenced by PCA, showed higher het-
erogeneity in cancer. Abundances of DMEs were more variable in 
cancerous samples, indicating higher heterogeneity. The maximum 
interindividual variation across CYPs, UGTs, ABC transporters, 
and SLCs in healthy samples was 231 (CYP2C19), 11 (UGT1A6), 
23 (MRP4), and 16-fold (ASBT), respectively, which is smaller 
compared with a previous study using label-free quantification.26 
However, the maximum fold difference across CYPs, UGTs, ABC 
transporters, and SLCs in cancer samples was 4063 (CYP2C9), 
2784 (UGT1A9), 190 (BSEP), and 179-fold (OATP1A2), re-
spectively. The ratio of abundance of each protein target in histo-
logically normal to matched tumor livers for each individual was 

Figure 5  Relative abundance of CYPs (a), UGTs (b), ABC transporters (c), and SLCs (d) in individual HLMs from histologically normal tissue 
compared to matched tumors (n = 18).
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variable across the samples. Considering that normal livers belong 
to a homogeneous group, the lack of a specific trend in abundance 
for each individual could be attributed to the heterogeneity in can-
cerous livers, which may be explained by the fact that individuals 
differ in cancer cell differentiation, disease severity, type of cancer, 
previous treatment, and other characteristics.

Absolute abundance was measured in microsomes. Variability 
in abundance of highly expressed but unrelated HLM proteins can 
impact the abundance of DMEs and transporters, and abundance 
levels in tissue may reduce this effect.45 In our study, we converted 
abundance into tissue levels using matched MPPGL data mea-
sured previously.13 We did not observe consistency between rank 
orders of samples between microsomal and tissue abundances, in 
line with another study15 demonstrating that normalization with 
mg of membrane protein or gram of tissue can change the patterns 
of abundance. Scaling to tissue levels may be more appropriate for 
PK predictions in PBPK models. Therefore, in our simulations, 
we used MPPGL and protein abundance to extrapolate to tissue 
levels.

Based on measured abundance and MPPGL data, we assessed 
the impact of changes in DME and transporter levels on drug 
clearance predicted by PBPK simulations of 50 substrates. A 
substantial difference in drug clearance was observed when using 
cancer-specific parameters compared with typical parameters for 
healthy and default cancer populations, with higher exposure pre-
dicted with cancer-related parameters. This impact on drug clear-
ance increased when the whole liver was assumed to be cancerous. 
Therefore, abundance data may substantially affect PK profiles, es-
pecially when a high proportion of the liver is cancerous (advanced 
stage). The percentage of cancerous tissue was not known and was 
not incorporated into the models. Therefore, two extreme cases 
were used, where the whole liver was considered normal (maxi-
mum metabolic capacity) or tumorous. We should highlight that 
the predicted PK profiles were not compared with clinical data be-
cause these are not available for CRLM. Therefore, our simulations 

did not aim to point the correct method against observations, but 
to investigate the impact of the abundance of DMEs and transport-
ers on the PK in patients with cancer. Further work should verify 
our updated models for cancer populations when such clinical data 
become available.

Among the limitations of the study are the high interindivid-
ual variability and the small number of patients. Additionally, the 
systems parameters (albumin, AAG, and hematocrit) used in the 
default cancer population (Simcyp) are not specific for patients 
with CRLM but derived from several cancer types. Regarding 
the experimental method, we tried to reduce the variability. The 
models in healthy population (Simcyp) are validated and, there-
fore, we did not change the abundance in this population for our 
simulations. For the new cancer populations, the relative ratios of 
the abundance of cancerous or histologically normal to healthy 
controls were calculated and the default abundances (Simcyp) 
were modified accordingly. This minimizes the risk of differences 
in the abundances because of the method (our method vs. meth-
ods used for Simcyp default abundances). However, access to the 
observed data can show the exact impact of these factors on the in 
vivo clearance.

To conclude, this study provides, for the first time, absolute 
protein abundance data for a large array of hepatic DMEs and 
transporters in individual cancer samples with a focus on CRLM. 
DMEs were substantially downregulated and transporters were 
also altered in cancer. Interindividual variability was higher in can-
cer. Abundance data were scaled to tissue levels, highlighting the 
importance of abundance values with MPPGL data in the same 
livers. PBPK simulations demonstrated higher drug exposure with 
cancer population-specific abundance data relative to a healthy 
population. Therefore, appropriate abundance values specific for 
cancer populations may contribute to more accurate PK predic-
tions, and our quantitative data will be valuable in addressing gaps 
in cancer PBPK models. The values reported here should enable 
updating systems parameters within existing PBPK platforms in 

Figure 6  Scaling of protein abundance values to liver tissue levels in cancer (n = 11). Individual microsomal protein per gram of liver tissue 
(MPPGL) values in tumors were compared to their average MPPGL (a). Individual MPPGL from tumor livers (b) and average MPPGL value (c) 
were applied to extrapolate the abundance of CYP3A4 to pmol of protein per gram of liver tissue. Eleven cancerous livers were included, for 
which MPPGL and abundance values were available. Activity of cytochrome P450 reductase (used to correct for microsomal protein loss) was 
quantified in 12 tumor samples and these were below the limit of quantification in 6 samples. Abundance of CYP3A4 was below the limit of 
quantification in one sample for which activity of cytochrome P450 reductase was measured.
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relation to abundance of DMEs and transporters to reflect biolog-
ical values. Verification with observed clinical PK data creates the 
basis for what has been coined as “master files” to be used with dif-
ferent new drugs substrates.
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