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Mathematical modeling of biochemical pathways is an important resource in Synthetic
Biology, as the predictive power of simulating synthetic pathways represents an important
step in the design of synthetic metabolons. In this paper, we are concerned with the
mathematical modeling, simulation, and optimization of metabolic processes in biochem-
ical microreactors able to carry out enzymatic reactions and to exchange metabolites
with their surrounding medium. The results of the reported modeling approach are
incorporated in the design of the first microreactor prototypes that are under construc-
tion. These microreactors consist of compartments separated by membranes carrying
specific transporters for the input of substrates and export of products. Inside the
compartments of the reactor multienzyme complexes assembled on nano-beads by
peptide adapters are used to carry out metabolic reactions. The spatially resolved
mathematical model describing the ongoing processes consists of a system of diffusion
equations together with boundary and initial conditions. The boundary conditions model
the exchange of metabolites with the neighboring compartments and the reactions
at the surface of the nano-beads carrying the multienzyme complexes. Efficient and
accurate approaches for numerical simulation of the mathematical model and for optimal
design of the microreactor are developed. As a proof-of-concept scenario, a synthetic
pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen.
In this context, the mathematical model is employed to compute the spatio-temporal
distributions of the metabolite concentrations, as well as application relevant quantities
like the outflow rate of G6P. These computations are performed for different scenarios,
where the number of beads as well as their loading capacity are varied. The computed
metabolite distributions show spatial patterns, which differ for different experimental
arrangements. Furthermore, the total output of G6P increases for scenarios where
microcompartimentation of enzymes occurs. These results show that spatially resolved
models are needed in the description of the conversion processes. Finally, the enzyme
stoichiometry on the nano-beads is determined, which maximizes the production of
glucose-6-phosphate.

Keywords: biochemical microreactor, multienzymes complexes, spatio-temporal mathematical model, numerical
simulation, PDE-constrained optimization, model-based design
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1. INTRODUCTION

One of the greatest challenges in biology is to understand the
fundamental principles on how evolution has selected networks
to fulfill specific functional needs in the control of metabolism
or transcription. Synthetic biology approaches may help to shed
light on such principles by identifying modular functional units
of a network and uncover how units can be linked together to
yield new function (Bashor et al., 2010). There has already been
early success in engineering simple regulatory circuits that reca-
pitulate some of the behaviors of natural regulatory circuits, like,
e.g., circuits that regulate gene expression oscillations, bistable
switches, or circuits that perform combinatorial logic operations,
see Boyle and Silver (2009) and Purnick and Weiss (2009) for
reviews. However, synthetic biology approaches are not limited
to this field. An other important area of synthetic biology is in
the development of synthetic organelles, which host metabolic
processes, and which are able to communicate with the outside
environment via transport processes over semipermeable mem-
branes, which can either be built fromnatural constituents or from
synthetic polymers. Such robust bioreactors can be, e.g., applied
in biotechnology or drug delivery for the production of bioactive
ingredients (Roodbeen and van Hest, 2009; Marguet et al., 2013).

A fundamental principle in the development of bioreactors is
compartmentation. Hereby, the strategy is to mimic cellular orga-
nization, see, e.g., Roodbeen and van Hest (2009). The presence
of compartments (organelles) inside living cells allows for a better
regulatory control over the biological processes that occur inside
these compartments, e.g., pathways competing for intermediates
can occur in spatially separated compartments and can be regu-
lated differently. Furthermore, microcompartmentation bymeans
of metabolic channeling prevents the loss of intermediates and
minimizes competing cross-reactions. However, clearcut exper-
imental evidence demonstrating the importance of metabolic
channeling for metabolic flux in vivo is lacking. Mimicking the
natural situation, nanoreactors can be built by encapsulating
enzymes in vesicular compartments [as summarized in Peters
et al. (2012)], and in additionmicrocompartmentation of enzymes
can be achieved with the help of synthetic protein scaffolds (Chen
and Silver, 2012). Microreactors based on microfluidic devices
carrying out enzymatic processes, reviewed in Nomura et al.
(2004) and Asanomi et al. (2011), have also been into the focus
of research in the past years. Several methods used to immobi-
lize enzymes are available, like, e.g., immobilization of enzymes
on magnetic microparticles. An approach in the development of
microreactors for biosynthesis is the creation of fluidic assay-
basedmicroreactors withmembrane-bounded subcompartments,
carrying out biochemical conversion, and allowing exchange of
substrates and products between individual subcompartments.

In our paper, we are focusing on themodel-based design of bio-
chemical microreactors able to carry out enzymatic reactions and
to exchange metabolites between individual subcompartments.
The bioreactor is built according to reported model predictions
and is based on amicrofluidic system consisting of chambers sepa-
rated by porous walls, which are interspersed with biomembranes
(Figure 1). Themembranes carry specific transporters for input of
substrates and export of products. Inside the chambers magnetic

nano-beads are present that are positioned by an outer magnetic
field.

Multienzyme complexes assembled on these nano-beads by
peptide adapters are used to carry out metabolic reactions.
The nano-beads allow a maximal enzyme concentration, which
depends on the beads’ surface. Furthermore, it is possible to
provide beads with a given enzyme stoichiometry. We exploit the
microcompartmentation offered by the immobilized enzymes on
the bead surface to address the question, if the spatial proximity of
the individual enzymes and their stoichiometry has an impact on
the productivity of the microreactor. In Figure 1, a microreactor
consisting of an array of compartments is illustrated.

Our goal is to describe the spatio-temporal dynamics of
metabolite concentrations involved in the biosynthetic conver-
sions, and to optimize the microreactor, in order to increase
the accumulation of the final product. To achieve this goal, we
have developed a mathematical model describing the ongoing
metabolic processes in spatial resolution. By applying a model
with spatial resolution, we can assess, if the spatial arrangement
of the individual enzymes and their stoichiometry has an impact
on the productivity of the microreactor. Hence, our model will
be able to predict, if metabolic channeling plays a role in the
described in vitro assembly. Our model consists of a system of
diffusion equations together with boundary and initial conditions.
The boundary conditions model the exchange of metabolites with
the neighboring chambers and the reactions at the surface of the
nano-beads carrying the multienzyme complexes. For the numer-
ical simulation of the mathematical model, efficient and accu-
rate approaches are developed. These allow the computation of
the spatio-temporal distribution of the metabolite concentrations
inside the compartments and the flux of products through the
export boundaries. Here, different computational scenarios can
be considered including different numbers and loading capacities
of nano-beads, different enzyme stoichiometries on the surface of
the beads, as well as the distribution of enzymes both inside the
fluid and on the beads’ surfaces. Comparing the metabolic flux
through the system for those scenarios allow to test the hypothesis
that microcompartmentation of enzymes increases the efficiency
of the metabolic pathway. Based on the mathematical model and
the simulation approach, the optimal design of the microreactor
is performed.

As a proof-of-concept scenario, we choose a synthetic path-
way for the conversion of sucrose to glucose-6-phosphate. This
metabolic pathway is localized in one chamber of microreac-
tor allowing the import of sucrose and the export of glucose-
6-phosphate. Based on the mathematical model, several inves-
tigations are performed. First, the spatio-temporal distributions
of the metabolite concentrations, as well as application relevant
quantities like the production rate of the metabolites and outflow
rate of G6P are computed. These computations are performed
for different scenarios, where the number of beads as well as
their loading capacity are varied. Furthermore, for the calcula-
tions, we consider two different hexokinases, namely HsHK2 and
ScHK2, and we suppose sucrose and ATP to be present in surplus
quantities. Finally, for the mentioned scenarios, we determine the
stoichiometry of enzyme concentrations on the nano-beads which
maximizes the production of glucose-6-phosphate.
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FIGURE 1 | A biochemical microreactor consisting of an array of compartments separated by membranes carrying specific transporters for input of
substrates and export of products. This microreactor is currently under construction and the modeling results reported here are being utilized to influence the
conceptual design of the microreactor.

2. MATERIALS AND METHODS

2.1. The Mathematical Model
In this section, we set up a mathematical model describing the
conversion of sucrose (S) to glucose-6-phosphate (G6P). This
metabolic pathway is carried out in a microreactor consisting of a
chamber separated from the surrounding medium bymembranes
carrying transport proteins for the input of sucrose and export of
glucose-6-phosphate.Nano-beads loadedwithmultienzyme com-
plexes are distributed inside the chamber. The enzymatic reactions
constituting the metabolic pathway, as well as the corresponding
enzymes and metabolites are listed in Table 1.

The layout of the microreactor is given in Figure 2. We denote
the reactor chamber byΩc ⊂Rn (n= 2 or n= 3). The space inside
the chamber occupied by nano-beads, which are balls with diam-
eter d, is denoted by Ωb, whereas the remainder, representing the
domain occupied by the bulk solution, is denoted byΩ := Ωc\Ωb.
We assume that Ωb is strictly included in Ωc, this means that the
beads do not touch the walls of the chamber. The number of beads
in the reactor is denoted by nb. The boundary ∂Ω of the domain
Ω is decomposed into ∂Ωc, the boundary of the chamber, and
Γb:= ∂Ωb, the reactive surface of the nano-beads. Furthermore,
the boundary ∂Ωc of the chamber consists of Γi, Γe, and Γ0, i.e.,

∂Ωc = Γi ∪ Γe ∪ Γ0,

and the three sets are pairwise disjoint. The sets Γi, respec-
tively, Γe represent the boundary parts where metabolites are
transported into, respectively, out of the chamber Ωc. These
import/export boundaries have a complex geometric structure.
They consist of fenestrations linedwith lipid-membranes carrying
transporters for the exchange of metabolites. On the boundary
Γi the sucrose/proton cotransporters are distributed, whereas Γe
contains the transporters for the exchange of glucose-6-phosphate
and inorganic phosphate. In our model, the microscopic structure
of the boundaries is taken into account in an averaged (homog-
enized) way, which makes the model amenable for numerical
calculations. More precisely, we assign to each of the boundaries
Γi, Γe an effective permeability for the transported metabolites
denoted by θi, respectively, θe (θi, θe ∈ [0,1]). These permeabilities
can be calculated by an averaging approach (homogenization),
assuming that the pores of the transporters are very small com-
pared to the dimension of the reactor chamber and occur in a
large number, and that the transporters are uniformly distributed
within the lipid-membrane. A sketch illustrating the idea behind
the homogenization approach is given in Figure 3.

TABLE 1 | Metabolic reactions and the corresponding enzymes and
metabolites.

Reactions Enzymes

(0) Se + H+
e 
 S + H+ S-transporter

(1) S → G+ F Invertase (inv)
(2) G+ATP → G6P+ADP Hexokinase (hk)
(3) F+ATP → F6P+ADP Hexokinase
(4) F6P 
 G6P Phosphoglucose isomerase (pgi)
(5) G6P+Pie 
 G6Pe +Pi G6P-transporter

Metabolites: S, sucrose; H+, protons; G, glucose; F, fructose; G6P, glucose-6-
phosphate; F6P, fructose-6-phosphate; Pi, inorganic phosphate.
The index e identifies metabolite located outside the chamber.

FIGURE 2 | Geometric representation of the modeled microreactor:
reaction chamber Ωc with boundary ∂Ωc consisting of import
boundary Γi, export boundary Γe, and impermeable boundary Γ0, and
ensemble of nano-beads Ωb with reactive boundary Γb.

The spatio-temporal dynamics of the concentrations yj,
j= 1, . . . , m of metabolites involved in the metabolic pathway is
governed by a system of reaction–diffusion equations of the form:

∂tyj(t, x)−Dj∆yj(t, x) = RΩ
j ( y(t, x), λ) for (t, x) ∈ (0,T)×Ω,

(1a)
together with the boundary conditions

− Dj∇yj(t, x) · ν(x) = −Rb
j ( y(t, x), λ) for (t, x) ∈ (0,T)× Γb,

(1b)
− Dj∇yj(t, x) · ν(x) = −θeRe

j ( y(t, x)) for (t, x) ∈ (0,T)× Γe,

(1c)
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FIGURE 3 | For pores of size ϵ>0, the boundary part Γε
∗, with * ∈ {i,e} contains the union of all pores in the inflow, respectively, outflow boundary.

When performing the homogenization approach, we suppose that the number of the pores gets larger, while the size of the pores gets smaller, in such a way that the
ratio between the surface occupied by pores and the surface of the fenestration remains constant. The value of this constant is the permeability θ*, *∈ {i,e}, in the
boundary conditions [equations (1c)–(1d)]. (A). Inflow/outflow boundary for pores with size ϵ1. (B). Inflow/outflow boundary for pores with size ϵ2 <ϵ1. (C). Via
homogenization, i.e., ϵ→0, we obtain a homogenized model formulated on inflow/outflow boundaries without complex pore structure.

− Dj∇yj(t, x) · ν(x) = −θiRi
j( y(t, x)) for (t, x) ∈ (0,T)× Γi,

(1d)
− Dj∇yj(t, x) · ν(x) = 0 for (t, x) ∈ (0,T)× Γ0,

(1e)
and the initial condition

yj(0, x) = y0j (x) for x ∈ Ω. (1f)
Here, ν denotes the outer unit normal on ∂Ω with respect

to Ω. Equation (1a) describes diffusion with diffusivity Dj and
enzymatic reactions with kinetics RΩ

j for the metabolite number j.
In case that enzymes are localized on beads (and thus no reactions
are carried out in the bulk domain), the terms RΩ

j are equal to
zero. The boundary conditions involve the quantity −Dj▽yj · ν
which describes the normal component of the diffusive flux of the
j-th metabolite at the boundary of the domain Ω. Thus, condition
(1e) models an impermeable boundary, where the normal flux is
equal to zero. Conditions (1c)–(1d) model the flux of metabolites
through the import and export boundary, respectively. This flux is
proportional to the permeability of the boundary, and the kinetics
of the corresponding transport protein. Finally, condition (1b)
describes the normal flux of metabolites at the boundary of the
beads, generated by enzymatic reactions at the beads’ surface.
We emphasize that the reaction rates Rb

j and RΩ
j depend on an

additional parameter λ = (λ1, . . . , λne) ∈ Rne . This parameter
describes the stoichiometry of enzymes on the beads and in the
bulk, and thus for i= 1, . . . , ne, where ne denotes the number of
enzyme species involved in the reactions, holds

λi ≥ 0 and
ne∑
i=1

λi = 1. (2)

(The case λi* = 1 for some i*∈ {1, . . . ne} means that all binding
sites on the bead surface are occupied by the enzyme i*, whereas
the caseλi =

1
ne for all i∈ {1, . . . ne}means that all enzymes occupy

the same amount of binding sites).
The existence and uniqueness of positive solutions for the

model (1) can be shown by arguments similar to those in Gahn
et al. (under review)1. We also emphasize that the model (1), valid

1Gahn, M., Neuss-Radu, M., and Knabner, P. (2015). Homogenization of reac-
tiondiffusion processes in a two-component porous medium with nonlinear flux
conditions at the interface. SIAM J. Appl. Math. (Under Review).

for one conversion chamber, can easily be extended to model a
multicompartment microreactor. This is done by adding trans-
mission conditions at the interfaces separating the compartments,
which model the exchange of metabolites between neighboring
compartments.

In this paper, we want to investigate the interplay between
the metabolic processes at the beads and the export of the prod-
uct glucose-6-phosphate. We assume that during the conver-
sion processes sucrose and ATP concentrations can be regarded
as constant, since these two metabolite species are present in
excess. As a consequence, we drop reaction (0). The equa-
tion for ADP can be neglected, since ADP is just a product
of irreversible reactions and therefore has no direct effect on
the reaction rates in equation (1). Finally, we assume that the
concentrations of G6Pe and Pie (glucose-6-phosphate and inor-
ganic phosphate outside the chamber) are constant. This is moti-
vated by the fact that G6Pe may be consumed in a following
reaction, and Pie may be delivered at a desirable rate in the
space outside the chamber. Hence, we can drop the equations
for G6Pe and Pie. The constant values of the concentrations
mentioned above are given by the corresponding initial con-
centrations (Table 3). The scenario taking into account these
assumptions shall be referred to as the sucrose excess scenario
(SE-scenario).

The reactions relevant for the SE-scenario are reactions (1)–(5)
(Table 1). These are in general multisubstrate enzymatic reac-
tions. Their reaction mechanisms and the corresponding reaction
kinetics are displayed in Table 2A. Note that in Table 2, the
concentrations of metabolites are denoted with brackets (e.g., for
sucrose, we use [S] instead of yS). This is chosen in order to keep
the notation clear.

The unknowns of the model in the SE-scenario are the fol-
lowing metabolite concentrations: yG, yF, yF6P, yPi, yG6P. For each
unknown, a reaction–diffusion equation of type (1a) comple-
mented by boundary conditions of type (1b)–(1e), and initial
conditions holds. The reaction terms occurring in the equations
are denoted by RΩ

G , . . . ,RΩ
G6P, whereas the fluxes at the boundaries

Γb, Γe, Γi are given by reaction terms denoted by Rb
G, . . . ,Rb

G6P,
Re
G, . . . ,Re

G6P, and Ri
G, . . . ,Ri

G6P. The precise form of these reac-
tion terms, in case when enzymes are distributed on beads, i.e.,
RΩ
j = 0, is given in Table 2B. We emphasize that, when the

metabolite j, j=G, . . . , G6P participates in different reactions, the
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TABLE 2 | (A) Metabolic reactions relevant for the sucrose excess scenario
and the corresponding reaction kinetics; reaction mechanisms: (1) irre-
versible Michaelis–Menten; (2), (3) irreversible bi–bi ordered; (4) reversible
Michaelis–Menten; (5) bi–bi ping pong. See, e.g., Segel (1975) for an
overview on reaction mechanisms for multisubstrate enzymatic reactions;
(B) reaction terms in equation (1) corresponding to the concentrations yj,
j =G, . . . , G6P, for the SE-scenario with enzymes distributed on beads,
i.e., RΩ

j = 0.

(A)

Reaction Reaction rate

(1) rinv (S) =
λinvv

inv
max[S]

KmS+[S]

(2) rGhk(G, ATP) =
λhkv

hk
max[G][ATP]

KmGKmATP+KmATP[G]+KmG[ATP]+[G][ATP]

(3) rFhk(F, ATP) =
λhkv

hk
max[F][ATP]

KmFKmATP+KmATP[F]+KmF[ATP]+[F][ATP]

(4) rpgi (F6P, G6P) =
λpgiv

pgi,f
max [F6P]

KmF6P+[F6P] −
λpgiv

pgi,b
max [G6P]

KmG6P+[G6P]

(5)

rG6P (G6P, Pie, G6Pe, Pi) =

vG6P,fmax

(
[G6P][Pie]−

[G6Pe][Pi]
Keq

)
[G6P][Pie]+KmPie [G6P]+KmG6PT [Pie]

(
1+

[Pi]
KiPi

)
+...

...
vG6P,fmax

vG6P,bmax Keq

(
KmPi[G6Pe]

(
1+

[G6P]
KiG6P

)
+[Pi]

(
KmG6Pe+[G6Pe]

))

(B)

Species j Rb
j Re

j

G rinv(S) − rGhk(G, ATP) 0

F rinv(S) − rFhk(F, ATP) 0

F6P rFhk(F, ATP) − rpgi(F6P,G6P) 0

Pi 0 rG6P(G6P, Pie, G6Pe, Pi)

G6P rGhk(G, ATP) + rpgi(F6P,G6P) –rG6P (G6P, Pie, G6Pe, Pi)

reaction term Rb
j is given as a sum of all relevant reaction kinetics.

If reactions take place also in the bulk, the reaction terms RΩ
j ,

for j=G, . . . , G6P, have the same structure as Rb
j with potentially

different parameters. Finally, we mention that in the SE-scenario
the inflow boundary Γi is impermeable, thus the reaction terms
Ri
G, . . . ,Ri

G6P are set to zero.
The values vimax for an enzyme i, i ∈ {inv, hk, pgi} in Table 2,

can be calculated by vimax = kicat[E]0, with a turnover number kicat
given in Table 3, and the concentration [E]0 of occupied binding
sites on a bead. The enzymatic activity for the enzyme i, i∈ {inv,
hk, pgi} on each bead is then given by λivimax, where the vector
λ= (λinv, λhk, λpgi) describes the enzymes stoichiometry on the
bead. For the simulations, we choose λ = λE := (λE

inv, λ
E
hk, λ

E
pgi),

where λE satisfies

kinvcatλ
E
inv = khkcatλE

hk = kpgicatλ
E
pgi,

λE
inv + λE

hk + λE
pgi = 1.

(3)

This enzyme stoichiometry leads to equal enzymatic activity for
all enzyme species. The values of λE are given in Table 3. Please
note that in Section 2.3 optimal values for the parameter λ are
computed.

TABLE 3 | Parameter values for the SE-scenario, corresponding to two
different hexokinases HsHK2 and ScHK2.

Parameter Value Parameter Value

KmS 0.9 mol
m2 kpgicat 646.61s−1

KmG 0.052 mol
m2 (HsHK2),

0.12 mol
m2 (ScHK2)

vinv,fullmax 6.57 ·10−5 mol
sm

KmATP 0.5 mol
m2 (HsHK2),

0.1 mol
m2 (ScHK2)

vhk,fullmax 10.62 ·10−7 mol
sm (HsHK2),

2.03 ·10−8 mol
sm (ScHK2)

KmF 11.4 mol
m2 (HsHK2),

0.33 mol
m2 (ScHK2)

vpgi,fullmax 12.57 ·10−6 mol
sm

KmF6P 0.19 mol
m2 vG6P,fmax 3.23 ·10−8 mol

sm

KmG6P 0.5 mol
m2 vG6P,bmax 3.23 ·10−8 mol

sm

KmG6PT 0.7 mol
m2 λE (0.0147, 0.91, 0.0753)

(HsHK2)

KmG6Pe 0.7 mol
m2 λE (0.0003, 0.9981, 0.0016)

(ScHK2)

KmPi 1.1 mol
m2 θe 0.15

KmPie 1.1 mol
m2 [G6Pe] 1 mol

m2

KiG6P 0.9 mol
m2 [PIe] 10 mol

m2

KiPi 0.1 mol
m2 [ATP] 10 mol

m2

Keq 0.5 mol
m2 [S] 50 mol

m2

khkcat 54.63s−1(HsHK2),
1.06s−1(ScHK2)

d 10−5m

kinvcat 3379.60s−1 [E]full 1.94 ·10−8 mol
m

These parameters correspond to the 2-dimensional case and their units of measurements
were adapted to this case. Approaches for the experimental determination of the kcat-
values can be found in Gao and Leary (2003), Gloyn et al. (2005), Lin et al. (2009), Lafraya
et al. (2011), and Somarowthu et al. (2011). We use the values below to calculate the
νmax-values. The initial values y0j in equation (6) for the species j=G, F, F6P, G6P, Pi are
equal to zero. For the diffusion–coefficients, Dj belonging to these species we use the

value Dj = 5.5 · 10−10 m2

s .

2.2. Numerical Methods
We use a finite element method in order to find an approximation
to the solution of equation (1) on a fixed time interval [0,T] and
with a given initial state.

For the numerical accuracy and the computational complexity
of an implementation, also in view of the optimization, it is
crucial to choose a suitable discretization. For our problem, we
use lowest order Raviart–Thomas elements (Raviart and Thomas,
1977). On a first glance, linear finite elements seem superior to
Raviart–Thomas elements due to a lower number of unknowns
and a higher order of convergence. However, for our problem,
it turns out that the use of linear finite elements leads to solu-
tions with negative concentrations when the triangulation T h
is not extremely fine. More precisely, for nb = 1 we investigated
two scenarios, and compared the number of unknowns that are
needed for each discretization, to obtain realistic results. For
Ωc = (0.50µm)2, we need 3200 degrees of freedom per species in
order to obtain realistic results for linear finite elements, whereas
Raviart-Thomas elements only need 993 degrees of freedom.
For Ωc = (0.300µm)2 we need 122,544 degrees of freedom per
species in order to obtain realistic results for linear finite elements,
whereas Raviart–Thomas elements only need 38,256 degrees
of freedom. The computational complexity for Raviart–Thomas
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elements can be further reduced by hybridization, in this case only
607 degrees of freedom for the smaller domain and 23,016 degrees
of freedom for the larger domain are needed.

The resulting space-discrete system is stiff, therefore, we use
the implicit Euler method for the time integration. The resulting
finite dimensional non-linear problems are solved with Newton’s
method. Whenever the non-linear solver can not find a non-
negative solution, the time step is rejected and a smaller time step
size is used (until the non-linear solver can find a non-negative
solution or the time step size is less than a predefined minimal
time step size). We emphasize that decreasing the time step size
was not necessary on the meshes used for spatial discretization
(see SupplementaryMaterial) with Raviart–Thomas elements and
a time step size of 0.25 s.

In order to decrease the computational complexity of problem
(1), arising from the number of species, we use the scheme pre-
sented in Kräutle and Knabner (2005) with minor modifications:
instead of finding the basis of the image of the stoichiometric
matrix S on the right hand side of the partial differential equation,
we find the basis of the image of the matrix (Sb|Se), where Sx
refers to the stoichiometric matrix of the reactions onΓx, x∈ {b,e}.
The decoupled problem consists of 6 coupled species, whereas
the original problem consists of 11 coupled species. In the SE-
scenario, the decoupling scheme does not decrease the compu-
tational complexity, since the resulting stoichiometric matrix has
full rank.

The numerical scheme has been implemented using the soft-
ware package M++ that is based on the data structure inWieners
(2005). The algorithm uses MPI parallelization and can therefore
use an arbitrary number of processors for computation. This is
particularly useful for problems involving many species.

2.3. Optimization Methods
Besides setting up a mathematical model for the microreactor to
describe the temporal and spatial distribution of enzymes and
reactants, our goal also was to determine optimal parameters for
enhanced performance of the microreactor based on this model.
We demonstrate here how to succeed in a systematical way using
derivative-based non-linear optimization techniques. Exemplary,
we focus on how to determine the real parameters λmodeling the
stoichiometry of the enzymes loaded on the beads entering in the
non-linear terms in equation (1). We then discuss extensions of
such methods to other parameters such as the discrete number of
beads nb, the combinatorial problem of which specific enzymes
should be used for the metabolic pathway and continuous geom-
etry parameters such as the bead diameters or locations, the total
activity of the transporter proteins, the shape and size of the
chamber itself, etc.

The criterion for the performance of the reactor will be the
total outflow of a desired product, say yj∗ (λ) on Γe, over a fixed
production time horizon [0,T],

J( y) =
∫ T

0

∫
Γe

− Dj∗∇yj∗(t, x) · ν(x) dσ(x) dt

=

∫ T

0

∫
Γe

− θeRe
j∗( y(t, x)) dσ(x) dt, (4)

where we have used equation (1c) for j = j∗ in equation (4). For
our sucrolytic chamber, we have j∗ = jG6P. By optimal parameters,
we mean that any feasible choice close to the optimal one does not
lead to a higher total outflow predicted by the model.

While derivative-based non-linear optimization techniques are
conceptually well-known, we emphasize that due to the large-
scale, non-linear system of equations to be solved for each direct
simulation of the model, the main challenge is an efficient com-
putation of the derivative of the reduced cost function

Ĵ(λ) = ( y(λ)), (5)

where y(λ) denotes the numerical solution of the system [equa-
tions (1a)–(1f)] as a function of the parameter λ. We will exploit
that the dimension of the parameter space np is typically small
compared to the dimension obtained from discretization of the
infinite-dimensional state space for y in the model and will there-
fore follow a sensitivity-based approach to compute the derivative
[see, e.g., Hinze et al. (2009)]. Letting ei, i= 1, . . . , np, being a
bases of the parameter space this means that we can compute the
derivative Ĵ′(λ) as

Ĵ′(λ) =
l∑

i=1
Jy( y(λ)) δeiy, (6)

where the sensitivity δeiy = y′(λ)ei is given by the solution (ỹ1, . . . ,
ỹm) of the following linearized problem

∂tỹj(t, x)− Dj∆ỹj(t, x) = ∂yRΩ
j ( y(t, x), λ)ỹj

− ∂λRΩ
j ( y(t, x), λ)ei for (t, x) ∈ (0,T)× Ω, (7a)

together with the boundary conditions

− Dj∇ỹj(t, x) · ν(x) = −∂yRb
j ( y(t, x), λ)ỹj

+ ∂λRb
j ( y(t, x), λ)ei for (t, x) ∈ (0,T)× Γb, (7b)

− Dj∇ỹj(t, x) · ν(x) =

− θe(Re
j )
′( y(t, x))ỹj for (t, x) ∈ (0,T)× Γe, (7c)

− Dj∇ỹj(t, x) · ν(x) =

− θi(Ri
j)
′( y(t, x))ỹj for (t, x) ∈ (0,T)× Γi, (7d)

− Dj∇ỹj(t, x) · ν(x) = 0 for (t, x) ∈ (0,T)× Γ0, (7e)

and the initial condition

ỹj(0, x) = 0 for x ∈ Ω, (7f)

where ∂y and ∂λ denote partial derivatives and ()′ [e.g., (Ri
j)
′]

denotes total derivatives of the corresponding kinetic functions,
respectively, and where y is the solution of equations (1a)–(1f).
The solution of this linearized problem can be computed simul-
taneously with the direct simulation using the same discretization
method as described in Section 2.2. Compared to the evaluation
of the objective function (5), the additional computational effort
to obtain the derivative is solving np linear equation systems in
each time step. Instead of using the linearized problem (7), we can
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also obtain a derivative from an adjoint problem, see again, e.g.,
Hinze et al. (2009). The latter approach ismore efficient when np is
large.

With the derivative at hand, we can then solve the reduced
optimization problem subject to further parameter constraints
for instance with primal-dual interior-point algorithms using a
quasi-Newton approximation of the Hessian. These methods are
known to have both good theoretical and practical behavior, see,
e.g., Forsgren et al. (2002). Given some initial parameter λ(0), they
compute a sequence of parameters λ(k), k= 1, 2, 3, . . ., converging
to an optimal λ until for some k* first order conditions or sta-
tionarity in the objective function are satisfied within a tolerance
tolX or tolfun, respectively. We set λ*=λ(k*), J*= J(y(λ*)), and
J0 = J(y(λ(0))).

In order to determine an optimal stoichiometry λ for our
sucrolytic chamber, we have the three parameters λinv, λhk, and
λpgi, but we may eliminate for example λpgi by the condition
(2). This yields np = 2, together with a linear inequality con-
straint λinv +λhk ≤ 1 and box constraints λinv, λhk ∈ [0,1]. For
our numerical results in Section 3.2 for the SE-scenario, we have
used the interior-point algorithm implemented in the Optimiza-
tion Toolbox in MATLAB (2014) with a BFGS quasi-Newton
approximation of the hessian, where equations (5) and (6) are
computed using the methods described in Section 2.2. Again
we use the software package M++ for our implementation. As
initial parameter λ(0), we either use the stoichiometry from equal
activity λE given by equation (3) or the uniform stoichiometry
λ(0) = λU =

( 1
3 ,

1
3 ,

1
3
)
depending on which has a larger value

J(0). Furthermore, we use tolX = 1.0e–06 and tolfun = 1.0e–04 for
all our optimization runs.

The derivative computation and hence the above method can
directly be adapted to other real parameters entering the kinetic
functions such as, e.g., the permeability θ. Combinatorial prob-
lems from (additional) discrete parameters such as the number
of beads can be solved using enumeration or, approximately,
by derivative-based optimization techniques based on relaxation
methods, even for time dependent parameters as in Hante and
Sager (2013). Continuously varying geometry parameters such
as bead diameters or shape and size of the chamber Ωc can be
handled similarly by shape derivatives as in Leugering et al. (2011).
For the SE-scenario, we enumerate optimal λ* for various combi-
nations of number of beads nb, different choices of hexokinases in
the sucrolytic pathway and different time horizons T.

3. RESULTS

We apply our simulation and optimization methods to the situ-
ation of the microreactor in the SE-scenario for realistic param-
eters. Hereby, we consider two-dimensional quadratic reaction
chambers Ωc = (0, L)2 with L= 500 and L= 3000µm, and dif-
ferent numbers of uniformly distributed beads, each of diameter
of 10µm. The outflow boundary is Γe = {L}× (0, L). The rest
of the chambers’ boundary is impermeable. The parameters of
the mathematical model are given in Table 3. The final time T
varies between 0.5 and 4 h. This is appropriate, due to the fact that
the outflow-membrane Γe is in general unstable and bursts after
several hours. We stress that, due to the need of small time step

sizes and the ratio of bead and chamber size, larger time horizons
and chamber sizes lead to a higher computational complexity.

For our numerical investigations, we consider two types of hex-
okinase, namely HsHK2 and ScHK2.We also have two stoichiom-
etry values which play a role in our calculations: the uniform
stoichiometry λU =

( 1
3 ,

1
3 ,

1
3
)
, and the equal activity stoichiom-

etry λE described in equation (3). More precisely, λE is used for
the numerical simulations, whereas either of the two is used as
initial parameter in the optimization, depending on which leads
to a larger value of the total glucose-6-phosphate outflow.

3.1. Simulation Results
We consider a quadratic chamber Ωc with a length of 3000µm,
a fixed run time of T= 3 h, a fixed enzyme stoichiometry λ=λE

and a number of beads nb ∈ {02, 12, 22, . . . ,62, 122, 182, . . . ,602},
where nb = 0 refers to a scenario with enzymes distributed in the
bulk solution.

The meshes used for spatial discretization consist of between
15,190 triangles and 22,941 edges for 1 bead, and 93,184 triangles
and 151,592 edges for 2916 beads. Detailed information about
the meshes is available in the Supplementary Material. We used
a time step size of 0.25 s. All calculations have been repeated for
T= 1.5 h on uniform refinedmeshes and half of the time step size.
No significant differences between the results on the coarse and on
the fine meshes were observed.

First results are concerned with the numerical computation of
the spatial and temporal distribution of the metabolites. Figure 4
shows the distribution of G6P for a scenario with 1296 beads
and the hexokinase HsHK2 after 3 h for completely and partially
loaded beads.

Next results are concerned with the computation of quantities,
which are particularly relevant for our microreactor, namely the
export of G6P at time t ∈ [0,T], i.e., the outflow rate at time t
given by ∫

Γe

− DG6P∇yG6P(t, x) · ν(x)dσ(x), (8)

and the production rate for the metabolites at the beads at time t
given by ∫

Γb

Dj∇yj(t, x) · ν(x)dσ(x), (9)

for j=G, . . . , G6P. In computing these quantities, we consider the
following arrangements:

(S.1) Increase the number of beads nb, where beads are com-
pletely loaded.

(S.2) The total number of enzymes in the domain is fixed (and
given by the number of binding sites on one completely
loaded bead) and enzymes are distributed uniformly on nb
beads or in bulk. The latter case, we characterize by nb = 0.

Both arrangements are simulated for the two hexokinases
HsHK2 and ScHK2, and the beads are distributed periodically in
the bulk, like, e.g., in Figure 4. For the arrangement (S.2), we also
consider the case without beads where all enzymes are distributed
in the bulk. Then the reaction terms RΩ

j in equation (1a) are equal
to Rb

j from Table 2. In (S.1), the maximal velocity vimax = kicat[E]0
corresponding to enzyme i, i ∈ {inv, hk, pgi} is calculated with
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FIGURE 4 | G6P concentration in mol
m2 in a scenario with nb = 1296 beads and the hexokinase HsHK2, for a completely loaded beads (left) and partially

loaded beads, where the total number of enzymes distributed to the beads corresponds to that on one completely loaded bead (right), after 3 h.

FIGURE 5 | G6P production rate (top) and outflow rate (bottom) in mol
s for arrangement (S.1) with nb ∈ {1, 144, 576, 1296, 2916} and the enzymes

ScHK2 (left) and HsHK2 (right).

[E]0 = [E]full where [E]full is the concentration of binding sites on
one bead. These values are denoted by vi,fullmax, and are given in
Table 3. In (S.2), we fix the total concentration of enzyme to be
given by [E]full. However, this concentration is now distributed
on nb beads. Thus, the values for vimax, i ∈ {inv, hk, pgi} are now
obtained by dividing the values used in (S.1) by the number of
beads nb.

The production and outflow rate forG6P are plotted inFigure 5
for (S.1) and Figure 6 for (S.2). For fully loaded beads the produc-
tion rate increases with increasing number of beads, and reaches
saturation after approximately 1000 s in the case of HsHK2 and

after approximately 10,800 s in the case of ScHK2 (Figure 5, upper
pictures). Concerning the outflow rate, in case ofHsHK2 (Figure 5
right bottom) an upper bound is asymptotically reached, the value
of which seams to be the same for all nb ≥ 576 (simulations with
longer runtime suggest that the value seams to be the same for
nb ≥ 16).

In case of partially loaded beads corresponding to arrangement
(S.2), the production rate of G6P at the beads up to a time of 3 h
first decreases with increasing number of beads and then stays
nearly constant (Table 4; Figure 6, upper figures). Please note,
that for the arrangement (S.2) the outflow rates are not reaching
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FIGURE 6 | G6P production rate (top) and outflow rate (bottom) in mol
s for the arrangement (S.2) nb ∈ {0, 1, 4, 36, 900} and the enzymes ScHK2 (left)

and HsHK2 (right).

TABLE 4 | Production and outflow rates at T =3h for scenario (S.2) with the hexokinase HsHK2 and nb∈∈∈ {12, 22, 62, 182, 302, 422, 542, 0}, and times until
half of these rates are reached.

nb 1 4 36 324 900 1764 2916 0

Rates after 3 h (in mol
s ) Production 0.12 0.10 0.095 0.094 0.095 0.095 0.095 0.094

Outflow 0.0021 0.0016 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013

Time until half of the rate above is reached (in seconds) Production 2 1494 3460 3603 3606 3600 3590 3618
Outflow 5959 6457 7025 7090 7092 7090 7086 7096

saturation, which implies that the transporters activity are not
limiting the outflow for the chosen enzyme concentration [E]full.
We also remark that for the chosen stoichiometry λE, in case of
arrangement (S.2), the production rate of G6P for HsHK2 is by a
factor 103 to 104 larger than for ScHK2, i.e., in (S.2) the selected
hexokinase has a greater influence on the conversion process as
in (S.1).

In order to quantify how fast production and outflow rate for
various number of beads increase in time in the scenario (S.2) with
the hexokinaseHsHK2, inTable 4, we give the values of these rates
at T= 3 h, and the times the reactor needs to reach half of these
values.

3.2. Optimization Results
We aim at finding the optimal stoichiometry λ* for the SE-
scenario. Since our focus is on computing a variety of different
scenarios with a reasonable computational effort, we have chosen

the smaller chamberΩc = (0.500µm)2 for these experiments. The
meshes used for the spatial discretization of this chamber consist
of between 820 triangles and 1270 edges for 1 bead, and 2394
triangles and 3883 edges for 64 beads. Further information about
the meshes is available in the Supplementary Material.

For our study, we consider the following arrangements:

(O.1) For a fixed runtime of T= 1 h, we increase the number of
completely loaded beads in the chamber with nb ∈ {1, 4, 9,
16, 25, 36, 49, 64}.

(O.2) For a sucrolytic chamber with one completely loaded
bead, we optimize the G6P outflow for different runtimes
T ∈ {0.5, 1, 1.5, 2, . . . 4} hours.

We study these arrangements for the hexokinases ScHK2 and
HsHK2.

For the enzyme ScHK2, we find in case of arrangement (O.1)
that the optimal stoichiometry for a runtime of 1 h is between 3
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TABLE 5 | Optimal parameters λ* for the SE-scenario with ScHK2 (top) and HsHK2 (bottom), for a fixed runtime T =3600, and different numbers nb of
beads.

Enzyme nb λ(0) J0 k* λ∗
inv λ∗

hk λ∗
pgi J* J∗−J0

J0

ScHK2 1 λU 0.228066 16 0.120404 0.815447 0.064149 0.446978 0.9599
ScHK2 4 λU 0.968913 11 0.084901 0.860564 0.054536 2.090510 1.1576
ScHK2 9 λU 2.144680 19 0.063959 0.895103 0.040938 4.686620 1.1852
ScHK2 16 λU 3.652360 14 0.052440 0.912839 0.034722 7.750300 1.1220
ScHK2 25 λU 5.385780 21 0.045398 0.923280 0.031322 10.90060 1.0240
ScHK2 36 λU 7.248180 18 0.040294 0.930381 0.029326 13.90760 0.9188
ScHK2 49 λU 9.160180 15 0.036641 0.935141 0.028218 16.66100 0.8189
ScHK2 64 λU 11.06320 17 0.033702 0.938735 0.027563 19.12850 0.7290

HsHK2 1 λE 8.649300 8 0.091012 0.908980 0.000008 13.12310 0.5172
HsHK2 4 λE 21.54300 12 0.070280 0.929719 0.000001 25.56560 0.1867
HsHK2 9 λE 28.92340 16 0.061383 0.938615 0.000002 31.59840 0.0925
HsHK2 16 λE 32.96630 20 0.056368 0.943629 0.000003 34.76250 0.0545
HsHK2 25 λE 35.34790 25 0.053100 0.946886 0.000015 36.61110 0.0357
HsHK2 36 λE 36.85580 26 0.050721 0.949259 0.000019 37.78430 0.0252
HsHK2 49 λE 37.86820 22 0.048855 0.951144 0.000001 38.57600 0.0187
HsHK2 64 λE 38.58160 26 0.047409 0.952590 0.000002 39.13760 0.0144

TABLE 6 |Optimal parameters λ* for the SE-scenario with ScHK2 (top) and HsHK2 (bottom), for one bead and different runtimes T on a mesh with nh =820.

Enzyme T λ(0) J0 k* λ∗
inv λ∗

hk λ∗
pgi J* J∗−J0

J0

ScHK2 1800 λU 0.053486 17 0.138824 0.808964 0.052212 0.100827 0.8851
ScHK2 3600 λU 0.228066 16 0.120404 0.815447 0.064149 0.446978 0.9599
ScHK2 5400 λU 0.524945 12 0.109005 0.826746 0.064249 1.060920 1.0210
ScHK2 7200 λU 0.941239 11 0.100778 0.837288 0.061934 1.944520 1.0659
ScHK2 9000 λU 1.473430 13 0.094578 0.845965 0.059457 3.092240 1.0987
ScHK2 10,800 λU 2.117810 19 0.089829 0.852873 0.057298 4.495210 1.1226
ScHK2 12,600 λU 2.870590 19 0.085547 0.859325 0.055128 6.142920 1.1400
ScHK2 14,400 λU 3.727980 16 0.082116 0.864621 0.053264 8.024060 1.1524

HsHK2 1800 λE 2.246900 12 0.104737 0.895244 0.000019 4.001410 0.7809
HsHK2 3600 λE 8.649300 8 0.091012 0.908980 0.000008 13.12310 0.5172
HsHK2 5400 λE 17.80560 8 0.083651 0.916269 0.000080 24.82340 0.3941
HsHK2 7200 λE 28.77910 9 0.078851 0.921146 0.000003 38.03850 0.3217
HsHK2 9000 λE 31.53360 10 0.075383 0.924615 0.000002 52.22680 0.6562
HsHK2 10,800 λE 54.15470 9 0.072366 0.927633 0.000001 67.09490 0.2389
HsHK2 12,600 λE 67.98330 9 0.070322 0.929672 0.000006 82.46000 0.2129
HsHK2 14,400 λE 82.34300 9 0.068190 0.931809 0.000001 98.20600 0.1926

and 12% for invertase, between 82 and 94% for hexokinase and
between 3 and 6% for phosphoglucose isomerase.With an increas-
ing number of beads, the proportion of ScHK2 increases and the
proportions of invertase and phosphoglucose isomerase decrease.
The exact results are listed in Table 5, where for each number of
beads nb, the optimal stoichiometry λ* as well as the correspond-
ing total outflow J* are displayed. From the arrangement (O.2),
we find that the optimal stoichiometry for one bead is between 8
and 13% for invertase, between 80 and 87% for hexokinase and
between 5 and 6% for phosphoglucose isomerase, again with an
increase in the proportion of binding sites loaded with ScHK2
in expense of proportion for ScINV, but with an almost constant
proportion of binding sites loaded with ScPGI when the runtime
is successively increased. The exact results are listed in Table 6,
where for each run time T, the optimal stoichiometry λ* as well as
the corresponding total outflow J* are displayed.

In the presence of the hexokinase HsHK2, we find from the
first arrangement that the optimal stoichiometry for a runtime
of 1 h is between 5 and 9% for invertase, between 91 and 95%
for hexokinase and approximately 0% for the phosphoglucose

isomerase. With an increasing number of beads, the proportion of
hexokinase increases and the proportion for invertase decreases.
The exact results are listed in Table 5. From the arrangement
(O.2), we find that the optimal stoichiometry for one bead is
between 7 and 10% for invertase and between 90 and 93% for the
hexokinase again with an increase in the proportion of binding
sites loaded with HsHK2 in expense of the proportions for ScINV.
As in arrangement (O.1), the optimal proportion of phosphoglu-
cose isomerase is approximately 0%. The exact results are again
listed in Table 6. We stress that the optimization results in Table 5
correspond to local maxima.

4. DISCUSSION

In this paper, we developed mathematical techniques for the
simulation and optimization of metabolic processes in biological
microreactors with membrane-bounded subcompartments. The
results from our models will be incorporated into the design
of a microreactor and will be validated by experiments with
this microreactor. The microreactor is based on a microfluidic
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system, and consists of chambers separated by membranes which
carry specific transporters for input of substrates and export of
products. Inside the chambers, magnetic nano-beads carrying
multienzyme-complexes are distributed, and immobilized by an
outer magnetic field.

We have set up a mathematical model describing the spatio-
temporal dynamics of the metabolite concentrations involved
in the assembled metabolic pathway, and develop efficient and
accurate approaches for the numerical simulation of this model.
Furthermore, we show that model-based optimization for such
systems is feasible by the methods presented. These approaches
are applied to the proof-of-concept microreactor carrying out
the synthetic pathway for the conversion of sucrose to glucose-
6-phosphate. The obtained results shed light on the following
important questions linked to the design and functionality of
microreactors.

4.1. Are Spatially Resolved Models
Necessary in the Description of
Biochemical Microreactors?
The simulation of the distribution of metabolites, e.g., that of G6P
in the presence of the enzyme HsHK2 (Figure 4), shows spatial
patterns, which differ for different experimental arrangements.
In case of completely loaded beads (Figure 4, left) the highest
concentration of G6P can be found around the beads. If the beads
are just partially loaded (Figure 4, right), a concentration gradient
across the chamber prevails. In this case, the total number of
enzymes distributed to the beads corresponds to the number of
enzymes on one completely loaded bead. These spatial patterns
in the metabolite distributions confirm the demand of spatially
resolved models in the description of metabolic processes carried
out in syntheticmicroreactors and, ultimately in living cells, which
aremore complex in architecture. Furthermore, the limiting effect
of diffusion also shows that spatial effects have to be taken into
account. This is visible in arrangement (S.2), where in the ini-
tial phase of the simulation the production rate of G6P at the
beads decreases with increasing number of beads (Figure 6, upper
figures); however, the outflow rate of G6P is higher for a large
number of beads. This results from the fact that for high number
of beads there are more beads close to the outflow boundary
Γe, and consequently G6P diffusion to the boundary Γe needs
less time. We mention, however, that for longer runtimes, the
higher production rate of G6P for lower numbers of beads is
predominating, and the outflow rates of G6P are higher for less
number of beads (Figure 6, lower pictures).

4.2. Has Spatial Organization and
Microcompartmentation of Enzymes the
Potential to Influence the Efficiency of
Metabolic Pathways?
Comparing the outflow rate of the product G6P for a fixed total
enzyme quantity which is distributed on different numbers of
beads, it turns out that the production rate can be increased with
decreasing number of beads (Table 4; Figure 6, lower figures),
especially, assembling all enzymes on one bead leads to the maxi-
mal outflow of G6P. This remains true also after comparing the

upper scenarios with the scenario, in which enzymes are dis-
tributed in the bulk fluid within the reactor chamber. This last
scenario turns out to lead to the lowest G6P outflow. For the
scenario with one bead and the hexokinase HsHK2, the outflow
of G6P is approximately 60% higher than the total outflow for the
scenario with enzymes distributed within the bulk fluid with the
same hexokinase (Table 4). These results suggest that microcom-
partmentation of enzymes increases the total output of G6P, not
only in the model but also in vitro.

4.3. What Are the Limitations for the
Productivity of the Modeled (Synthetic)
Membrane-Bounded Microreactors?
The simulation results for the arrangement (S.1) (with completely
loaded beads) show that the outflow rates for G6P reach satu-
ration, in spite of the fact that the activity inside the chamber
increases with increasing number of beads. This can directly be
seen for the hexokinase HsHK2 (Figure 5, right bottom), whereas
for ScHK2 this effect does not occur up to the run time of 3 h
(Figure 5, left bottom). However, our computations show that at
later time, this limiting effect also occurs for this hexokinase. This
suggests that the limiting factor of the G6P outflow is the activity
of the transporters in the membrane Γe. Finally, we mention
that for the arrangement (S.2) the outflow rates are not reaching
saturation, which implies that the activity of the transporters is not
limiting the outflow for the chosen enzyme concentration [E]full.

4.4. Can Optimal Design Help to Improve
the Yield of a Biosynthetic Pathway?
Our optimization results for the microreactor in the SE-scenario
with the hexokinase ScHK2, show that after a run timeT= 3600 s,
the total outflow of G6P, denoted by J*, for the optimal stoi-
chiometry λ* is on average twice as much as the total outflow
J0 for the uniform stoichiometry λU, and even much more than
for the stoichiometry λE, e.g., 2746% in case of one bead. For
one bead, this improvement is also visualized in Figure 7 (left).
When run time is successively increased (for a reactor with one
bead) starting from T= 1800 s, again the optimal stoichiometries
enhance the total outflow of the desired product G6P on average
twofold compared to the uniform stoichiometry and even much
more compared to the stoichiometry λE. The comparison of the
G6P outflow over time for stoichiometries computed for different
runtimes shows that a larger proportion of binding sites loaded
with ScINV leads to a higherG6P outflow at the initial phasewhile
a larger proportion of binding sites loaded with ScHK2 leads to a
higher G6P outflow on the long run (Figure 8).

Optimization of the microreactor setup with the hexokinase
HsHK2 suggests that the phosphoglucose isomerase can be elim-
inated for the run times considered in the optimization scenarios.
Furthermore, in contrast to the results for ScHK2, the degree of
improvement of the optimal stoichiometries is between 50% (for
one bead) and 1% (for 64 beads) compared to the stoichiometry
computed from equal activity and slightly higher compared to the
uniform stoichiometry. For one bead, the improvement is also
visualized in Figure 7 (right).When time is successively increased
(for a reactor with one bead) from T= 1800–14,400 s, the opti-
mal stoichiometries now enhance the total outflow of G6P. This
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FIGURE 7 | G6P outflow for the SE-scenario with nb =1 compared for the uniform (λU), equal activity (λE) and optimal (λ*) stoichiometry for T= 7200
and ScHK2 (left) and HsHK2 (right) computed with ∆t=0.25 and nh = 820.

FIGURE 8 | Predicted difference of in the G6P outflow for the SE-scenario with nb =1 up to T=7200 s comparing the optimal stoichiometry λ*
obtained for T=7200 and that for T=1800 both for ScHK2 (dash-dotted line) and HsHK2 (solid line) from Table 6.

enhancement is 20% up to 78% compared to the stoichiometry
computed from equal activity and slightly more compared to the
uniform stoichiometry, e.g., 147% for T= 1800. The observation
obtained for ScHK2 concerning the role of the invertase and
hexokinase for the initial phase and on the long run is now even
more pronounced (Figure 8).

To understand the optimization result obtained for the pro-
portion of phosphoglucose isomerase (the enzyme catalyzing the
reaction G6P
 F6P), in case of the microreactor with HsHK2,
namely that this enzyme should be better eliminated, we simulated
the production rates for all metabolites, for one completely loaded
bead (Figure 9). We see that, with respect to our considered
time interval, the production rates for G and F increase very
fast to a maximum-level around 0.3 mol

s . The reaction rates in
Table 2 imply that the conversion of S into F is constant, since the
concentration of S is constant. Furthermore, Figure 9 shows that
the production rate of F6P increases in time, but the production

FIGURE 9 | Production rates in mol
s for one fully loaded bead in the

SE-scenario with the hexokinase HsHK2.
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rate of F remains nearly constant. Hence, we conclude that there
is a metabolic flux from G6P to F6P, what contradicts the reactor
to obtain a maximal outflow of G6P, and should be avoided by
considering a small activity of phosphoglucose isomerase.

We stress that none of the reported maxima can be guaranteed
to be global optima. Nevertheless, concerning the quality of the
maxima, we note that all search paths from λ(0) to λ* transverse a
large part of the parameter space and are associated with a signifi-
cant decrease in the costs. Moreover, we have tested various initial
points λ(0) for the scenario with one bead, HsHK2 and T= 3600.
In all cases, we have observed convergence to the same λ*. We
conclude that the reported localmaxima are reasonable candidates
for an optimized stoichometry for the respective microreactor.

Finally, we emphasize that the simulation and optimization
approaches developed in this work can be repeated with minor
adaptions for more complex biochemical microreactors and for
other optimization parameters, like, e.g., other real parameters
entering the reaction kinetics.
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