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Abstract: Since westernized diet-induced insulin resistance is a risk factor in Alzheimer’s disease
(AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients,
our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose
diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-
HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration
in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory
(Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal
performance during novel object recognition tests. In the hippocampus, all regimens reduced the
expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated
by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron
and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of
inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and
caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our
study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to
combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial
function in a HFFD/LPS novel model for sporadic AD.

Keywords: 5-HT3 receptor blocker; inflammasome; pyroptosis; caspase-1/IL-1β/IL-18; microglia;
α7AChR

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia among neurode-
generative disorders, with around 90% of cases having a sporadic non-familial type [1].
These patients usually present with more hippocampal volume loss, higher incidence of
diabetes, obesity and circulatory disorders compared to the familial type [2]. Though
the deposition of senile plaques of beta amyloid peptide (Aβ) and neurofibrillary tangles
(NFTs) is inevitably linked to AD pathogenesis [3], these biomarkers are not the causative
factors for the disease progression, but rather are downstream cues of unrelated triggers [4].
Lately, a possible role for the bacterial neurotoxin lipopolysaccharide (LPS), originating
from the gastrointestinal flora or some dormant microbiomes, has been proposed in caus-
ing sporadic AD, since LPS was co-localized with beta amyloid peptide (Aβ) in brains of
patients with sporadic AD. In experimental settings, LPS combined with focal cerebral
ischemia or hypoxia produced amyloid-like plaques in rat cortexes [5].
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LPS is known to trigger inflammation that partakes highly in the disease pathogen-
esis [6], a fact that supports the inflammatory neurodegenerative theory of non-familial
AD [5]. In addition, both LPS and Aβ1-42 bind to the microglial Toll-like receptor (TLR)4
to activate the transcription factor nuclear factor-kappa B (NF-κB), which in turn reacti-
vates the TLR4 to intensify the formation of Aβ1-42 and maintain microglia activation [5].
These interactions initiate a constellation of cellular alterations, including the activation of
inflammasomes, which are cytosolic large multi-molecular neuroinflammatory signaling
complexes that contribute to cognitive impairment [7]. This cascade can be elicited by
pathogen- or danger- associated molecular patterns [8]. Notably, the NOD-like receptor
family pyrin domain containing (NLRP)3 is the best described inflammasome that con-
sists of the NLRP3 protein, the adapter protein apoptosis-associated speck-like protein
(ASC)/target of methylation-induced silencing (TMS)1, and procaspase-1 [8]. Upon acti-
vation, procaspase-1 is cleaved to its active form caspase-1 that proteolytically activates
interleukin (IL)-18 and IL-1β [8] that are mainly secreted by activated microglia [9].

Moreover, metabolic dysfunction has a documented impact on brain function causing
dementia, including sporadic AD [10,11] and shares in cognitive impairment via several
disturbed proceedings, such as the activated inflammasome [12], which participates in
the altered cognition following consumption of high fat [13], and free fructose [14] diets.
A high fat diet (HFD) administration also increases neuronal stress and causes insulin
resistance (IR), which reduces glucose transportation into the brain, ultimately affecting the
ability of the neurons to use glucose for energy [15]. Fructose administration, conversely,
stimulates the synthesis of triglyceride to boost IR and promote gluconeogenesis [16] and
accumulates in the brain to form advanced glycation end products, increases oxidative
stress, and accelerates the progression of AD. Therefore, the combination of high fat and
high fructose in the diet increases the risk factors for neurodegeneration [16]. Additionally,
diabetes induced by a diet rich in saturated fat and/or fructose was reported to alter gut
microbiota that may induce a state of endotoxemia via alteration of gut permeability [17,18]
and even the blood–brain barrier (BBB) to impair cognition [19].

Undoubtedly, altered levels of neurotransmitters occur in AD, such as acetylcholine
(ACh), but this is only the tip of the iceberg, since this widespread neuronal degeneration
process affects many anatomical pathways, including the serotonergic system [20]. In
a previous work [21], we have proven that tropisetron, a 5-hydroxytryptamin (5-HT)3
receptor blocker, elevates the hippocampal levels of 5-HT in experimental animals; besides
this, 5-HT3 receptor blockers were previously recorded to possess neuroprotective and
anti-inflammatory effects [22]. Apart from its 5-HT3 receptor blocker effect, tropisetron
also exhibited a selective partial agonistic effect on α7 nicotinic acetylcholine receptors
(α7nAChR) and attenuated Aβ-induced inflammatory and apoptotic responses in rats [23].
From the same class, palonosetron, the FDA-approved antiemetic, was reported to protect
against surgical esophagitis [24] and to ameliorate preneoplastic colon damage through
downregulating the expression of acetylcholinestrase to enhance synaptic ACh [25]. More-
over, the impact of maladaptive α7nAChR on cognitive disorders, such as AD, has long
been reported [26,27]. Though the blockage of α7nAChR in normal rats by the selective
blocker methyllycaconitine (MLA) has induced an in vivo model of cognitive impair-
ment [28]; however, the interaction of increased fibrillary Aβ complexes with α7nAChR in
AD rats contributed to synaptic dysfunction [26].

Due to the inadequacy of experimental models, a defective extrapolation between
pre-clinical and clinical trials for the management of AD exists [4]. Hence, several tri-
als have been carried out to develop animal models that relatively resemble the allied
symptoms perhaps by using LPS alone or accompanied with ischemic or hypoxic injury to
enhance its delivery to the brain [5,29] or by associating high fat feeding to rodents with
transgenic models of AD [30,31]. Accordingly, our study has first verified a newly designed
experimental model of neuroinflammation that resembles sporadic AD, using LPS in rats
fed high fat/high fructose diet (HFFD); then, we have used this model to investigate the
potential neuroprotective impact of the post-administration of palonosetron with or with-
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out methyllycaconitine (MLA), to assess the role of α7nAChR in the 5-HT3 blocker effect.
Additionally, the possible involvement of the NLRP3 inflammasome cascade, microglia
phenotypes, and the neurotransmitters ACh and 5-HT was also unveiled, as well as the
effect of the chosen regimens on Aβ plaque formation, immune-reactivity of hypertrophied
astrocyte, histopathological perturbations, and compromised cognitive function.

2. Results
2.1. Verification of the HFFD/LPS-Induced AD Model

Figure 1 shows that HFFD, LPS, and their combination caused a comparable significant
(a) hyperglycemia compared to normal fat diet (NFD) rats. However, HFFD or LPS
alone has elicited a state of IR indicated by (b) hyperinsulinemia and (c) homeostasis
model assessment index of insulin resistance (HOMA-IR), values that were synergistically
increased upon combining both HFFD and LPS, as compared to either insult alone using
the coefficient drug index (CDI) test. Moreover, HFFD/LPS caused a synergistic upsurge
in total cholesterol (TC) vs. either HFFD or LPS groups, while the elevation of triglycerides
(TGs) was additive to surpass that of LPS only, to further support the augmented IR
paradigm.
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Figure 1. Effects of LPS and/or HFFD on glucose homeostasis parameters [(a) glucose, (b) insulin,
(c) HOMA-IR], and lipid profile [(d) TGs and (e) TC] in rats after 9 weeks. Values are shown in scatter
plots and expressed as mean ± SD (n = 5/group). Glucose, insulin, HOMA-IR and TC were analyzed
using one-way ANOVA followed by Tukey’s post hoc test, while Welch’s ANOVA was performed
followed by Dunnett’s T3 Multiple Comparison test for TGs to account for heterogeneity; p < 0.05.
The symbols (�) and (#) indicate additive and synergistic interactions, respectively, using coefficient
drug index (CDI). Rats were fed NFD or HFFD for 8 weeks and then received or not a single dose
of LPS (2 mg·kg−1, i.p). All groups continued on NFD for another week. HFFD: high fat-fructose
diet; HOMA-IR: Homeostasis Model Assessment of insulin resistance; LPS: lipopolysaccharide; NFD:
normal fat diet; TC: total cholesterol; TGs: triglycerides.

In addition, the HFFD nutrition contributed to a state of low-grade inflammation
that was synergistically enhanced by the administration of LPS, as depicted in Figure 2 as
compared to NFD, HFFD, and LPS groups. The HFFD/LPS increased the hippocampal
content of the surrogate AD marker (a) Aβ1-42 (3.2 fold) to override the LPS effect and
boosted the content of the inflammatory cytokine (c) IL-1β (5.6 fold), effects that were
associated by a sharp decrease in the hippocampal content of the neurotransmitter (b) ACh.
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These alterations indicated a synergistic worsening of the assessed parameters compared
to the normal, as well as individual insults (LPS or HFFD). Besides these biochemical
alterations, HFFD, LPS, or their combination has declined the animals’ preference to
explore and discriminate the newly introduced object in the novel object recognition
(NOR) test, to a comparable manner, when compared to NFD. These findings were further
confirmed by the results of hippocampal CA1 microscopic examination (Figure 3); section
of (a) NFD shows normal histological architecture with tightly packed normal pyramidal
neurons having large vesicular nuclei, whereas section of (b) HFFD only shows pyknosis
and necrosis of neurons, proliferation of glia cells and neurophagia of necrotic neurons.
Sections from (c) LPS treated rats showed moderate neuropathic alterations as atrophy,
shrunken and degeneration of some pyramidal neurons in the CA1 region associated with
the appearance of NFTs in some neurons. Additionally, a severe neuropathic damage was
recorded in the hippocampus CA1 region of rats treated with both (d) HFFD/LPS, where
the examined section reveals marked degeneration and necrosis of the pyramidal neurons
with flame-shaped NFTs, proliferation of glia cells, and neurophagia of necrotic neurons.
The extent of the hippocampal CA1 histopathological damage is summarized in panels (e)
and (f) to compare the collective and individual changes, respectively. Accordingly, the
present results show the augmentation of neurotoxicity when LPS is injected into HFFD.
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Figure 2. Effects of LPS and/or HFFD on hippocampal content of (a) Aβ1-42, (b) ACh, (c) IL-1β, and
(d,e) PI/ DI during NOR test in rats after 9 weeks. Values are shown in scatter plots and expressed
as mean ± SD (n = 5/group). All parameters were analyzed using one-way ANOVA followed by
Tukey’s post hoc test, while Welch’s ANOVA was performed followed by Dunnett’s T3 Multiple
Comparison test for ACh to account for heterogeneity; p < 0.05. (#) indicates synergistic interaction
using coefficient drug index (CDI). Rats were fed NFD or HFFD for 8 weeks and then received or not
a single dose of LPS (2 mg·kg-1, i.p). All groups continued NFD for another week. Aβ1-42: amyloid
beta 1-42; ACh: acetylcholine; DI: discrimination index; IL-1β: interleukin 1 beta; NOR: novel object
recognition; PI: preference index.
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Figure 3. Effects of LPS and/or HFFD on hippocampal CA1 histopathological examination in rats
after 9 weeks. The photomicrograph of H&E stained section from CA1 region of the hippocampus of
(a) NFD shows normal histological architecture with tightly packed normal pyramidal neurons having
large vesicular nuclei (NPN), while section of (b) HFFD, shows pyknosis (PY) and necrosis (NC) of
pyramidal neurons with proliferation of glia cells (GL). Section of (c) NFD/LPS reveals necrosis (NC)
of pyramidal neurons with neurofibrillary tangles (NFT) in some neurons and that of (d) HFFD/LPS,
shows a marked necrosis (NC) of pyramidal neurons with flame-shaped neurofibrillary tangles (NFT)
and proliferation of glia cells (GL) (Scale bar 20 µm, × 600). Panel (e) represents collective scores of
CA1 damage presented in box and whisker and analyzed using the Mann–Whitney test between
2 groups, and panel (f) represents individual CA1 damage scores expressed as median (max-min)
and analyzed using the Kruskal–Wallis test, followed by Dunn’s post hoc test (p < 0.05), as compared
from (*) HFFD/LPS and (#) HFFD. Rats were fed with NFD or HFFD for 8 weeks; the NFD and
HFFD groups either received a single dose of LPS (2 mg/kg−1, i.p) or not and all groups continued
on NFD for another week.

2.2. Palonosetron, MLA, or Their Combination Improves Long-Term Spatial Working Memory in
AD Rats

After verification of the current AD model, the results in the main study revealed that
the HFFD/LPS insult recapitulates the behavioral alteration in the NOR test (Figure 4),
where these animals showed a decrease in both (a) preference index (PI) and (b) discrimi-
nation index (DI), as well as (c) a deterioration in the spatial working memory observed
during the Morris Water Maze (MWM) task. On the contrary, palonosetron per se and
its combination with MLA improved the rats’ memory during both tests; however, MLA
alone amended only the rats’ spatial working memory during MWM test, as compared to
AD group.
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MWM test in HFFD/LPS-induced AD model. Values are shown in scatter plots and expressed as mean ± SD (n = 11/group).
Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test; (t) denotes significance using
unpaired Student’s t-test between 2 groups; p < 0.05. The symbols (�) and (#) indicate additive and synergistic interactions,
respectively, using coefficient drug index (CDI). PALO (0.1 mg·kg−1; i.p) and/or MLA (5.6 mg·kg−1; i.p) were administered
3 h after LPS injection and for 8 days. Training for MWM (day 4–7) was followed by probe test (on day 8). The NOR test
habituation and familiarization phases (days 6 and 7) were followed by the probe test (day 8). MWM: Morris water maze.

2.3. Palonosetron, MLA, or Their Combination Prevents the Hippocampal Microglial
Depolarization in AD Rats

As presented in Figure 5, induction of the AD model diminished the hippocampal
protective M2 microglia as evidenced by the (a) 88% decline in the anti-inflammatory
cytokine IL-4 and the (b) insulin degrading enzyme (IDE). Conversely, the AD model
activated the pro-inflammatory M1 phenotype, where it elevated (c) nitric oxide synthase 2
(NOS2) (3.8 fold) to enhance (d) nitration of Aβ (3.3 fold). Treatment with palonosetron
successfully boosted IL-4, while MLA had a better effect on increasing IDE relative to
other treatment regimens. However, their combination showed a synergistic increase in
both parameters using the CDI test. Conversely, all treatments decreased NOS2 with the
consequent reduction in the nitrated Aβ, with the combination regimen showing the best
additive effect.

2.4. Palonosetron, MLA or Their Combination Suppresses the Hippocampal Canonical and
Non-Canonical Activated Inflammasome Cascades in AD Rats

In Figure 6, the AD model triggered inflammasome assembly, as indicated by the in-
creased protein expression of ASC/TMS1, as compared to the NFD group. Figure 7 showed
the activation of the inflammasome downstream molecules in rats with AD, depicted by
the bolstered hippocampal content of (a) cleaved caspase-1 (2.6 fold), (b) IL-1β (5.6 fold),
(c) IL-18 (4.9 fold), and the non-canonical marker (d) caspase-11 (3.8 fold), as compared
to the normal group. However, among the two figures, treatment with palonosetron and
its combination with MLA have normalized the protein expression of ASC and cleaved
caspase-1, whereas the effect of MLA was confined to cleaved caspase-1, when compared
to AD rats. In turn, the different treatment regimens succeeded to deter the downstream
molecules in the ascending order of MLA, palonosetron, and their combination, which
showed an additive effect. Conversely, the AD model almost depleted the hippocampal
content of (e) ACh and halved that of (f) 5-HT, as compared to their normal counterpart.
Nevertheless, ACh content was improved by MLA and the combination regimen, but
restored by palonosetron. Regarding 5-HT, the single treatments have normalized it, but
their combination increased it more to reach a synergistic level.
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Figure 5. Effect of PALO and/or MLA on hippocampal contents of (a) IL-4, (b) IDE, (c) NOS2, and
(d) nitrated Aβ in HFFD/LPS-induced AD model. Values are shown in scatter plots and expressed as
mean ± SD (n = 6/group). NOS2 and nitrated Aβ were analyzed using one-way ANOVA followed
by Tukey’s post hoc test, while Welch’s ANOVA was performed followed by Dunnett’s T3 Multiple
Comparison test for IL-4 and IDE to account for heterogeneity; (t) denotes significance using unpaired
Student’s t-test between 2 groups; p < 0.05. The symbols (�) and (#) indicate additive and synergistic
interactions, respectively, using coefficient drug index (CDI). PALO (0.1 mg·kg−1; i.p) and/or MLA
(5.6 mg·kg−1; i.p) were administered 3 h after LPS injection and for 8 days. IDE: insulin degrading
enzyme; IL-4: interleukin 4; NOS2: nitric oxide synthase 2.

2.5. Palonosetron, MLA, or Their Combination Preserves the Hippocampal Architecture in
AD Rats

As presented in the microscopic photomicrographs (Figure 8), hippocampal CA1 sec-
tion of (a) NFD rat reveals the normal morphology with tightly packed normal pyramidal
neurons having large vesicular nuclei, whereas sections of (b and c) AD rats show severe
neuropathic alterations in the CA1 area with marked shrunken, pyknosis and necrosis
of pyramidal neurons with flame-shaped NFTs and proliferation of glia cells, as well as
neurophagia. On the contrary, (d) a regression of the lesions is observed in section of
palonosetron treated rats, where examined sections exhibited necrosis of some CA1 neu-
rons, while others appeared normal. Moreover, (e) treatment with MLA has improved
histopathologic changes and the hippocampus CA1 area shows necrosis of few neurons
with an increased number of normal pyramidal neurons with a slight glia cells prolifera-
tion. Section from (f) the combined group, however, shows the restoration of the normal
histological architecture of CA1 hippocampus area with necrosis of sporadic neurons in
some sections. The extent of histopathological damage in the CA1 hippocampus area is
summarized in panels (g) and (h), which represent the collective and individual changes,
respectively.
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2.5. Palonosetron, MLA, or Their Combination Preserves the Hippocampal Architecture in AD 

Rats 

Figure 6. Effect of PALO and/or MLA on hippocampal CA1 immune-histopathological examination of ASC/TMS1
expression in HFFD/LPS-induced AD model. Immunohistochemical analysis of ASC in the CA1 region of hippocampus
of rats reveals no ASC expression in the (a) NFD, while section of (b) AD group shows strong intracellular immune
reaction presented by brown immunostaining expression (arrow). Section of (c) PALO treated group shows mild ASC
expression (arrow), whereas section of (d) MLA treated group depicts moderate intracellular ASC expression (arrow).
However, section from (e) PALO + MLA treated group shows a very weak ASC expression (arrow) (Scale bar 20 µm, ×600).
Panel (f) represents the percent area expression from 5 randomly chosen fields in each section. Data were analyzed using
one-way ANOVA followed by Tukey’s post hoc test; p < 0.05. PALO (0.1 mg·kg−1; i.p) and/or MLA (5.6 mg·kg−1; i.p) were
administered 3 h after LPS injection and for 8 days.

2.6. Palonosetron, MLA, or Their Combination Reduce Amyloid Plaques-Induced by HFFD/LPS
in Rats

Congo red stained hippocampal CA1 tissue sections (Figure 9) of (a) normal control
rats revealed normal histology and neuronal cells implying no deposition of Aβ plagues.
On the contrary, CA1 hippocampal area of (b) AD rats exhibited multiple intracellular and
extracellular deposition of Aβ plaques stained orange red in color. The Aβ depositions
were reduced to moderate levels in (c) plaonosetron and (d) MLA treated groups, but were
not detected in (e) the combined group.

2.7. Palonosetron, MLA, or Their Combination Decrease Astrocytes Immunoreactivity in AD Rats

As depicted in Figure 10, microscopic examination of CA1 hippocampal area section
of (a) normal control rats revealed normal small-sized astrocytes with lightly stained glial
fibrillary acidic protein (GFAP) positive short processes. Conversely, strong immunoreac-
tivity of hypertrophied astrocytes with deeply stained GFAP positive brown processes was
detected in the hippocampus CA1 area of (b) AD rats. Rats treated with (c) palonosetron
exhibited mild immune-reactive astrocytes with lightly stained processes, whereas (d) MLA
treated rats showed moderate immune-reactivity and (e) the combined group revealed
normal small-sized astrocytes with lightly stained GFAP positive short processes.
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Figure 7. Effect of PALO and/or MLA on hippocampal contents of (a) cleaved caspase-1, (b) IL-1β, (c) IL-18, and (d)
caspase-11, as well as (e) ACh and (f) 5-HT in HFFD/LPS-induced AD model. Values are shown in scatter plots and
expressed as mean ± SD (n = 5–6/group). Panel (a) depicts representative cropped blot of cleaved caspase-1 and its
densitometric analysis (n = 5/group). Cleaved caspase-1, caspase-11 and 5-HT were analyzed using one-way ANOVA
followed by Tukey’s post hoc test (n = 6/group), while Welch’s ANOVA was performed followed by Dunnett’s T3 Multiple
Comparison test for IL-1β, IL-18 and ACh to account for heterogeneity (n = 6/group); p < 0.05. The symbols (�) and (#)
indicate additive and synergistic interactions, respectively, using coefficient drug index (CDI). PALO (0.1 mg·kg−1; i.p)
and/or MLA (5.6 mg·kg−1; i.p) were administered 3 h after LPS injection and for 8 days. 5-HT: serotonin; ASC/TMS1:
apoptosis-associated speck-like protein/the target of methylation-induced silencing-1; IL-18: interleukin 18.
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Figure 8. Effects of PALO and/or MLA on hippocampal CA1 histopathological examination in HFFD/LPS-induced
AD model. Photomicrograph of H&E stained sections from CA1 region of hippocampus of rats in (a) NFD reveals the
normal histological architecture of this area with tightly packed normal pyramidal neurons having large vesicular nuclei
(NPN). Sections of (b,c) AD model shows marked shrunken (SH) and necrosis (NC) of pyramidal neurons, flame-shaped
neurofibrillary tangles (NFT) proliferation of glia cells (GL) and neurophagia (NP). Sections of (d) PALO, as well as (e) MLA
treated groups show necrosis (NC) of some neurons and other neurons appeared normal (NPN), while sections of (f) PALO
+ MLA treated group shows restored histologically normal neurons (NPN) with necrosis of sporadic neurons (NC) (Scale
bar 20 µm, × 600). Panel (g) represents collective CA1 damage scores presented in box and whisker and analyzed using
Mann–Whitney test to compare between 2 groups. Panel (h) depicts individual CA1 alteration scores expressed as median
(max-min) and analyzed using the Kruskal–Wallis test, followed by Dunnett’s post hoc test (p < 0.05), as compared from (*)
NFD and (#) PALO + MLA treated group. PALO (0.1 mg·kg−1; i.p) and/or MLA (5.6 mg·kg−1; i.p) were administered 3 h
after LPS injection and for 8 days.
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Figure 9. Effects of PALO and/or MLA on CA1 hippocampal histopathological examination of amyloid plaques in
HFFD/LPS-induced AD model. Photomicrograph of Congo red stained sections from CA1 region of hippocampus of rats
in (a) NFD shows the normal histology of neuronal cells with no deposition of amyloid β plaques (AβP). Section of (b) AD
model shows multiple intracellular and extracellular deposition of AβP; meanwhile, sections of the (c) PALO treated group
shows mild deposition of these plaques. Sections of the (d) MLA treated group shows multifocal moderate intracellular
deposition of AβP, the section of (e) PALO + MLA shows no deposition of AβP (Scale bar 20µm, ×600). Panel (f) represents
the number of congophilic AβP counted in 5 random non-overlapping microscopic field (×600) in each section. Data
were analyzed using one-way ANOVA followed by Tukey’s post hoc test; p < 0.05. PALO (0.1 mg·kg−1; i.p) and/or MLA
(5.6 mg·kg−1; i.p) were administered 3 h after LPS injection and for 8 days.
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Figure 10. Effects of PALO and/or MLA on hippocampal CA1 immuno-histopathological examination of astrocytes in
HFFD/LPS-induced AD model. Immunohistochemical analysis of GFAP expression in the CA1 region of hippocampus of
rats in (a) NFD group shows normal small-sized astrocytes with lightly stained GFAP positive short processes (arrow), while
sections of (b) AD model show strong immunoreactivity of hypertrophied astrocytes with deeply stained GFAP positive
brown processes (arrow). On the other hand, section of (c) PALO treated group shows mild GFAP positive expression
(arrow) and section of (d) MLA treated group shows moderate GFAP expression (arrow). Meanwhile, section of (e) PLAO +
MLA treated group depicts normal small-sized astrocytes with lightly stained GFAP (arrow) processes (Scale bar 20 µm,
× 600). Panel (f) represents the % area of positive GFAP staining from 5 randomly chosen fields in each section. Data
were analyzed using one-way ANOVA followed by Tukey’s post hoc test; p < 0.05 PALO (0.1 mg·kg−1; i.p) and/or MLA
(5.6 mg·kg−1; i.p) were administered 3 h after LPS injection and for 8 days. GFAP: glial fibrillary acidic protein.

3. Discussion

In a novel HFFD/LPS AD-like model, palonosetron and, unexpectedly, MLA have al-
leviated cognitive dysfunction, improved memory, and recovered histological architecture.
Besides increasing the hippocampal contents of 5-HT3 and ACh, the tested agents skewed
M1 microglia to the protective M2 phenotype confirmed by the increased IL-4 and the
decreased NOS2-mediated Aβ nitration, besides activating IDE to facilitate the clearance of
Aβ and to halt AD progression. Additionally, treatment regimens deterred inflammasome
assembly and activation to enhance cell survival by decreasing pyroptosis. It is worth
mentioning that the effect of palonosetron was mostly superior to MLA to corroborate a
better cognitive improvement and histopathological scoring.

One factor that perturbs the permeability of the BBB is the alterations in the gut
microbiota induced by the consumption of HFD [19]. These microorganisms are essential
for extracting nutrients, as well as the production of vital byproducts implicated in various
processes, among which is the adequate central nervous system (CNS) functioning [32].
Therefore, factors that disturb the gut microbiome equilibrium can alter the availability
of valuable metabolic precursors and consequently affect brain development [33], besides
increasing the gut permeability [17]. The latter ends up with a leaky gut that facilitates the
transfer of gram-negative bacteria-derived LPS into the blood to promote endotoxemia and
systemic inflammation that deteriorates BBB fence function [19]. Accordingly, our notion
on establishing the current model was based on the fact that HFFD alters gastrointestinal
tract (GIT) microbiota and increases both intestinal [17] and BBB [19] permeability and that
the bacterial endotoxin LPS co-localizes with amyloid plaques in AD human brains [34].
Moreover, the two insults, LPS [35] and HFFD [13,14,35] are able to initiate central inflam-
mation and impair cognition. Hence, our model (HFFD/LPS) was induced to replicate
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sporadic AD in humans and the HFFD was also used to ease the central access of LPS,
which poorly crosses BBB [36].

In the pilot study, the model was verified by the impaired cognition and the exces-
sive formation of hippocampal Aβ1-42 and IL-1β along with the sharp decline in the
neurotransmitter ACh, effects that surpassed those mediated by either insult alone. The
behavioral and biochemical results were further supported by the histopathological ex-
aminations. Interestingly, in the pilot experiment, we noticed that the HFFD alone has
elevated soluble Aβ without decreasing ACh to suggest that the contribution of Aβ alone
in the degeneration of cholinergic neuron is still questionable. In this regard, controversial
results were reported; some findings support ours, in which westernized HFD and fructose
administration adversely affected working and spatial memory in rats without a significant
change in brain ACh level, but they altered the expression of Aβ metabolism-associated
molecules that are responsible for Aβ deposition [37,38]. On the contrary, a nexus be-
tween accumulated Aβ and cholinergic degeneration was reported [39]. The latter picture,
however, was noticed in the current AD model upon the combination of HFFD and LPS,
where Aβ1-42 was significantly elevated and the hippocampal level of ACh was depleted,
changes that were accompanied by a further damage in the hippocampal structure.

After its verification, the present model was used to assess the anti-neuropathic po-
tential of palonosetron, being a 5-HT3 blocker. Though neuroprotection was previously
ascribed to tropisetron, another 5-HT3 receptor blocker in Aβ-challenged rat cortical neu-
rons [40], however, the in vivo anti-dementia effect of palonosetron is first reported here,
where the drug succeeded to improve cognition during both NOR and MWM tests. Al-
though we used MLA, alone and in combination with palonosetron to investigate the
possible involvement of α7nAChR in palonosetron’s effects, surprisingly, MLA per se
showed neuroprotection and has unexpectedly intensified the beneficial outcomes of
palonosetron. Our findings do concur with earlier studies, since the previous reports
about the MLA effects appeared to be controversial. While in one study the blockage
of α7nAChR in normal rats by MLA has induced an in vivo model of cognitive impair-
ment [28], another one showed that α7nAChR receptor blockade in primary neuron-
enriched cultures afforded neuroprotection [41]. Moreover, the blocker MLA was reported
to inhibit methamphetamine-induced production of reactive oxygen species in mouse stria-
tum [42] and to protect against LPS-mediated release of tumor necrosis factor (TNF)-α from
microglia [43]. It also alleviated Aβ-induced cytotoxicity [44] via inhibiting autophagy with
the involvement of mammalian target of the rapamycin (mTOR) pathway in SH-SY5Y cells.
Moreover, the protective effect of MLA was further confirmed by the results of the MWM
test to consolidate the findings of previous in vitro/in vivo studies [45,46]. Indeed, the
concomitant blockage of both receptors herein elicited a better outcome on both cognition
and memory, results that were mirrored in the morphological picture of the hippocampus.

Apart from the enhancements of function and structure, the current treatments, es-
pecially the combined regimen, have increased the protective M2 phenotype over the
pathological one (M1), which represent the central innate immune cells responsible in
large part for neuroinflammation in AD. Based on the phenotype activated, microglia can
produce either cytotoxic or neuroprotective effects. NOS2 and the consequent nitration
of Aβ are indicators for M1 activation [47], while IL-4 and IDE are considered markers
for activated M2 microglia [47]. In pathological conditions, such IR [48] and AD [47], the
immune responses are usually skewed to the M1 phenotype, which is greatly accompanied
with cell loss or cell dysfunction. In AD, microglia are activated towards the M1 phenotype
when NLRP3 recognizes Aβ aggregates and opens up to form the inflammasome. In
turn, activated microglia, especially those surrounding Aβ plaques, secretes and releases
IL-1β [49], thus presenting another marker for activation and accentuate the role of NLRP3
inflammasome in this process, a verity supported by the failure of NLRP3-/- mice to
respond to Aβ and to produce IL-1β [49].

Indeed, Aβ phagocytosis [49], HFD [50] and LPS [51] activate microglia to trigger
chronic neuroinflammation resulting in cognitive deficits [52]. These facts concur with
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the current findings, where the HFFD/LPS model activated the pro-inflammatory M1
microglia over M2, as confirmed by the boosted NOS2 and the increased nitro-Aβ along
with the sharp decline in IL-4 and the IDE. Previous studies have highlighted the crucial
role of IL-4 in abating AD as reported in a sporadic AD case-control study [53] by inducing
the protective M2 phenotype, besides the IDE-dependent Aβ clearance [54], which in turn
attenuates Aβ-induced synaptic plasticity/cognition impairments [55,56]. Moreover, the
increased NOS2-induced Aβ nitration was reported to aggravate Aβ seeding and plaque
formation to expand the AD pathology [57]. Hence, the aptitude of the current treatments
to augment the M2 microglia markers (IL-4, IDE) and to reduce the M1 related parameters
(NOS2, nitrated Aβ) signify in part the improved behavior and structure of the treated
groups. Moreover, the effect of MLA to initiate M2 microglia can be linked to the blockade
of α7nAChRs along with the inactivation of NOS2 and the deterred Aβ. It was previously
reported that Aβ assemblies can bind to α7nAChRs in neurons to disrupt synaptic function
in AD [26] by converting the “silent” glutamatergic synapses into functional ones [58].

The second axis upon which the tested agents rely to protect neurons is the inhibition
of inflammasome assembly and activation. Inflammasome, a large multiprotein complex,
is activated in response to cytokines produced from activated microglia in response to Aβ

phagocytosis [49]. Despite inflammasome helping the cell to tackle tissue damaging stim-
uli, its abandoned activation contributes in the emergence of several diseases, including
the neurodegenerative ones. Notably, the NLRP3 inflammasome is the most extensively
studied type, with its activation involving two steps, priming (signal 1) and activation
(signal 2). The signal 1 is mediated via the sensing of TLR4 to extracellular stimuli, which
in turn activates NF-κB to increase the formation of pro-IL-1β, as well as the transcription
of the NLRP3 protein. Signal 2, on the contrary, is initiated by pathogen associated molec-
ular patterns (PAMPs) and danger associated molecular patterns (DAMPs) promoting
NLRP3 inflammasome assembly and the consequent caspase-1- mediated activation and
secretion of IL-1β, IL-18 and gasdermin D (GSDMD). The latter forms pores in the plasma
membrane, causing the escape of the cytoplasmic signaling molecules outside the cell, as
well as an inflammatory form of cell death termed pyroptosis [7]. Our study further con-
firms the crosstalk between the activated microglia and inflammasome that was reported
recently [59], where the LPS [5] and HFD [60] insults represent DAMPs that activate the mi-
croglia TLR4 to trigger inflammasome priming and assembly [59]. In our model, activated
inflammasome was reinforced by the increased protein expression/contents of ASC/TMS1
and the cleaved caspase-1 to indicate the assembly of inflammasome moiety and its activa-
tion. In turn, the active caspase-1 promotes the maturation of the inflammatory cytokines
IL-1β and IL-18 from their proforms, as evidenced here and hitherto [49]. These events,
however, augment the neuroinflammatory environment and aggravate AD progression,
where the latter cytokines and their upstream molecules are further activated by the phago-
cytosis of the fibrillary Aβ by microglia [49] to be accrued in lysosomes. This upshot leads
eventually to the rupture of lysosomes with the release of their components to reactivate
NLRP3 with the formation of ASC specks and the maturation of their downstream cy-
tokines in a feed forward series. Moreover, and in a vicious cycle, the increased ASC specks,
released from pyroptotic cells, advance also the formation of Aβ plaque to be engulfed
again by microglia to recirculate the previous cascades [61]. These facts were recapitulated
in our novel model to be responsible for the neuroinflammatory environment and the
impaired cognition. However, palonosetron alone or with MLA has corrected this whole
picture as the tested treatments were able to decrease the canonical NLRP3 inflammasome,
in which the ASC/TMS1 moiety and its downstream molecules were curtailed, as docu-
mented by the immunohistochemical examination, to confer neuroprotection as evidenced
previously [47,62] and to drift microglia towards the anti-inflammatory M2 type along with
mobbing up Aβ [47,61].Furthermore, by enhancing the anti-inflammatory cytokine IL-4,
these agents were able to intersect the tethering between microglia, inflammasome, and
Aβ, where the M2 microglia marker IL-4 was proven to hinder the inflammasome cascade
and IL-1β, as well as Aβ [55,63].
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Nonetheless, blocking α7nAChR also inhibited inflammasome, but in a non-canonical
pattern; MLA decreased caspase-1 and IL-1β/IL-18 maturation, but not ASC/TMS1, an
essential molecule in the NLRP3 inflammasome assembly. Indeed, in a non-canonical
manner, the NLRP3 inflammasome could be activated by caspase-11, which represents
another stimuli for triggering caspase-1 [64], without the involvement of ASC/TMS1 [65].
This fact, therefore, can explain the ability of MLA to suppress inflammasome cascade
by inhibiting caspase-1/IL-1β/IL-18 molecules following the inactivation of caspase-11,
as reported herein. The currently activated caspase-11 could be linked to the presence
of cytosolic LPS that acts as caspase-11 agonist [66] and/or the HFFD [67]. Hence, the
inactivation of caspase-11 by palonosetron and/or MLA gives a further support for the in-
flammasome disassembly/deactivation, besides the suppression of ASC/TMS1 expression
by palonosetron.

Since the role of both IL-1β [68,69] and IL-18 [70] is well established in AD, their
significant increase ensues that the inflammatory story does not end by their activation.
However, in a feed forward cycle, these two inflammatory cytokines; viz., IL-1β [71] and
IL-18 [70], activate NLRP3, ASC/TMS1, and caspase-1 [71] by acting on their receptors;
moreover, they increase the amyloid precursor protein [72,73] and beta-site APP-cleaving
enzyme-1, which is responsible for the aberrant Aβ1-42 cleavage [73] to additionally
clarify the HFFD/LPS/-mediated microglia/inflammasome activation. Thus, palonosetron
and/or MLA via the inhibition of caspase-11 and -1, as well as IL-1β and IL-18 intervene
with the non-stop series of cytokine/NLRP3 inflammasome/microglial activation to reduce
AD neuroinflammation.

Additionally, the anti-dementia/neuropathy effect of the tested compounds is partly
mediated by increasing neuronal survival to present the third trail through which our
blockers acted to pin down their beneficial effect. In our study, the histopathological
results documented the apoptotic and necrotic pyramidal neurons cell death, whereas the
biochemical parameters indicated the partake of pyroptosis in cell demise. This type of
cell death is a highly controlled inflammatory programmed cell death that depends on the
activation of caspase-1 and -11 along with the inflammatory downstream cytokines IL-1β
and IL-18 [74]. Indeed, Xie & Zhao [75] have reviewed the role of pyroptosis in several
neurological diseases suggesting its crucial role in AD, events that support the current
HFFD/LPS-induced neurodegeneration. Accordingly, the interplay of the different types
of cell death, evidenced in the present work, could be one reason behind the compromised
5-HT and ACh levels in the AD model, whereas the palonosetron and/or MLA-mediated
neuronal survival further highlights their neuroprotective capacity and the retrieval of both
5-HT and ACh, neurotransmitters that are partially responsible for the observed memory
improvement.

4. Materials and Methods
4.1. Animals

Male Wistar rats aged 6–8 weeks old (90–100 g) were obtained from the Animal
Production Research Institute (Giza, Egypt) and were left for a week to accommodate
in standard polypropylene cages at the animal facility of the Faculty of Pharmacy, Cairo
University (Cairo, Egypt). Animals were maintained under constant environmental condi-
tions of 12/12 h dark/light cycles and a temperature of 25 ± 2 °C and were fed standard
rat pellet diet and water ad libitum prior to dietary manipulation. The study followed
the recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health [76] and adhered to ARRIVE guidelines. The protocol was
approved by the Research Ethics Committee of the Faculty of Pharmacy, Cairo University
(Permit Number: PT 2128). The animals were distributed among the experimental groups
using a completely randomized design, ensuring the weight of rats in all groups was
comparable and all tests were performed by operators blinded to the groups. At the end
of the experiment, rats were euthanized by thiopental, and blood samples were collected
from the jugular vein.
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4.2. Drug and Chemicals

LPS (O55:B5), palonosetron hydrochloride (Emegrand), and MLA citrate were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA), Grand Pharma for Pharmaceutical
Industries (Cairo, Egypt), and Tocris Bioscience (Bristol, UK), respectively. Moreover, the
diet related components, viz., cholesterol and fructose (Uni Fructose) were procured from
Panreac (Barcelona, Spain) and UNIPHARMA (Cairo, Egypt), respectively, whereas sheep
fat was obtained from a commercial source. Any other chemical used was of analyti-
cal grade.

4.3. Development of HFFD/LPS Neuroinflammation Model

This model of AD in rats was designed to resemble partly the hippocampal changes
and potential mechanisms involved in sporadic AD in humans; namely, Aβ deposition,
neuroinflammation, degeneration of cholinergic neurons, IR state, lipid metabolism abnor-
malities, and gut microbiota disorders, as recently reviewed [77]. For the induction of this
model, a pilot study was conducted to verify the potential impact of injecting LPS to HFFD
fed rats on intensifying neuroinflammation that associate AD-like models. Briefly, 20 rats
were randomly and evenly divided into two main dietary groups (n = 10 each); rats in the
first group received NFD [≈3000 kcal·g−1: fat as oils (3%), protein (21%), carbohydrate
as starch (60%), fibers (3%), and vitamins and minerals (3%)]. However, animals in the
second group were fed HFFD [≈5300 kcal·g−1] composed of oils (3%), sheep tail fat (15%)
cholesterol powder (1%), protein (21%), carbohydrate as starch (60%), fibers (3%), and
vitamins and minerals (3%) with fructose (20%) in drinking water [78]. After 8 weeks, the
development of an IR state in HFFD rats was confirmed by the HOMA-IR [79], calculated
from the serum measurements of 10 h fasting glucose and insulin levels, as well as the
elevated serum levels of TGs and TC (Data not shown). Afterwards, animals in the two
main groups were subdivided into two subgroups (n = 5 each) to be classified into NFD
(saline; group I), HFFD receiving saline (group II), NFD/LPS (2 mg·kg−1 in saline, i.p) [35]
designated as group III, and HFFD/LPS (group IV). Animals in all groups were left for
8 days on NFD. These groups are used to compare between the impact of the different
insults alone (LPS or HFFD) and their combination.

The impact of HFFD, LPS or their combination on memory was assessed using the
NOR test, which examines the ability of rats to recognize a novel object based on the
animal’s natural preference. The test started 3 days before euthanasia and each phase (viz.,
habituation, familiarization, and long-term memory) was carried out on a separate day.
At the end of the behavioral test, rats were anaesthetized using a high dose of thiopental
(100 mg·kg−1, i.p) and blood was rapidly withdrawn from the jugular vein and the sera
were used to determine markers of IR (glucose, insulin to calculate HOMA-IR) and lipid
profile (TGs, TC). Afterwards, one hemisphere was kept in 10% neutral buffered formalin
for the histopathological examination, whereas the hippocampus was isolated on ice from
the other hemisphere and homogenized in phosphate buffer saline (PBS) to measure the
contents of selected biomarkers, namely, Aβ1-42, IL-1β, and ACh.

4.4. Experimental Design of the Main Study

After verification of the model and that the combination regimen has superseded that
of either insult alone, the two insults were used to induce the AD model, which was used
in the main part to study the pharmacological effects of the tested agents and their effect
on the assessed parameters. For the main experimental study, another 55 male Wistar rats
were initially divided into the same two dietary regimens; viz., NFD and HFFD. Eleven
rats were fed NFD and received saline (vehicle) to serve as the normal control group,
whereas the remaining 44 rats were fed in-house prepared HFFD for 8 weeks then injected
once with LPS after IR was confirmed and were referred to as AD rats; the changes in
body weight were recorded throughout the experiment period. The HFFD/LPS rats were
randomly divided into four subgroups (n = 11 each) to be either left untreated (AD control)
or treated with palonosetron (0.1 mg·kg−1, i.p), MLA (5.6 mg·kg−1, i.p; [80]), or their



Molecules 2021, 26, 5068 16 of 23

combination. Treatments (palonosetron or MLA) were dissolved in saline and were injected
starting 3 h after the LPS injection, whereas in the combined regimen, MLA was injected
15 min before each palonosetron dose. Injections continued for 7 consecutive days with a
total of 8 injections during which all animals were fed NFD. The NOR long-term memory
and MWM probe tests were performed on the last day of treatments (day 8). Figure 11
summarizes the experimental design.
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4.5. Behavioral Tests
4.5.1. NOR Test

The test started on day 6, where in the habituation phase each rat was allowed to
freely explore the area in the absence of objects for 120 s, while on the second day and
during the familiarization phase, each rat was placed in the same area, but in the presence
of two identical sample objects (A + A) for 120 s. The different shape objects (cube and
cylinder) to be discriminated were 7 cm high made of wood and could not be moved by
the rat. To prevent any bias to explore the objects, the rat was released against the center of
the opposite wall with its back facing the objects. In the long-term memory test phase (day
8), the rat was placed in the area with 2 different objects, a familiar one and a novel one
(A + B, respectively) and the animal was left to explore the objects for 120 s. In this test, the
time spent in exploring each object was recorded [81] in addition to the calculation of the
preference (PI) and discrimination (DI) indices according to previous literature [82,83].

4.5.2. MWM Test

The test is used to evaluate the spatial learning and memory that are responsive to
hippocampal damage [84]. Briefly, a large circular pool of 150 cm diameter and 50 cm
depth was filled with tap water of around 26 ◦C. The water maze is divided into quadrants
with 4 starting positions, North (N), South (S), East (E), and West (W). The N position
was used to place a platform (15 × 15 cm) exposed 2.5 cm above the water surface to be
recognized by the animal. The whole test was performed over 5 days and training started
on day 4 following LPS injection to the HFFD group or an equivalent time point for the
NFD group. On the first 4 days of the test, animals in all groups were trained to find the
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platform, where each animal underwent 3 daily trials from 3 different platform locations
for 4 consecutive days without repeating the trial sequence on 2 successive days (SEW,
ESW, WSE, SWE, etc.). The animal was gently lowered into the water down facing the
pool wall and allowed to swim/search for the platform for a maximum of 120 s. Rats
that reached the platform were left for 10 s before being removed; however, those which
did not find the platform in 120 s were guided by hand to the platform location and were
left there for 30 s. The escape latency for each rat was daily recorded in the acquisition
trials; however, for the probe trial the platform was removed on the 5th day of the test.
Each animal was tested by being placed in quadrant (S), the farthest to the platform, left
to swim for 120 s and the time spent in the platform quadrant (N) was recorded. Notably,
animals tested first were chosen by rotation on the different groups, where one rat from
each group was chosen randomly to be tested and then a second rat and so on for the rest
of the animals. On day 8 of treatment, all animals performed NOR test (which requires
a minimum effort for object exploration) before the MWM to avoid the exhaustion of the
animals that may affect their performance.

4.6. Biochemical Analysis

One day after the behavioral tests, the brains were dissected out and the intact hemi-
spheres were harvested on ice after euthanasia. The hippocampi of 6 rats/group were
homogenized in PBS for ELISA estimations of IDE, IL-4, NOS2, caspase-11, IL-1β, IL-18,
5-HT, and ACh. Estimation of hippocampal nitrated Aβ content was performed using a pre-
viously published [57] ELISA procedure. Data points in each independent experiment are
generated from the average of 2 replications. In the other 5 rats/group, the hippocampus of
one hemisphere was kept in RIPA buffer for the estimation of cleaved caspase-1 by Western
blot analysis, while the other hemisphere was immediately fixed in 10% neutral buffered
formalin for histopathological and immunohistochemical examinations. All methods were
carried out in accordance with the relevant guidelines and regulations.

4.6.1. Assessment of Serum Insulin, Glucose, and Lipid Profile

The ELISA technique was carried out for the assessment of serum insulin (Ray-
Biotech, Peachtree Corners, GA, USA; Cat# ELR-Insulin) and the SPINREACT Kits (Girona,
Spain) were used for the colorimetrical estimation of glucose (Cat# MD41011), TGs (Cat#
MD41031), and TC (Cat# MD41021). All procedures were carried out following the manu-
facturers’ instructions.

4.6.2. Assessment of Hippocampal Aβ1-42, Nitrated Aβ, NOS2, IL-4, and IDE

The following biomarkers were assessed using the corresponding ELISA kits obtained
from LSBio (Seattle, WA, USA) for Aβ1-42 (Cat# LS-F23254), Elabscience (Houston, TX,
USA) for IDE (Cat# E-EL-R2455) and MY BioSource (San Diego, CA, USA) for both NOS2
(Cat# MBS2702569) and IL-4 (Cat# MBS355442). The 3NTyr10-Ab (Merck, MA, USA; Cat#
MABN779) was used for the assessment of nitrated Aβ [57] by ELISA. The parameters
were assessed according to the manufacturers’ transcripts.

4.6.3. Assessment of Hippocampal ACh and 5-HT

The two neurotransmitters ACh (MY BioSource, San Diego, CA, USA; Cat# MBS043949)
and 5-HT (CAT# MBS166089) were assessed using MYBioSource ELISA kits according to
the manufacturer’s instructions.

4.6.4. Determination of Hippocampal Inflammasome Biomarkers

Caspase-11 (MYBioSource, San Diego, CA, USA; Cat# MBS008490), IL-1β (RayBiotech,
Peachtree Corners, GA, USA; Cat# ELR-IL-1b), and IL-18 (Abcam, Waltham, MA, USA;
Cat# ab213909) were measured using ELISA kits according to the manufacturers’ protocols.
In the meantime, hippocampal content of cleaved caspase-1 was determined by Western
blot technique, where the respective protein was extracted and separated by electrophoresis
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using SDS-PAGE. The gel was assembled in a transfer sandwich using PVDF membrane
that was placed in the transfer buffer (25 MmTris, 190 mM glycine, and 20% methanol).
The system was run for 7 min at 25 V to allow for the transfer of protein bands from gel to
membrane using Trans-Blot Turbo (BioRad, Hercules, CA, USA) followed by blocking the
membrane in Tris-buffered saline with Tween 20 (TBST) and 3% bovine serum albumin
(BSA) at room temperature for 1 h. Cleaved caspase-1 (Cell Signaling Technology, Danvers,
MA, USA; Cat# 4199, RRID: AB_1903914) and β-actin (anti-rabbit; Novus Biologicals,
Littleton, CO, USA; Cat# NB100-56874, RRID: AB_837512) primary antibodies were diluted
1:500 in TBST and incubated overnight at 4 ◦C. After rinsing with TBST, the membrane was
incubated with the HRP-conjugated secondary antibody (1:500; goat anti-rabbit; Novus
Biologicals; Cat# NB120-6023, RRID: AB_790436) for 1 h at room temperature. After a
second rinse with TBST the chemiluminescent substrate (ClarityTM Western ECL substrate;
BioRad; Cat#170-5060) was applied following the manufacture’s protocol and the signals
were captured using a CCD camera-based imager. Finally, the band intensities were
normalized to β-actin using the ChemiDoc MP imager (BioRad).

4.7. Histopathological and Immunohistochemical Examinations

After fixation in formalin, the brain specimens were dehydrated in alcohol, cleared
in xylene and embedded in paraffin wax. Paraffin blocks were sectioned at 4–5 µm and
stained with Hematoxylin and Eosin (H&E) for histopathological examination and Congo
red for the demonstration of amyloid plaques by a light microscope (Olympus BX50, Tokyo,
Japan) under a high power magnification (×600) [85]. The histopathological alterations in
the CA1 region of the hippocampus, including degeneration and necrosis of pyramidal
cells (NC), neurofibrillary tangles (NFT), neurophagia (NP), or gliosis (GL) were graded
by an experienced pathologist blinded to the groups from 0 to 4. Score (0) indicates no
changes, score (1) indicates <10% changes, score (2) indicates 20–30% changes, score (3)
indicates 40–60% changes, and score (4) indicates >60% changes with a total score of 12
in pilot groups (NC, NFT and GL) or 16 in treatment groups (NC, NFT, NP and GL) [86].
Each value was calculated from 5 randomly chosen fields in each section. Meanwhile,
congophilic amyloid plaques were counted in five random non-overlapping microscopic
field (×600) in Congo red stained sections and the data obtained were statistically analyzed.

The paraffin blocks were also sectioned from the different groups and immuno-
stained with polyclonal Anti- ASC/TMS1 (Biospes, Chongqing, PRC; Cat#YPA1696, RRID:
AB_2832254) primary antibody (1:200) containing 0.01 M TBS (pH 7.4) with 1% BSA, 0.03%
proclin 300 and 50% glycerol. Quantification of ASC was estimated by measuring the area
% expression from 5 randomly chosen fields in each section and averaged using image
analysis software (Image J, version 1.46a, NIH, Bethesda, MD, USA).

Glial Fibrillary Acidic Protein (GFAP)

The deparaffinized and rehydrated sections were incubated with GFAP monoclonal
antibody (1:500; Dako, N-series Ready to use primary antibody, Santa Clara, CA, USA).
The immunostaining was amplified and completed by Horseradish Peroxidase complex
(Dako, REALTM EnVision TM/HRP, Mouse ENV). Sections were developed and visualized
using 3,3-diaminobenzidine (Dako, REALTM DAB + Chromogen). The substrate system
produced a crisp brown end product at the site of the target antigen. Sections were
counterstained with haematoxylin, then dehydrated in alcohol, cleared in xylene and
cover slipped for microscopical examination. Quantification of GFAP was estimated by
measuring the area % expression from 5 randomly chosen fields in each section and
averaged using image analysis software (Image J, version 1.46a, NIH, Bethesda, MD, USA)
by a blinded observer.

4.8. Calculation of Combination Effect Using Coefficient Drug Index (CDI)

The CDI [87] analyzes the interaction between the combined and single groups using
the following formula: CDI = AB/(A × B). In the pilot experiment, AB is the ratio of the
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combination insult group (HFFD + LPS) to normal control group (NFD) and A or B is the
ratio of the HFFD or NFD/LPS group to the normal control group (NFD). In the main
experimental study, however, AB is the ratio of the combination treatment group (PALO
+ MLA) to model control group (AD) and A or B is the ratio of the PALO or MLA group
to model control group (AD). Thus, the respective synergistic, additive, or antagonistic
interaction is indicated as CDI < 1, =1, or >1.

4.9. Data and Statistical Analysis

Estimation of group size was performed using G*Power software version 3.1.9.7
(Heinrich-Heine-University, Düsseldorf, Germany) with a power of 0.80 and an alpha
of 0.05 for comparison of four (pilot study) or five (main study) groups and effect size
estimated was 0.9, so sample size estimation was n = 5/group. All data are shown in
scatterplots and expressed as mean ± SD. The number of animals in each group was equal
by design (n ≥ 5) and refers to every individual rat used in the respective experiment.
All data were analyzed without any transformations and tested for heteroscedasticity
using Bartlett’s test. Differences between groups of homogenate variances were tested for
significance using unpaired t-test (two groups) or ordinary analysis of variance (ANOVA)
followed by Tukey’s Multiple Comparison test as the post hoc test (more than two groups).
However, Welch’s ANOVA was performed followed by Dunnett’s T3 Multiple Comparison
test with individual variances computed for each comparison to account for heterogeneity;
all tests were two-tailed. The non-parametric data (scores) were analyzed using Kruskal–
Wallis (non-parametric ANOVA) test, followed by Dunn’s post hoc test to compare between
the different groups and the Mann–Whitney test was used to compare scores between two
groups only. The GraphPad prism software, version 8 (GraphPad Software, San Diego, CA,
USA) was used to analyze the data and to draw the attached figures. The level of statistical
significance was accepted at p < 0.05.

5. Conclusions

In conclusion, the current study denotes that exposing HFFD rats to LPS augments
AD-associated molecular, functional, and histological alterations. Moreover, the study
highlighted the beneficial effect of blocking the 5-HT3 receptor by using palonosetron
and, to a lesser extent, the α7nAChR by using MLA to attenuate AD-associated alterations
via interfering with the interconnection between activated microglia/inflammasome/Aβ

and the depleted ACh and 5-HT. The NLRP3 inflammasome is definitely an important
therapeutic target for delaying AD progression, and it could be speculated that using
both 5-HT3 receptor and α7 nAchR antagonists can combat AD pathology and avert AD
progression more effectively than either alone.
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