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The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the 
recent pandemic, has generated countless new variants with varying fitness. Mutations of the spike glycoprotein 
play a particularly vital role in shaping its evolutionary trajectory, as they have the capability to alter its 
infectivity and antigenicity. We present a time-resolved statistical method, Dynamic Expedition of Leading 
Mutations (deLemus), to analyze the evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. The proposed 
𝑳-index of the deLemus method is effective in quantifying the mutation strength of each amino acid site 
and outlining evolutionarily significant sites, allowing the comprehensive characterization of the evolutionary 
mutation pattern of the spike glycoprotein.
1. Introduction

The widespread circulation of coronavirus disease 2019 (COVID-19) 
since its initial outbreak in December 2019, which led to a pandemic, 
has brought tremendous impacts on global health and the world econ-
omy [1,2]. While society has gradually returned to normalcy since 
the end of the COVID-19 public health emergency declared by the 
World Health Organization (WHO) on May 5, 2023 [3], the evolution 
of its etiological agent, severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), continues unabated. Unlike other RNA viruses, coro-
naviruses encode a 3′-to-5′ exoribonuclease that binds to their low-
fidelity RNA-dependent RNA polymerase for proofreading RNA repli-
cation [4–7]. However, this proofreading mechanism is not flawless, as 
the viral genome is still prone to substitutions, indels, and recombina-
tions [8–11], from which thousands of SARS-CoV-2 lineages have been 
generated [12]. Within the first two years of the pandemic, the WHO 
designated five variants of concern (VOCs): Alpha (𝛼, B.1.1.7), Beta (𝛽, 
B.1.351), Gamma (𝛾 , P.1), Delta (𝛿, B.1.617.2), Omicron (𝑜, B.1.1.529); 
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and numerous variants of interest (VOIs) [13]. In rapid succession, vari-
ants emerged, proliferated, and outcompeted their antecedents. Each 
wave of resurgence introduced many novel mutations that continue to 
finetune the fitness of the virus [10]. While beneficial mutations are 
generally rare [14–18], constant genetic diversification of SARS-CoV-
2 has significantly hindered the development of COVID-19 treatments 
and infection control strategies [19].

Across the mutational landscape of the SARS-CoV-2 genome, the 
spike gene is one region that sits atop its plateau [20–22]. The spike 
glycoprotein is a trimeric type I viral fusion protein that binds the 
SARS-CoV-2 virion to the angiotensin-converting enzyme 2 (ACE2) re-
ceptor of a host cell [23]. Each monomer is composed of the S1 and S2 
subunits that contain four functional domains: the S1 facilitates ACE2-
binding [24,25], and contains the N-terminal domain (NTD), receptor-
binding domain (RBD), and two C-terminal domains (CTDs); while the 
S2 mediates membrane fusion [26]. Because of its crucial role in cell 
entry [23], the spike is a primary target for antibodies [27,28], im-
mune effector cells [29,30], and COVID-19 therapeutics [31–33]. All 
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these selective pressures contribute to its high mutational activity, with 
the spike mutations capable of altering its infectivity and antigenic-
ity [10,11,18,19,34]. Nevertheless, the evolutionary trajectory of the 
spike is intricate. Out of its complete sequence space spanning over 
201000 unique spike sequences, only a few million are documented in 
the Global Initiative on Sharing Avian Influenza Data (GISAID) database 
[35]. Furthermore, while data shared via GISAID show that nearly all 
spike residues have undergone at least one mutation since the COVID-
19 outbreak, only a few sites exhibit polymorphism. Although spike 
evolution is a highly dynamic process, there exist many constraints 
that prevent it from navigating through most sequence options [36–39]. 
Having a strategy to distinguish evolutionarily significant sites from less 
important ones would be a stepping stone to make sense of the logic be-
hind SARS-CoV-2 evolution.

This work presents a time-resolved statistical method named Dy-
namic Expedition of Leading Mutations (deLemus) to quantitatively 
characterize the robust properties of SARS-CoV-2 spike glycoprotein 
evolution. Our proposed deLemus method combines the degree of sin-
gle amino acid polymorphism with the frequency of mutations in the 
sequence space to generate a monthly value at each amino acid site of 
the spike, called the 𝑳-index, which serves as a way to outline sites 
that have the potential to exhibit evolutionary significance. The degree 
of single amino acid polymorphism encapsulates the number of residue 
options that a site can adopt in each month, and it carries information 
regarding the adaptability of a particular sequence within the viral qua-
sispecies [37,40,41]. Indeed, theoretical and experimental studies have 
shown that temporal variations in polymorphisms and genetic diversi-
ties can imply features of evolutionary trade-offs under selective pres-
sures and viral phenotypes [42–45]. The frequency of mutations in the 
sequence space denotes the number of non-degenerate sequences bear-
ing certain mutations at a given site in each month, which can be used 
to represent the site-specific mutation strengths of a sample of strictly 
unique viral sequences. The analysis of the evolutionary trajectory of 
the SARS-CoV-2 spike glycoprotein using the 𝑳-index demonstrates its 
effectiveness in outlining evolutionarily significant sites.

2. Methodology

Detecting dynamic patterns from big data sets has always been a 
major challenge in data analysis. In this work, we propose a method 
called deLemus to investigate the evolutionary dynamics of the SARS-
CoV-2 spike glycoprotein at an amino acid sequence level.

By the end of 2023, we had downloaded more than 15 million SARS-
CoV-2 spike glycoprotein amino acid sequences from the GISAID hCoV-
19 database [35]. We used EPI_ISL_402124 as the reference sequence 
of the spike glycoprotein [1,46]. Since there are a substantial number 
of repeated sequences in the original data, all degenerate sequences 
were removed before further analysis of sequence mutations. Overall, 
667,213 non-degenerate sequences were retrieved from the entire set 
of reported sequences uploaded to GISAID between January 2020 and 
December 2023 (Fig. S1).

Sequences submitted within the same month were grouped together. 
Multiple sequence alignment was then consecutively conducted on each 
group using Clustal Omega to check the occurrence of substitution or 
deletion at each amino acid site [47], relative to the reference sequence. 
This yielded the total number of mutated sites in all sequences n and the 
number of sequences 𝑃 (n) with a given n in each month. The mutation 
rate Ξ in the unit seq-1mo-1 was calculated based on the total number of 
mutations per sequence per month (Fig. S2). The total number of single 
amino acid polymorphisms at each 𝑗 th amino acid site in each 𝑡th month 
s𝑗 (𝑡) and the number of amino acid sites 𝑁(s) were also calculated, from 
which a Poisson distribution was observed, giving the monthly average 
of amino acid polymorphism number s̄ (Fig. S3).

For each 𝑡th month, one 𝑚 × 𝑙 mutation matrix 𝑯(𝑡) was constructed 
based on the multiple sequence alignment data, where 𝑚 is the num-
2408

ber of non-degenerate sequences displayed in a particular month, and 𝑙
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is the length of the spike glycoprotein amino acid sequence. In other 
words, each row represents one non-degenerate sequence from that 
month, and each column corresponds to one residue in the sequence. 
For the 𝑖th sequence, if the 𝑗 th residue is changed, the corresponding 
matrix component 𝑯 𝑖𝑗 (𝑡) would be set to 1. Otherwise, it would be set 
to 0.

We then factorized 𝑯(𝑡) by singular value decomposition [48],

𝑯(𝑡) = 𝑷 (𝑡) ⋅𝚺(𝑡) ⋅𝑵(𝑡), (1)

the 𝑷 (𝑡) is an 𝑚 × 𝑚 matrix and 𝑵(𝑡) is an 𝑙 × 𝑙 matrix containing the 
eigenvector information of the sequence and site, respectively, where 
eigenvalues are recorded at Σ(𝑡). (See Supplemental Material for de-
tails.)

From the monthly 𝚺𝑖(𝑡) and 𝑵 𝑖𝑗 (𝑡), we collected the top four leading 
sets of mutations to compute the 𝑳-index 𝑳𝑗 (𝑡),

𝑳𝑗 (𝑡) = s𝑗 (𝑡) ⋅

√√√√ 4∑
𝑖=1

N2
𝑖𝑗
(𝑡), (2)

which is used to quantify the mutation strength of each 𝑗th site in each 
𝑡th month. The evolutionary behavior of each leading set and their cor-
responding contribution to the spike evolution is visually depicted in 
Fig. S4. The amino acid sites were ranked according to their 𝑳𝑗 (𝑡), and 
the top-ranked ones were identified as the leading mutations of each 
month from January 2020 to December 2023.

3. Results and discussion

The structural information for each confirmed leading mutation site 
was determined using AlphaFold2 [49], as illustrated in Fig. 1. In the 
figure, we highlighted the mutation sites observed in the reported vari-
ants. To facilitate a comprehensive analysis, we grouped the identified 
leading mutations into four distinct protein domains, namely NTD, 
RBD, CTDs, and S2. Within each domain, approximately ten leading 
mutations were selected every month. In addition, mutations of each 
VOC/VOI characterized by the WHO were compiled to give a list of ‘re-
ported mutations’. We conducted a comparative analysis between the 
reported mutations and our outlined leading mutations, noting any mu-
tations that match as ‘confirmed mutations’.

3.1. N-terminal domain (NTD)

The NTD is an S1 ectodomain located at the outermost region of 
the SARS-CoV-2 spike glycoprotein, where several epitopes lie [18,50–
52]. While the NTD does not directly interact with ACE2 receptors, 
the domain’s close spatial proximity to the RBD has enabled some of its 
mutations to alter the cell entry dynamics of SARS-CoV-2 [53,54]. In the 
NTD, insertions and deletions have been frequently reported, indicating 
the structural plasticity within NTD [18,55]. Deletions in this domain 
have been characterized to frequently occupy particular locations of the 
spike gene known as recurrent deletion regions (RDRs), where partial 
nucleotide removals within specific stretches of codons can give rise to 
new nucleotide arrangements [8,56]. Given their substantial influence 
on viral antigenicity and infectivity, it is of utmost importance to closely 
monitor the evolutionary trajectory of the NTD.

Our investigation began with the 𝑳-index calculation of each NTD 
amino acid site, starting from 2020, to outline potential leading mu-
tations. In January 2020, we identified ten mutations within the NTD 
(Fig. 2). Most of the outlined mutations are deletions, ΔI68-G75, which 
have been identified as RDR1 [8]. The ΔH69/V70 double deletion is 
persistently outlined until the end of 2020 and eventually appears in 
the Alpha NTD, contributing to the variant fitness by enhancing in-
fectivity via syncytia formation [57]. In February 2020, we detected 
another deletion region (ΔL141-V143) within the NTD. These dele-

tions were located within RDR2, which occupies the N2 loop of the 
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Fig. 1. Confirmed leading mutation sites (red spheres) in different domains of the SARS-CoV-2 spike glycoprotein. (a) A SARS-CoV-2 spike glycoprotein monomer 
(generated by AlphaFold2, Colab version, using the reference sequence EPI_ISL_402124) encompassing the four major functional domains: NTD, RBD, CTDs 
(CTD1&2), and S2. (b) Mutation sites outlined in the NTD (green), most of which are clustered in the outer regions. (c) Mutation sites outlined in the RBD 
(yellow), nearly all the captured mutations are located in the receptor-binding motif. (d) Mutation sites outlined in the CTDs (pink). (e) Mutation sites outlined in 
S2 (cyan).
NTD [8,58,59]. These deletions were found in the Omicron sublineage, 
BA.1(ΔG142/V143), and were designated as a VOC in late 2021 [2].

Similarly, we had outlined another deletion region (ΔL242-A243), 
which has been reported in RDR4 of the N5 loop in another study 
[8]. This deletion, present in the Beta variant, designated as a VOC 
in December 2020, contributed to the restructuring of the N5 loop, en-
abling evasion from monoclonal antibody 4A8 [60]. In the N3 loop, we 
outlined another deletion (ΔY144) that has been shown to impair the 
neutralizing activities of multiple antibodies [58,59]. This deletion was 
found in the Alpha variant that was designated as a VOC in late 2020 
[2]. In this work, we could see the emergence of multiple deletion re-
gions (Fig. S5), providing time-resolved information on their formation, 
which was absent in previous studies [8].

In addition to deletions, our analysis between April and Decem-
ber 2020 revealed the presence of substitutions at multiple leading 
sites. (Fig. 2). We outlined several substitutions, including L5F, L18F, 
P26S, G75V, T76I, D138Y, and D253G. In particular, the L18F muta-
tion, found in the Beta and Gamma NTDs, has been associated with 
immune escape capabilities [59,60]. Also, the two leading mutations 
of the Gamma variant (P26S and D138Y) have been found to disrupt 
the epitope targeted by monoclonal antibody (mAb) 159, resulting in 
a significant reduction in its neutralizing activity [61]. We additionally 
identified a mutable site, D215, exhibiting multiple amino acid poly-
morphisms (A, G, H, Y), which has been associated with immune escape 
capabilities and observed in the Beta NTD [59,60].

Between January and May 2021, we identified multiple potential 
leading mutations in the NTD (Fig. 2), including the ΔE156/F157 dou-
ble deletion, which has been found to enhance viral fitness by evading 
2409

NTD-targeting antibodies and is present in the Delta variant [62]. Ad-
ditionally, we observed polymorphism G142D within RDR2. While the 
effects of G142 mutations are understudied, their location within the 
NTD antigenic supersite suggests potential alterations in spike-antibody 
interactions [59]. Notably, the G142D mutation has been shown to con-
fer significant resistance against NTD-targeting monoclonal antibodies 
[63]. This mutation, together with A27S, is also found in the BA.2 vari-
ant, a prominent sublineage of the Omicron variant that emerged in 
November 2021. Overall, the dominance of deletion and substitution 
mutations in the NTD indicates its dynamic evolutionary nature. Our 
findings underscore the importance of studying the emergence of dele-
tion regions and mutational polymorphism, providing valuable insights 
for vaccine and drug development strategies to effectively counter virus 
evolution.

3.2. Receptor-binding domain (RBD)

The RBD located in the S1 domain, not only plays an essential role 
in ACE2 recognition [64,65], but also acts as a region of immunodom-
inance targeted by around 90% of all plasma or serum neutralizing an-
tibodies [18,66,67]. Mutations in this domain therefore often have the 
ability to alter virus-ACE2 or virus-antibody binding affinities [68], en-
abling the generation of variants with higher transmissibility or immune 
escape capabilities [18,69]. In fact, as shown in Fig. 1, most mutations 
in this domain are located in the receptor-binding motif (RBM, 438-506) 
that serves as the spike-ACE2 binding interface. These mutations would 
therefore potentially affect the infectivity of the virus. With such sig-
nificant functional implications, it is necessary to track RBD mutations 

over time.
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Fig. 2. Evolutionary trajectory of the N-terminal domain (NTD). The x-axis denotes mutable sites within the domain. The y-axis represents time in months, span
of Concern (VOCs) are represented by the following colors: red (𝛼, B.1.1.7), light blue (𝛽, B.1.351), purple (𝛾 , P.1), green (𝛿, B.1.617.2), and blue (𝑜, BA.1, BA.2
(B.1.427, B.1.429), 𝜄 (B.1.526), 𝜂 (B.1.525), 𝜅 (B.1.617.1), 𝜆 (C.37), and 𝜇 (B.1.621). Reported mutations from VOCs and VOIs are depicted in gray. The orang
The vertical dashed lines indicate the confirmed mutations identified by the 𝑳-index within the reported VOCs/VOIs. Each circle is labeled with a letter repres
(Deletion), A (Alanine), C (Cysteine), D (Aspartic Acid), etc. Unmarked circles correspond to the same amino acids as the labeled circles below.
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Fig. 3. Evolutionary trajectory of the receptor-binding domain (RBD). The annotations, labels, and color schemes in this figure are identical to those employed in 
Fig. 2.
Since the emergence of the first two reported variants, different 
SARS-CoV-2 variants have continued to acquire mutations in the RBD. 
Several of these RBD mutations were successfully outlined by our deLe-
mus analysis. One such important mutation is N501Y, which appeared 
as a leading mutation in June 2020 in our deLemus analysis. This muta-
tion can be found in the Alpha variant and the subsequent Beta, Gamma, 
Mu (𝜇, B.1.621.1), and Omicron variants, as depicted in Fig. 3. Studies 
have shown that the N501Y mutation can enhance ACE2 binding affin-
ity by introducing 𝜋-𝜋 interactions between N501Y of RBD and Y41 of 
ACE2 [61]. E484K is another notable mutation in the Beta variant that 
was outlined as a leading mutation from January 2020 by our deLe-
mus analysis (Fig. 3). Mutations at this site have been demonstrated 
to significantly reduce the neutralization titers of convalescent plasma 
[71–73]. Although some studies have suggested that mutations of the 
E484 residue would lead to diminished electrostatic complementarity 
between the RBM and the ACE2 receptor [74], many structural biology 
studies have shown that the E484K mutation, when introduced with 
N501Y mutation, can increase RBD-ACE2 binding. For instance, in the 
Beta and Gamma variants, the E484K-N501Y-D614G triple mutation 
has been found to enhance RBD-ACE2 binding by inducing local rear-
rangements involving rotamer placements between Q493 of RBD and 
H34 of ACE2 [75].

Two other RBD mutations, L452R and T478K, were also outlined as 
leading mutations in April 2020 and November 2020 by our deLemus 
analysis (Fig. 3). These mutations were found in the Delta variant that 
emerged in April 2021. Their locations within the epitope of several 
important neutralizing antibodies enable them to enhance the immune 
escape capabilities of the virus [69,76–78]. For the L452R mutation, 
computational studies have shown that variants possessing the L452R-
E484Q-N501Y triple mutation exhibit a secondary structure rearrange-
ment that is associated with an increase in RBD-ACE2 binding affinity 
[79]. For the T478K mutation, structural analysis has revealed that it 
allows the formation of two new hydrogen bonds located between Y489 
of RBD and Y83 of ACE2, and F490 of RBD and K31 of ACE2, respec-
tively, resulting in tighter binding between the RBD and ACE2 receptor 
2411

[80].
The Omicron variant that emerged in November 2021, known for its 
exceptionally high transmissibility, harbors a significant number of RBD 
mutations. Most of these mutations have been reported in previous vari-
ants, but several new sites were outlined as leading mutations by our 
deLemus analysis, which encompasses mutations at R408, N440, and 
G446. The R408S mutation has been shown to alter the antigenic prop-
erty of the spike glycoprotein by disrupting the binding of F2 antibodies 
[81]. Unlike R408S, the N440K mutation can enhance spike-ACE2 bind-
ing affinity by increasing the electrostatic complementarity between the 
structurally flexible RBM recognition site and the ACE2 receptor [82]. 
As for the G446 residue, which is situated at a highly antigenic region 
of the spike structure (Fig. 1), mutations have been shown to influence 
neutralization by both mAbs and antibodies present in polyclonal serum 
[77,78,83].

Overall, the leading mutations outlined within the RBD have been 
confirmed among the reported variants, suggesting their functional 
impact on viral fitness. Increased binding to the ACE2 receptor and 
immune evasion are factors that can enhance viral infectivity and over-
all viral fitness [84] [75]. These factors involve multiple amino acid 
residues located on the surface region of the spike protein. The spatial 
distribution analysis of the leading mutations highlights their preva-
lence on the surface region of the spike protein (Fig. 4), which can 
enhance viral infectivity through host interactions, such as improved 
ACE2 binding affinity and antibody escape. This observation is further 
supported by previously reported deep mutational scanning data, which 
assesses ACE2 binding affinity and antibody escape scores [70].

3.3. C-terminal domains (CTDs) and the S2 subunit

The post-RBD region of the SARS-CoV-2 spike glycoprotein con-
sists of CTD1, CTD2, and the S2 subunit. While they do not directly 
engage the ACE2 receptor, they confer significant functions in spike 
allostery and membrane fusion [85,86]. The close spatial proximities 
between the CTDs and the NTD-RBD linker motif enable them to mod-
ulate RBD motion, and mutations in these regions could alter its open-

close dynamics [87–89]. The S2 mediates virus-host membrane fusion 
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Fig. 4. Data analysis on deep mutational scanning from published work [70]. (a) 3D structure illustration of leading mutations outlined in RBD (red). (b) RBD-ACE2 
binding affinity distribution with different reference virus variants. (c) Escape score of leading mutation sites.
by undergoing a cascade of conformational changes [23,86,90], and 
its mutations may impact spike fusogenicity both in terms of host-
virus membrane fusion for cell surface or endosomal entry and cell-
cell membrane fusion for syncytia formation [23,31]. Additionally, the 
post-RBD region houses the S1/S2 and S2’ cleavage sites, which are 
proteolytically processed to facilitate membrane fusion [23,26,90–92]. 
The former site is generated by a polybasic insertion between CTD2 
and S2 (681PRRAR↓S686) unique to SARS-CoV-2, and has been found to 
enhance its infectivity [26,93,94]. Although their evolutionary impor-
tance is often overshadowed by those of the upstream NTD and RBD, 
the CTDs and S2 remain pivotal to the proper functioning of the spike.

The pre-Alpha stage of the pandemic marked the phase in which 
several mutations hallmarked to the CTDs of later variants emerged. As 
shown in Fig. 5, many of our CTD leading mutations outlined between 
January and December 2020 were reported in later VOCs and VOIs; 
these include: A570D, D614G, H655Y, Q677H, N679K, and P681H. One 
important leading mutation we outlined in the first month is D614G. It 
has been shown to promote RBD opening by disrupting an interpro-
tomer hydrogen bond involving S2 residues [95], and to increase S1/S2 
cleavage, cell entry, replicative fitness, and transmissibility [95–97]. 
2412

These enhancements in fitness led to its fixation in the global SARS-CoV-
2 population. Most of the CTD mutations outlined above follow a similar 
trend in either finetuning RBD opening or cleavage efficiency. For ex-
ample, A570D of Alpha has been revealed to form new interprotomer 
hydrogen bonds and salt-bridge interactions with S2 residues to modu-
late RBD motion [85,89]. Meanwhile, at the highly polymorphic P681 
site, both P681H and P681R has been reported to increase S1/S2 cleav-
age efficiency [98–100]. However, only P681R of Delta would have a 
pronounced effect in improving spike fusogenicity [98–100]. Interest-
ingly, the co-occurrence of N679K and P681H in Omicron variants has 
been found to introduce a novel cathepsin G cleavage site proximal to 
the S1/S2 furin cleavage site [101], which may explain their switch 
from cell surface entry pathways preferred by pre-Omicron strains to 
endosomal entry pathways [102–106].

Our deLemus method is also effective in outlining S2 mutations. As 
shown in Fig. 6, between January and December 2020, several outlined 
leading mutations of the S2 subunit were later confirmed in subse-
quent variants; these are: A701V, T716I, D796Y, S982A, D1118H, and 
V1176F. Unlike CTD mutations, the effects of the S2 mutations are more 
diverse [107]. Both T716I and S982A of Alpha have been structurally 
determined to confer local destabilizing effect [85]. In particular, the 

latter mutation has been shown to abrogate an interprotomer hydrogen 
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Fig. 5. Evolutionary trajectory of the C-terminal domains (CTD1 and CTD2). The annotations, labels, and color schemes in this figure are identical to those employed 
in Fig. 2.

Fig. 6. Evolutionary trajectory of the S2 subunit. The annotations, labels, and color schemes in this figure are identical to those employed in Fig. 2.
bond with the CTD1 residue T547, which promotes RBD opening [85]. 
In contrast, D1118H of Alpha has been suggested to impose stabiliz-
ing effects via water-mediated interactions [108]. D796Y of Omicron, 
on the other hand, has been revealed to greatly enhance neutraliza-
tion resistance and facilitate cross-domain immune evasion [109,110]. 
As for V1176F of Gamma, it has been reported to reduce fusion ac-
tivity of the spike [111]. From January to November 2021, we also 
outlined multiple leading mutations that would later appear in the Delta 
and Omicron variants (Fig. 6); notably: N764K, N856K, T859N, D950N, 
Q954N, N969K, and L981F. Among these, N856K and N969K of Omi-
2413

cron have been shown to reduce fusion activity and syncytia formation 
[112–115], whereas D950N of Delta has been found to slightly promote 
membrane fusion [116].

To mitigate the global impacts of COVID-19, it is essential to 
strengthen worldwide surveillance systems for real-time monitoring and 
tracking of continuous mutations in SARS-CoV-2. In this study, we have 
developed a spike mutation tracking platform to monitor the evolu-
tionary trajectories of spike glycoproteins (https://hbsulab .github .io /
deLemus /Updates/). This publicly accessible platform serves as an early 
warning system for upcoming variants, facilitating timely contributions 
in the ongoing efforts to combat SARS-CoV-2. The list of outlined lead-

ing mutations has been consistently updated on a monthly basis, extend-

https://hbsulab.github.io/deLemus/Updates/
https://hbsulab.github.io/deLemus/Updates/
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Fig. 7. Evolutionary trajectory of the BA.2.86 and JN.1. The annotations, labels, and color schemes in this figure are identical to those employed in Fig. 2.
ing beyond the 24-month timeframe discussed in the preceding sections. 
Any leading mutations that were subsequently confirmed in circulating 
variants have been annotated and updated on the deLemus webpage. It 
is worth noting that certain mutations consistently appeared in our anal-
ysis. As shown in Fig. 7, the persistent post-RBD mutations are: E554K, 
A570V, P621S, and S939F. These mutations would later be reported in 
the BA.2.86 lineage of Omicron which emerged in August 2023. This 
variant harbors over 30 new spike mutations when compared to the 
parental BA.2 strain [117,118]. Recent characterization has revealed 
that BA.2.86 shows improved ACE2-binding affinity [119], as well as 
enhanced immune escape capabilities due to its distinct antigenic pro-
file [118,120–122]. We also identified persistent mutations in the RBD 
region, namely K356T, R403K, and N450D, which are confirmed in 
BA.2.86 (Fig. 7). Lastly, from the beginning of 2022, we observed a 
highly polymorphic site, L455, corresponding to the L455F/S muta-
tions (Fig. 7). In particular, L455S is a novel mutation carried by JN.1, 
a descendant lineage of BA.2.86, which emerged in December 2023. 
Remarkably, even though the two variants only differ by this single 
mutation, JN.1 has been demonstrated to exhibit even better immune 
evasion than BA.2.86 [123,124]. This has likely enabled it to become 
the most prevalent strain globally since February 2024 [125].

In addition to outlining the leading mutations, we revealed some 
general evolutionary features of the SARS-CoV-2 spike glycoprotein in 
terms of Ξ and ̄s. Mutations are the source of genetic variation, and how 
mutation rates fluctuate over the course of evolution is of particular in-
terest [126]. Based on their Ξ values, three characteristic evolutionary 
phases can be distinguished (Fig. S2). The first phase lasted from De-
cember 2019 to October 2020, when Ξ maintained a steady state at 
relatively low values. In November 2020, a month before the emer-
gence of Alpha, the second phase began with an increase of Ξ, to a 
maximum in March 2021, after which Delta appeared. This is followed 
by the third phase, marking the gradual decrease of Ξ back to a steady 
state by June 2021. As most mutations are assumed to be neutral or 
slightly deleterious [14–16], selection often acts against high mutation 
2414

rates [127], which is illustrated by the initially low Ξ. This may also im-
ply a dynamic equilibrium within the viral quasispecies [37,128,129], 
where each pre-Alpha variant has similar fitness. The subsequent rise 
in Ξ is thought to be a consequence of environmental changes [37], 
which would increase the chances for beneficial mutations to occur 
[127]. However, more deleterious mutations would likewise be intro-
duced [127,130]. This may explain the resulting drop in Ξ. On the other 
hand, genetic diversity measured by ̄s exhibited a clear increasing trend 
from December 2019 (Fig. S2). This suggests the ongoing adaptive evo-
lution of the spike [131], although further research would be required 
to elucidate the exact mechanisms that govern the complex evolution-
ary trajectory of SARS-CoV-2.

4. Conclusion

This work introduces the novel deLemus method for analyzing the 
evolutionary dynamics of the SARS-CoV-2 spike glycoprotein. Our pro-
posed 𝑳-index is effectual in quantifying the mutation strength of each 
amino acid site, such that leading mutations can be outlined (Table S2). 
Comprehensive characterization of these leading mutations reveals how 
the spike’s complex mutation pattern is shaped by the distinct evolu-
tionary trajectory of each of its functional domains: the antigenic evo-
lution of the NTD, the dynamic balance between ACE2-binding affinity 
and immune evasion by RBD mutations, and the cell entry mechanism 
shift modulated by post-RBD mutations. With its effectiveness in sys-
tematically monitoring the ongoing SARS-CoV-2 evolution, it may be 
feasible to extend our deLemus method to analyze other viral evolution 
processes. The ability to identify a subset of evolutionarily significant 
sites in circulating viruses would accelerate the development of treat-
ments and disease control measures in the case of future pandemics.
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