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Abstract

Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed

in both clinical and research settings to investigate brain tissue microstructure.

Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with

white matter properties, the metric is not specific. Recent studies have reported that

FA is dependent on the b-value, and its origin has primarily been attributed to either

the influence of microstructure or the noise-floor effect. A systematic investigation

into the inter-relationship of these two effects is however still lacking. This study

aims to quantify contributions of the reported differences in intra- and extra-neurite

diffusivity to the observed changes in FA, in addition to the noise in measurements.

We used in-vivo and post-mortem human brain imaging, as well as numerical simula-

tions and histological validation, for this purpose. Our investigations reveal that the

percentage difference of FA between b-values (pdFA) has significant positive associa-

tions with neurite density index (NDI), which is derived from in-vivo neurite orienta-

tion dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation

(BIEL) staining sections of fixed post-mortem human brain samples. Furthermore,

such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indi-

cating a nonlinear interaction effect between tissue microstructure and noise. Finally,

a multicompartment model simulation revealed that these findings can be driven by
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differing diffusivities of intra- and extra-neurite compartments in tissue, with the

noise-floor further amplifying the effect. In conclusion, both the differences in intra-

and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA

difference associated with the b-value.
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1 | INTRODUCTION

By detecting water random motion processes, diffusion magnetic res-

onance imaging (dMRI) can noninvasively characterize tissue micro-

structures in the living brain (Basser, 1995; Pierpaoli & Basser, 1996).

Diffusion tensor imaging (DTI) is one of the most common models in

dMRI used to characterize the anisotropy of water diffusion in tissue

for more than two decades. Towards better characterization of neural

tissues, several advanced models such as diffusion kurtosis imaging

(DKI) (Jensen et al., 2005; Lu et al., 2006) and neurite orientation dis-

persion and density imaging (NODDI) (Zhang et al., 2012), have also

been proposed, allowing estimation of higher-order parameters and

more accurately describe the water diffusion in complex tissue struc-

tures by accounting for non-Gaussian diffusion. Despite the emer-

gence of these more advanced dMRI models, DTI continues to play an

important role in studying the WM associated with both normal phys-

iological and pathophysiological alterations in both research and clini-

cal studies, including brain development and aging (Mårtensson

et al., 2018; Qiu et al., 2015), neurodegenerative diseases (Bledsoe

et al., 2018; Kantarci et al., 2017), psychiatric disorders (Olvet

et al., 2014; Repple et al., 2017), brain injuries, and tumor (Asken

et al., 2018; Maj et al., 2020).

Two fundamental influencing factors in DTI are diffusion weight-

ing and signal-to-noise ratio (SNR). Other considerations include spa-

tial and angular resolution, diffusion time, echo time, and so forth. In

conventional Pulsed-Gradient Spin-Echo (PGSE) sequences (Stejskal &

Tanner, 1965), the b-value, a factor that reflects the gradient strength

and duration used to determine the degree of diffusion weighting and

thus the sensitivity of the measurement to diffusive motion, is deter-

mined by the gradient strength (G), gradient duration (δ), and spacing

of these pulsed gradients defined by the diffusion time (Δ). As the b-

value increases, the measured diffusion signal decays more, resulting

in a lower signal-to-noise ratio (SNR). In addition, noise in dMRI also

varies with imaging resolution, field strength, echo time, etc. In partic-

ular, Rician-distributed noise in the image domain would introduce

significant bias into the model estimation. While the two factors of b-

value and noise have been discussed separately in the previous litera-

ture, to the best of our knowledge, their interaction has not been

thoroughly investigated or fully understood. A comprehensive study

on this topic would help to improve our current knowledge of the

dMRI signal mechanism and the relationship between model parame-

ters and underlying microstructure.

In DTI, the effect of the b-value on the scalar metric of fractional

anisotropy (FA) has previously been studied. While some studies

reported nonsignificant differences (Bisdas et al., 2008; Melhem

et al., 2000), other studies supported that higher b-values, at a given

diffusion time, are linked to a lower FA (Barrio-Arranz et al., 2015;

Farrell et al., 2007; Jones & Basser, 2004; Landman et al., 2007;

Lerma-Usabiaga et al., 2019; Metzler-Baddeley et al., 2012;

Mukherjee et al., 2008; Veraart et al., 2011; Wu et al., 2013). This

observation has previously been attributed to noise-floor bias (Barrio-

Arranz et al., 2015; Farrell et al., 2007; Jones & Basser, 2004;

Landman et al., 2007; Mukherjee et al., 2008). This noise impact was

considered to be substantially reduced when the SNR in raw DWIs is

higher than 20 (Bastin et al., 1998; Hui et al., 2010). The models for

measuring non-Gaussian diffusion would improve the characterization

of tissue microstructure by minimizing confounding from noise floor

effects (Guo et al., 2019; Hui et al., 2008; Raab et al., 2010). The DTI

model assumes that water displacements correspond to a Gaussian

distribution, which is not true when water is restricted or exists in

multiple compartments with different diffusivities (Mori &

Zhang, 2006). Thus, the FA derived from the diffusion kurtosis imag-

ing (DKI) model was found less dependent on the b-value after the

kurtosis terms were added (Veraart et al., 2011) to account for the

complex anisotropic microstructures (Wu et al., 2013). In other stud-

ies, the diffusion signal has been modeled as the combination of the

signals coming from the restricted intracellular space (slow pool) and

the tortuous and hindered extracellular space (fast pool) (Bihan, 2007;

Clark et al., 2002; Clark & Bihan, 2000; Niendorf et al., 1996). The fast

pool water signal decays faster as the b-value increases, making the

measurement dependent on b-values. However, assuming that extra-

cellular water is more rapidly diffusing will lead to higher FA at high b-

values (Clark et al., 2002), which is in contrast to recent findings that

higher b-values are linked to a lower FA. As the above brief literature

review demonstrated, the FA dependence on the b-value has been

attributed to multiple sources, including rectified noise-floor effects

(Farrell et al., 2007; Jones & Basser, 2004; Landman et al., 2007) or

the inaccuracies of the Gaussian model (Veraart et al., 2011; Wu

et al., 2013), all of which likely are contributing to different degrees in

any given experiment depending on the details of the acquired data.

The objective of this study is to explore the interplay of the afore-

mentioned noise-floor effects and tissue microstructure on the

dependence of FA on b-values. To achieve this aim, we built a multi-

compartment framework based on different diffusivities between the
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intra- and extra-neurite compartments. We hypothesize that both the

relative compartmental fractions and noise levels would have impact

on the fitted tensor and its derived scalar metrics, such as apparent

diffusion coefficient (ADC) and FA. We used in-vivo and post-mortem

human brain imaging, in addition to mathematical simulations and his-

tological validation. The percentage difference of FA (pdFA, defined in

Equation (1)) was found to be positively correlated with intra-neurite

volume fraction (INVF) in the simulations. As expected, similar signifi-

cant associations were identified between pdFA and NDI in both in-

vivo and post-mortem experiments. The numerical simulations con-

firm how diffusivity profiles, intra-neurite fractions, and noise-floor

contributions affect the FA dependence on b-value. Furthermore, the

association between pdFA and NDI varied with SNR level, as demon-

strated by both in-vivo and simulation results, indicating a nonlinear

interaction effect between tissue microstructure and noise. These

findings suggest that both tissue compartment diffusivity differences

and the noise-floor effects contribute to the observed FA dependence

on b-value in diffusion MRI.

2 | MATERIALS AND METHODS

2.1 | Data sets

2.1.1 | In-vivo experiment

In this investigation, two in-vivo data sets, each containing 61 individ-

uals, were analyzed. One from our recruited healthy volunteers (mean

age: 35.9 ± 14.1 years, range: 20–69 years, 24 males) and the other

from the Human Connectome Project (HCP) (Van Essen et al., 2013).

The study was approved by the local ethical committee.

In the first data set, all participants were given written informed

consent and then underwent an MRI scan on a 3T MAGNETOM

Prisma scanner (Siemens Healthcare, Erlangen, Germany) equipped

with a 64-channel head–neck coil. Anatomical T1-weighted images

were acquired using a 3D magnetization-prepared two rapid acquisi-

tion gradient echo (MP2RAGE) sequence (TR/TE = 5000/2.9 ms,

TI = 700, 2500 ms, FOV = 211 � 256 � 256 mm3, voxel

size = 1.2 � 1 � 1 mm3, bandwidth = 240 Hz/Px, iPAT factor = 3,

and TA = 8 min) (Marques et al., 2010). Diffusion-weighted

(DW) images were obtained using a simultaneous multislice (SMS) dif-

fusion EPI prototype sequence (TR/TE = 5400/71 ms, diffusion time

(Δ) = 34.4 ms, gradient time (δ) = 15.9 ms, FOV = 220 � 220 mm2,

slice number = 93, voxel size = 1.5 � 1.5 � 1.5 mm3,

bandwidth = 1712 Hz/Px, iPAT factor = 2, and SMS factor = 3)

(Setsompop et al., 2012), with anterior to posterior (AP) and posterior

to anterior (PA) phase encoding directions, number of averages

(NA) = 2. The diffusion scheme, containing 30 gradient directions

with uniform angular coverage on each shell (b-value = 1000, 2000,

and 3000 s/mm2, noncollinear among all shells) and six nondiffusion

volumes equally separated in the scheme for the motion estimation.

The total acquisition time for DW images was 19 min.

The second data set was selected randomly from the Human

Connectome Project (HCP) (Van Essen et al., 2013) with matched

number of subjects and analyzed using the same pipeline. In this data

set, nominal resolution was 1.25 mm isotropic, with 90 noncollinear

gradient directions on each shell (b-value = 1000, 2000, and 3000 s/

mm2) TR/TE = 5900/89 ms, diffusion time (Δ) = 43 ms, gradient time

(δ) = 10.6 ms, iPAT factor = 1, and SMS factor = 3. We down sam-

pled the Dir90 to Dir30, chosen to maximize the angular distance

between encoding vectors in order to ensure sufficient angular cover-

age for each under-sampling scheme (Aliotta et al., 2019). The results

of DTI fitting with 90 directions and 30 directions were compared to

study the impact of precision on the quantification of FA. The results

of HCP data sets are reported in Table S7, Table S8 and Figure S4.

2.1.2 | Post-mortem experiment

A left hemisphere sample of a donated post-mortem human brain

sample (76-year-old, male, 525 min post-mortem interval) was

obtained from the National Human Brain Bank for Health and Dis-

ease, China. Prior to death, the donor had been registered at the Zhe-

jiang University School of Medicine and signed informed

authorization for the use of his tissue and medical records for research

purposes. This study was conducted with the prior approval of the

ethics committee of Zhejiang University School of Medicine.

For the first 4 weeks, the hemisphere was immersed in 10% for-

malin. It was then rinsed with tap water for 24 h to partially restore

the relaxation parameters (Jonkman et al., 2019; Shepherd

et al., 2009). The sample was placed in a container full of Fomblin

(Fomblin, YL VAC25/6, Solvay) after wiping the water off the surface.

Prior to the MR scan, air bubbles were extracted from the containers

using a vacuum pump, and the sample was kept at room temperature

(22 ± 0.5�C) for 24 h.

MR scans were conducted with the same MAGNETOM Prisma

3T scanner and the 64-channel coil. DW images were obtained with

a Readout-Segmented Echo-Planar Imaging (RS-EPI) sequence

(Porter & Heidemann, 2009). DWI was performed with five b-values

(1000, 2000, 4000, 6000, and 8000 s/mm2) over 30 gradient direc-

tions on each b value, with one nondiffusion weighted data set

acquired after every 10 DW images. Other parameters included:

TR = 9620 ms, TE = 96 ms/118 ms, δ = 35.7 ms, Δ = 46.3 ms,

FOV = 198 � 198 mm2, readout segments = 5, number of averages

(NA) = 2, voxel size = 1.8 � 1.8 � 1.8 mm3 and

bandwidth = 1190 Hz/pixel. The scan took 4 h and 24 min in total.

2.2 | Image processing

Both the in-vivo and post-mortem diffusion images were prepro-

cessed using FSL (FMRIB software library, University of Oxford, UK),

which was used to perform field map estimation, eddy current-

induced distortion correction, and head motion correction. A linear
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transformation was applied to the T1-weighted image for each subject

to align with the DW images.

For each participant, we have the NA = 1 (containing only AP

phase encoding data sets) and NA = 2 data sets. The latter offers a

higher level of SNR and increases the measurement precision. The

DTI estimates (FA) were calculated per shell of in-vivo DW images

with weighted linear squares (WLS) fitting using FSL “dtifit” function.
The noise in the complex MR signal is normally distributed,

whereas the magnitude signal used in dMRI is approximately Rice dis-

tributed (Gudbjartsson & Patz, 1995). As increasing average times will

not reduce the Rician bias, FA was also estimated using maximum like-

lihood estimators (MLE) (https://github.com/imphys/fit-diffusion-

model.git) to account for the Rician bias in the magnitude dMRI signal,

and then compared with traditional WLS fitting.

DW data from all three shells were additionally fitted to the

NODDI model using the NODDI toolbox (https://www.nitrc.org/

projects/noddi_toolbox) to obtain neurite density index (NDI-NODDI).

To further verify the influence of non-Gaussian diffusion, mean kurto-

sis (MK) was computed from three-shell data using the open-source

software DESIGNER (https://github.com/NYU-DiffusionMRI/

DESIGNER/), with constraints of Dapp >0 and Kapp >0 employed.

For post-mortem DW data, the first two b-shells of 1000 and

2000 s/mm2 were discarded from the further investigation due to the

reduced diffusivity of the fixed corpus callosum. ADC measured with

dMRI has been reported to be reduced by as much as 50% in unfixed

post-mortem WM and 80% in fixed WM with respect to in-vivo

values (D'Arceuil et al., 2007), which strongly reduces the contrast-to-

noise ratio in dMRI (D'Arceuil et al., 2007; Shepherd et al., 2009).

Because the signal distribution deviated from the Rician distribution

more, we only used WLS with “dtifit” to fit the ex-vivo data. The

remaining images were preprocessed similarly to the in-vivo data.

Tensor model fitting was performed individually on b-shells of 4000,

6000, and 8000 s/mm2, respectively. Only FA differences between b-

values of 4000 and 8000 s/mm were considered in further analysis to

allow for enough diffusion weighting difference. The low SNR condi-

tion (NA = 1) was not analyzed in modeling fitting due to insufficient

SNR at a b-value of 8000 s/mm2.

2.3 | ROI definition

2.3.1 | In-vivo data

The JHU DTI-based white-matter atlases (Mori et al., 2005) were used

to create regions of interest (ROIs), including six white matter tracts

(anterior limb of the internal capsule, posterior limb of the internal

capsule, superior longitudinal fasciculus, genu of the corpus callosum,

body of the corpus callosum, and splenium of the corpus callosum). To

see how it performs in regions other than parallel fibers, cortical gray

matter regions from an HCPMMP1 (Glasser et al., 2016) parcellation

in the MNI space (downloaded from HCP-MMP1.0 projected on

MNI2009a GM [volumetric]), subcortical gray matter regions from

Harvard-Oxford Cortical Structure Atlas, and manually drawn WM

regions with crossing fibers in a region of the brain containing crossing

fibers of the superior corona radiata (SCR) and the body of the corpus

callosum (BCC) were also selected (Figure S4). The details of these

ROIs are reported in Tables S1–S6.

Individual T1w images (aligned at DW images) were first normal-

ized to MNI space using FSL's linear and nonlinear registration tools

(FLIRT, FNIRT) for each subject to acquire the transformation matrix.

The ROI masks were then inversely transformed from atlas space to

native DW image space using the inverse of the derived transforma-

tion matrix. Diffusion metrics were then averaged within each ROI.

2.3.2 | Post-mortem data

The stained sections in the post-mortem experiment have a compara-

ble thickness (6 μm) to the size of axons (�1 to 2 μm) (Coelho

et al., 2018), and may introduce bias related to axon orientation dis-

persion. Therefore, the lateral to the midline of the corpus callosum

was chosen as ROI to minimize this bias, since it has highly parallel-

aligned fiber bundles and most slices were expected to be perpendicu-

lar to the axon axis. It is worth noting that we only obtained 2D histol-

ogy staining data and estimated NDI-Histology using the neurite area

fraction (Schmierer et al., 2004). In order to perform correlation analy-

sis between 3D post-mortem DW images and 2D histology stained

sections, cortical anatomical landmarks (Figure 1b,c) were used to

determine the slice selection of each ROI as in previous studies

(Cardenas et al., 2017; Jonkman et al., 2016; Zhou et al., 2020). MRI-

cron (https://www.nitrc.org/projects/mricron) was used to manually

draw ROIs on coronal views of DW images. To strike a compromise

between the best match with histology sections and statistical robust-

ness, the surface areas of ROIs of dMRI were kept at 48.6 mm2 (con-

taining 15 voxels distributed over 2 coronal slices. The surface areas

of histological sections used to estimate NDI-histology are around

45 mm2). Given the relatively small number of voxels within each ROI,

the median value was calculated for the MRI metrics, and the pdFA

between b-values of 4000 and 8000 s/mm2 was subsequently

calculated.

2.4 | Histological quantification of stained sections

After MRI, the hemisphere sample was sectioned in 5 mm thick coro-

nal blocks. This process yielded six slices with their locations drawn in

sagittal MR images as shown in Figure 1a.

Corpus callosum tissue blocks were processed for embedding in

paraffin and cutting in sections with a thickness of 6 μm. The tissue

sections were histochemically stained for neurites by use of

Bielschowsky's silver impregnation (BIEL) technique (Schmierer

et al., 2004) (Figure 1d). The histological specimens were matched to

the initial post-mortem MRI manually. Digitization of the stained sec-

tions was performed on a Virtual Slide Microscope (VS120, OLYM-

PUS, Japan) using a 10� magnifying objective, which led to a

resolution of 0.69 μm/pixel. The neurite density in the corpus callo-

sum was quantified in BIEL-stained sections using Image-J (https://

imagej.nih.gov/ij).
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The boundaries of ROIs were manually delineated on the corpus

callosum to exclude the slice's background, after which each slice was

converted to 8-bit format, and a slice-wise threshold computed with

the default ISODATA algorithm was set to eliminate cracks and imper-

fections (Figure 1e). Following that, BIEL stains were color deconvo-

luted (Bagnato et al., 2018; Zhou et al., 2020), yielding three channels

(Figure S1). As Channel 1 was predominantly represented by neurite

staining with little contribution from the background, it was used for

subsequent statistics. We used ImageJ to quantify neurite density,

which was expressed as a percentage of the ROI's area. Only effective

stained voxels that passed a threshold determined by the maximum

entropy threshold algorithm were used. Examples of these two phases

are depicted in Figure S1.

2.5 | Statistical analysis

For the in-vivo data, we first performed one-sided paired t-tests over

the whole brain (in MNI space) to examine if the FA value decreased

as the b value increased. Voxel-level family-wise error (FWE)-

corrected was applied with the family-wise error rate of 0.05. This

was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm12/).

In order to investigate how FA changes with b-value quantita-

tively, a percentage difference of FA (pdFA) between distinct b-values

was defined as follows:

pdFAab ¼
FA bað Þ�FA bbð Þ

mean FA bað Þ, FA bbð Þ½ ��100%, ba < bbð Þ ð1Þ

Pearson's correlation analysis was conducted among the pdFAs

derived from different b-values and MK from DKI and NDI from

NODDI to investigate the relationship of pdFA with other current

high-order diffusion models. The resulting statistical measures were

corrected for multiple tests using the False Discovery Rate (FDR [Ben-

jamini & Hochberg, 1995]). In addition, the relationship between pdFA

and NDI-Histology was also investigated with the post-mortem data.

All analyses were performed using MATLAB 2019b (MathWorks,

Natick, MA, USA).

2.6 | Model simulations

We are interested in the effect of compartmental water diffusivity on

FA values measured at various diffusion gradient strengths. In a “stan-
dard model” (Novikov et al., 2019), it is assumed that diffusion signal

F IGURE 1 MRI, tissue blocks,
and corresponding tissue stains.
(a) a sagittal magnetic resonance
(MR) T1-weighted image showing
the marked locations of the
6 histology samples, with a single
coronal slice indicated by the blue
line shown in (b) coronal MR
T1-w image and (c) digital photo

of tissue blocks. Histological
section (d) shows Bielschowsky's
silver impregnation (BIEL) staining
of the area corresponding to the
rectangular blue blocks in (b) and
(c). (e) Zoom-in part of the
cracked area in (d) marked by a
red rectangular, cracks and
imperfections with boundaries in
yellow were eliminated at this
step to reduce the error of
neurite density estimation. The
super-threshold pixels in red
indicate the neurite parts
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in a WM voxel comes from three nonexchanging sources: the intra-

and extra-axonal space of neurites, and a free water compartment.

Each compartment has a distinct diffusion profile (denoted as

Din,Den,Diso, respectively). As a result, the overall signal for a typical

WM configuration under this model can be simulated as follows

(Harms et al., 2017):

S¼ fin �S0e�bDin þ fen �S0e�bDen þ fiso �S0e�bDiso ð2Þ

finþ fenþ fiso ¼1 ð3Þ

INVF¼ fin
finþ fen

ð4Þ

where f denotes the signal fraction of the intra-neurite (fin), extra-

neurite (fen ), and free water (fiso) compartments respectively, and

intra-neurite volume fraction (INVF) is represented by Equation (4).

The intra-neurite space is modeled as a collection of infinitely long

cylinders (radial diffusivity, D ⊥
in ¼0), and the extra-axonal space is

assumed to behave as a Gaussian anisotropic medium. Recent works

suggested that under in-vivo conditions, Dk
in >D

k
en (Dhital et al., 2018;

Jespersen et al., 2018; Kunz et al., 2018), with

Dk
in ≈2:2�2:5�10�3 mm2=s (Dhital et al., 2019; Mckinnon

et al., 2018). In this work, we assumed that Dk
in ¼2:5�10�3 mm2=s,

Dk
en ¼0:78�10�3 mm2=s, and D ⊥

en ¼0:65�10�3 mm2=s for WM

(Kunz et al., 2018), and Diso ¼3�10�3 mm2=s in vivo (Alexander

et al., 2010; Zhang et al., 2011). For simplicity, the three components

are assumed to be perpendicular to the main magnetic field, and sub-

bundles were not considered. The diffusion gradient tables of the sim-

ulated data were identical to the in-vivo data protocol. In order to

capture more subtle changes in FA, we added additional data sets

with b-values of 700, 1500, and 2500 s/mm2 besides the existing

1000, 2000, and 3000 s/mm2 of the experimental data.

All the simulated diffusion signals at different b-values and SNR

levels were fitted with a diffusion tensor model to estimate the diffu-

sion parameters.

Three sets of simulation experiments were carried out in all. In

Simulation I, we considered a pure white matter structure with two-

compartment (e.g., without free water) and single compartment

constitutions, to verify whether the reported compartmental differ-

ence of diffusivity could lead to the underestimation of FA. The

relationship between FA and b-value was investigated at various

noise levels to investigate the effect of the rectified noise-floor on

the estimated FA. Then in Simulation II, we looked at a more general

case with a partial fraction of free water (e.g., three compartments),

and the influences of high and anisotropic diffusivity of free water

compartment on estimated FA were investigated. Furthermore,

Simulation III was run to look into the inter-relationship between

noise-floor effects and the microstructure contribution of the intra-

neurite fraction to the FA difference, and the shapes of the ADC

profile were also estimated.

2.6.1 | Simulation I

Firstly, we considered a voxel of pure white matter, with only intra-

and extra-axonal neurite spaces, defining fin ¼0:6 (Chang et al., 2015),

fen ¼0:4, and fiso ¼0. The magnitude MR signal was simulated for

1000 random Rician noise realizations, with SNR levels ranging from

20, 30, 60, and noise-free. The noise levels were chosen to approxi-

mate the low, median, and upper bands of the in-vivo human dMRI

data set (NA = 2). Rician noise was added to the signal S in the follow-

ing fashion (Tuch, 2004):

Snoisy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sþϵ1ð Þ2þϵ22
q

ð5Þ

where ϵ1, ϵ2�N 0, σ2
� �

, σ = S0/SNR corresponds to a given signal-to-

noise ratio (SNR). The signal was simulated for 1000 random Rician

noise realizations to achieve convergence (for every SNR condition,

we assume S0 = 1 without loss of generality, keep σ fixed, ϵ1andϵ2

are randomly generated).

A further single-compartment model was also run with the same

apparent diffusivity coefficient (AD = 1.81 � 10�3 mm2/s,

RD = 0.27 � 10�3 mm2/s), to compare the above two-compartment

configuration. Diffusivity coefficients of intra-

(AD = 2.5 � 10�3 mm2/s, RD = 0 � 10�3 mm2/s) and extra-neurite

(AD = 0.78 � 10�3 mm2/s, RD = 0.65 � 10�3 mm2/s) compartments

were also performed to explore the effects of noise on different com-

partments. All other parameters were kept the same.

2.6.2 | Simulation II

In general, free water is isotropic and has the highest diffusivity value.

The fully isotropic free water compartment contributes less to the dif-

fusion signal at a higher b-value, causing FA to deviate from isotropy,

according to the hypothesis.

We simulated a voxel of WM affected by free water at SNR = 30

and in the absence of noise, which can be achieved by set fiso ¼0:1,

INVF = 0.6 (fin ¼0:54, fen ¼0:36). The free water contribution is mod-

eled as a Gaussian isotropic compartment with fixed free diffusivity

Diso ¼3�10�3 m2=s in vivo (Alexander et al., 2010; Zhang

et al., 2011). All other options were the same as Simulation I.

2.6.3 | Simulation III

To further explore how intra-neurite volume fraction and noise-floor

effects jointly contribute to FA change with different b-values, a total

number of 61 INVFs were randomly generated, ranging from 0.5 to

0.8 as measured in WM of our in-vivo data. The simulations were

then performed at each INVF with SNR ranging from 15 to 100, and

noise-free cases. Other options were the same as Simulation I.
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3 | RESULTS

3.1 | In-vivo experiments

3.1.1 | FA dependence on b-value

In-vivo human brain experiments demonstrate that as the b-value

increased, FA decreased (Figure 2). Based on one-sided paired t-

tests at the group level, the drop in white matter FA was statisti-

cally significant (p < .05). The FA profiles of representative white

matter ROIs are shown in Figure 3a. FA values of all ROIs were

consistently maximal at b1000 and gradually declined at b2000 and

b3000. This finding was further supported by the post-mortem

experiment, which showed that FA values of b4000 are consis-

tently larger than those of b8000 in slices of corpus callosum

(Figure 3b).

3.1.2 | Relationship between pdFA and MK & NDI-
NODDI for in-vivo data

The relationships of pdFA with high-order diffusion models were

investigated. At the high SNR condition (NA = 2) of the in-vivo

experiment, the pdFA13 estimated by WLS was shown to be signifi-

cantly and positively correlated with both MK (Figure 4) and NDI-

NODDI (Figure 5). Significant associations were identified across all

pdFA13 estimates for MK (Table 1) and NDI-NODDI (Table 2). As

for pdFA12 and pdFA23, GCC showed slight and nonsignificant cor-

relations. By contrast, when the SNR becomes lower with NA = 1,

the observed correlations between pdFA and MK, NDI-NODDI

were systematically smaller. The WLS estimated FA is less affected

by number of averages. The significant correlation between pdFA

estimated by MLE and MK, NDI still remains, though the MLE esti-

mated pdFA has an overall decrease. However, these correlations

F IGURE 2 Results of group-
level one-sided student's paired t-
tests. The spatial maps were
visualized at t > 6.21 (the
threshold of significant t-value
after FWE corrected). Positive t-
values indicate FA(blow) > FA
(bhigh). FA value decreases with
increasing b-values, particularly
noticeable across the white
matter
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are less significant for MLE estimated results with NA = 1. More

details of the correlation coefficient (c.c.) and statistical significance

values are shown in Tables 1 and 2 and Tables S1–S6, and the com-

plete plots of pdFA12 and pdFA23 are shown in Figure S2 and

Figure S3.

3.2 | Histological validation for ex-vivo data

Figure 6a shows that the region-wise pdFA48 was highly correlated

(c.c. = 0.869, p = .025) with NDI-Histology computed from BIEL staining

of sections listed in Figure 6c, whose locations are shown in Figure 6b.

F IGURE 3 The in-vivo (a) and post-mortem (b) investigations demonstrate a relationship between FA and b-value. In each of the six
representative white matter ROIs (as shown in the upper right corner in (a)), mean FA values (line) ±1SD (shaded band) of in-vivo data are shown
in (a). The FA profile has a clear declining trend as the b-values increase. Similar results are shown in post-mortem data, with the median FA (line)
and 25%, 75% percentile values (shaded band) of each slice (the upper right corner in (b)) shown in (b). ALIC, anterior limb of internal capsule
(violet); BCC, body of corpus callosum (red); GCC, genu of corpus callosum (blue); PLIC, posterior limb of internal capsule (yellow); SCC, splenium
of corpus callosum (green); SLF, superior longitudinal fasciculus (cyan)

F IGURE 4 Scatter plots of pdFA13 and MK for in-vivo data, estimated with data of different number of averages by WLS (cool color) and
MLE (hot color), respectively. The best linear fits of the scatters are shown in solid lines, whereas the shaded colored areas show a 95%
confidence interval. Pearson correlation coefficients and significance values are also displayed in the plots
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3.3 | Model simulations

3.3.1 | Simulation I

In Simulation I with INVF = 0.6 (fin ¼0:6, fen ¼0:4), and fiso ¼0, a

decrease in FA with increasing b-value was observed under the noise-

free conditions of the multicompartment model (Figure 7a). It indi-

cates that the inherent multicompartment structure could still lead to

FA underestimation without Rician bias or Gaussian noise. The esti-

mated FAs were found systemically under-estimated in all b-values,

ranging from 0.81 at b1000 to 0.77 at b3000 under the noise-free

condition as shown in Figure 7a. Furthermore, noise-floor will

F IGURE 5 Scatter plots of pdFA13 and NDI-NODDI for in-vivo data, estimated with data of different number of averages by WLS (cool color)
and MLE (hot color), respectively. The best linear fits of the scatters are shown in solid lines, whereas the shaded colored areas show a 95%
confidence interval. Pearson correlation coefficients and significance values are also displayed in the plots

TABLE 1 Statistical significance of the correlation between
pdFA13 estimated by different methods with data of different number
of averages and MK

ROI
WLS MLE

c.c. Adjusted p c.c. Adjusted p

SCC 0.679 1.49E�08 *** 0.699 4.51E�09 ***

0.619 3.76E�07 *** 0.633 1.72E�07 ***

BCC 0.471 2.16E�04 *** 0.561 5.94E�06 ***

0.476 1.81E�04 *** 0.539 1.42E�05 ***

GCC 0.399 0.002 ** 0.428 8.55E�04 ***

0.341 0.008 ** 0.396 0.002 **

PLIC 0.611 5.56E�07 *** 0.656 5.13E�08 ***

0.604 7.50E�07 *** 0.662 3.89E�08 ***

ALIC 0.729 6.79E�10 *** 0.761 6.45E�11 ***

0.655 5.13E�08 *** 0.686 1.03E�08 ***

SLF 0.351 0.006 ** 0.533 1.84E�05 ***

0.370 0.004 ** 0.548 1.00E�05 ***

Note: * adjusted p < .05, ** adjusted p < .01, *** adjusted p < .001, with

blue shaded cells representing NA = 2, and unshaded cell NA = 1.

TABLE 2 Statistical significance of the correlation between
pdFA13 estimated by different methods with data of different number
of averages and NDI-NODDI

ROI
WLS MLE

c.c. Adjusted p c.c. Adjusted p

SCC 0.458 4.47E�04 *** 0.418 0.001 **

0.334 0.011 * 0.286 0.030 *

BCC 0.530 3.69E�05 *** 0.540 2.82E�05 ***

0.433 9.23E�04 *** 0.412 0.002 **

GCC 0.283 0.032 * 0.344 0.009 **

0.194 0.145 0.295 0.025 *

PLIC 0.614 1.14E�06 *** 0.625 1.14E�06 ***

0.508 8.59E�05 *** 0.549 2.21E�05 ***

ALIC 0.530 3.69E�05 *** 0.540 2.82E�05 ***

0.364 0.006 ** 0.392 0.003 **

SLF 0.562 1.32E�05 *** 0.530 3.69E�05 ***

0.537 3.12E�05 *** 0.397 0.003 **

Note: * adjusted p < .05, ** adjusted p < .01, *** adjusted p < .001, with

blue shaded cells representing NA = 2, and unshaded cell NA = 1.

YAO ET AL. 1379



exacerbate the result obtained in the noise-free condition. In contrast

to the other SNR levels, the estimated FA drops more dramatically at

low SNR = 20. It is worth noting that when SNR>30, the FA trend in

the multicompartment model would coincide well with a noise-free

case (Figure 7a).

In the single-compartment simulation, a similar tendency was dis-

covered. The observed anisotropy is underestimated in the case of

low SNR conditions and gets much worse at higher b values

(Figure 7b). Most importantly, the estimated FA in the single-

compartment model remained constant regardless of b-values in the

absence of noise, which is remarkably different from the multicom-

partment simulation (Figure 7a).

The effect of noise varies in different compartments (diffusion

profiles). In the intra-neurite compartment, the estimated FA decrease

with b-value in the presence of noise (Figure 7c), and the lower the

SNR, the more the decrease. In contrast, lower SNR leads to an over-

estimate in the extra-neurite compartment (Figure 7d), and FA is

insensitive to changes in b values.

3.3.2 | Simulation II

When considering a WM voxel incorporating a free water compart-

ment as shown in Figure 8, the additional fraction of free water made

the results seen less intuitive in Simulation II. A free water compart-

ment would weaken the reduction effect of FA under the same condi-

tions, even cause overestimation of FA values.

When increasing the noise-floor effect (SNR = 30), the FA trend

became more complicated with a small increment before b1500 and after-

ward gradually decreases (Figure 8a), and FA was also overestimated.

3.3.3 | Simulation III

In Simulation III, the interaction of noise-floor effects and intra-neurite

volume fraction on pdFA was investigated (Figure 9). When INVF was

varied from 0.5 to 0.8, as existed in pure white matter tissue (Chang

et al., 2015), pdFA13 was found to be significantly correlated with

INVF under various SNRs. The positive correlations between pdFA

and INVF are consistent with the experimental data (Figure 5). It is

noteworthy that whereas pdFA13 is usually larger at lower SNR condi-

tions (Figure 9a), the correlation between pdFA13 and INVF is greatest

when the SNR is between 25 and 50, with a lesser correlation at

lower or higher SNR conditions (Figure 9b).

To further illustrate these findings, changes in diffusion profiles

were presented with intra-neurite volume fractions ranging from 0.5

to 0.7 in the absence of noise in Figure 10. The simulated tensors (red

lines in Figure 10) have spikes due to the intra-neurite compartment

(D ⊥
in ¼0). As INVF increases, the presupposed diffusivity along with

the long axis increases while in the orthogonal direction it decreases.

The variance of the anisotropic measured with different b-values also

increased, corresponding to the positive correlation between INVF

and pdFA as shown in Figure 9.

4 | DISCUSSION

In this work, we utilized MRI of in-vivo and post-mortem human

brains, histological data from a post-mortem human brain sample,

and model simulations to investigate the intrinsic cause of the DTI-

derived FA dependence on the b-value. We observed that FA

decreased when the b-value increased (Figure 3) consistent with

F IGURE 6 Histological analysis results for ex-vivo data. (a) Correlation between pdFA (median values in MRI ROIs) and NDI-histology of the
sections. (b) Locations of MRI ROIs overlaid on a sagittal dMRI image, five vertical callosal segments based on (Hofer & Frahm, 2006) are shown

in (c). (c) Topography of channel 1 output after performing color deconvolution on BIEL staining sections. Maximum entropy thresholding was
applied on channel 1 to extract neurite fraction, red areas indicate the selected neurite part (pixels that exceed the threshold), which were used to
estimate neurite density. The border color of the local image of the stained section in (c) matches the ROI location in (b) and the points in (a)
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earlier findings (Barrio-Arranz et al., 2015; Farrell et al., 2007;

Lerma-Usabiaga et al., 2019; Mukherjee et al., 2008; Veraart

et al., 2011). There was a consistent relationship between the per-

centage difference of FA between high and low b-values (pdFA)

and NDI-Histology generated from BIEL staining slices of fixed

post-mortem human brain tissues (Figure 6a). The pdFA was simi-

larly significantly correlated with MK and NDI-NODDI of in-vivo

data (Figure 5), especially in high SNR data sets. A lower SNR would

result in a higher pdFA, as well as a nonlinear effect on its correla-

tion with NDI (Figure 9). Finally, a multicompartment model simula-

tion revealed that the trend of pdFA against b-values could be due

to differences in diffusion coefficient between intra- and extra-

neurite compartments in WM (Figure 7), with the noise-floor

increasing the FA difference.

4.1 | In-vivo human brain experiments

For in-vivo experimental data, the FA profiles were similar at each b-

value (Figure 3), which is consistent with previous findings indicating

that FA values decrease as the b-values increase (Lerma-Usabiaga

et al., 2019). Differences in FA were significant throughout white mat-

ter as shown by the results of the group-level paired t-test of FA

values in Figure 2. As a result, we hypothesized that the drop in FA

might be related to the distinctive structure of white matter. The

axon, as a special structure of white matter, was considered.

We identified a strong association in the white matter between

pdFA and MK (Table 1, Figure 4), a marker of microstructural com-

plexity (Guo et al., 2019; Hui et al., 2008; Raab et al., 2010). In a previ-

ous study (Veraart et al., 2011), FA estimated from the DTI was

F IGURE 7 Simulation of effects of noise on FA difference for different conditions: (a) multicompartment model; (b) single-compartment
model; (c) intra-neurite compartment; (d) extra-neurite compartment. Dashed lines mean the expected FA calculated based on the inherence
apparent diffusivity. Different colors represent different SNR levels, shaded bands represent the range of mean ± SE. Lower SNR will cause the
reduction of the estimated FA for both multi- and single-compartment models. In the case of SNR = 30 (medium blue), the simulation results are
very close to the condition without noise (red) for the multicompartment model. What is more, the light line (SNR = 60) overlaps the red line
(noise-free) in (a)
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considerably reduced with a rising b-value within the range of 400–

2800 s/mm2; however, this dependency was reduced when FA was

derived from DKI. The relationship between pdFA and NDI-NODDI, a

metric reflecting the intra-neurite volume fraction of tissue micro-

structure (Fukutomi et al., 2018; Kamiya et al., 2020; Zhang

et al., 2012), was also investigated. Positive correlations between

pdFA12, pdFA13, and NDI-NODDI were found in WM areas as shown

in Table 2 and Figure 5. In addition, high b-value (3000 s/mm2) DTI

redundantly parallels with NODDI-based cortical neurite measures

(Fukutomi et al., 2019). Accumulating evidence has suggested that a

high b-value dMRI signal is more sensitive to neurites and neural tis-

sue changes than a low b-value dMRI signal. Compared with

traditional WLS estimated FA without considering Rician bias, the

MLE estimated pdFA has an overall decrease because the maximum

likelihood approach of estimating tensors from DTI data can accounts

for Rician bias. As a result, the FA dependence caused by noise-floor

was reduced. In this instance, microstructure was more likely to be

the cause of the FA dependence on b-value. However, the perfor-

mance of the current MLE algorithm may be affected by other poten-

tial causes, including the multiple-coil system (den Dekker &

Sijbers, 2014).

These findings suggest that DTI metrics measured at various b-

values are heterogeneous, which could be related to WM microstruc-

ture and its susceptibility to noise.

F IGURE 8 Simulation-based on the multicompartment model under different SNR. With increasing b-values, FA trend changes when other
parameters are fixed: fin = 0.6, fiso = 0 (blue), and 0.1 (red), Dk

in ¼2:5�10�3 mm2=s, D ⊥
in ¼0, Dk

en ¼0:78�10�3 mm2=s, D ⊥
en ¼0:65�10�3 mm2=s.

expected FA (dashed lines of the corresponding color) for the compartmental model was calculated based on the inherence apparent diffusivity.
The standard errors of noise-free conditions are smaller than 1.00 E�14 and were not able to be shown in (b)

F IGURE 9 The pdFA13 at different intra-neurite volume fractions and SNRs. The following parameters were fixed here: fiso = 0,
Dk
in ¼2:5�10�3 mm2=s, D ⊥

in ¼0, Dk
en ¼0:78�10�3 mm2=s, D ⊥

en ¼0:65�10�3 mm2=s. (a) pdFA13 change with INVF, with different colors,
represent different SNRs, pdFA is globally higher at lower SNR. (b) Pearson correlation between pdFA13 and INVF under different SNR levels, the
SNR mentioned in (a) is also presented in the corresponding color in (b)
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4.2 | Post-mortem human brain experiments

For histological analysis, the ROIs we selected were mainly from the

body of corpus callosum. The estimated neurite density fraction var-

ied across ROIs. According to a histological post-mortem study

(Aboitiz et al., 1992), fibers with a diameter below 1 μm densely popu-

lated the anterior and posterior parts of the corpus callosum with less

density in the callosal midbody. Complementarily, the density of thick

fibers (diameter above 3 μm) was low in the genu and splenium but

showed a peak in the midbody. This was consistent with the results

obtained by the histological approach from BIEL stained slices as

shown in Figure 6b, the axon of the anterior part (purple-framed

block) is much thinner than the body part (gray-framed block) of cor-

pus callosum.

A significant positive correlation was found between NDI-

Histology and pdFA48 (c.c. = 0.869, p = .025), which is similar to in-

vivo data. It suggests that FA's b-value dependence is connected to

intra-neurite volume fraction, implying that the difference between

intra- and extra-neurite diffusivity may be the cause of FA change.

The post-mortem investigation with histological data provides inde-

pendent evidence of neurite density. These findings support the

hypothesis that FA dependence on b-value could be determined by

INVF and was driven by diffusivity differences among tissue

compartments.

4.3 | Model simulation results under in-vivo
conditions

4.3.1 | Effect of noise on FA dependence on b-
values—simulation I

It is known that signal accuracy concerns the distance between the

average signal to the true value, while signal precision concerns the

spread of the signal (Vis et al., 2021). Both terms are influenced by

the distribution that characterizes the MR signal.

In our simulations, the Rician biased offset affects signals in terms

of accuracy, while the “Gaussian” like distribution (scattered around

the truth value) affects signals in terms of precision. As shown in

Figure 7, the presence of noise causes the estimated FA to decrease

with increasing b-values for both the multi- and single-compartment

models (Figure 7a,b). The lower the SNR, the greater the decrease in

FA. In the case of the low b domain (b < 1000 s/mm2), FA is insensi-

tive to changes in SNR, which is different from previous in-vivo

research that found noise can lead to overestimation of FA at

b = 1000 s/mm2 (Farrell et al., 2007; Wang et al., 2012). On the other

hand, the “Gaussian” like distribution of signal introducing a scattering

of FA (shaded band in Figure 7), the lower the SNR, the larger the

standard deviation is.

The effect of the rectified noise-floor on the estimated FA was

previously simulated (Jones & Basser, 2004), in the high b domain

(b > 3000 s/mm2), the pattern of underestimation of the anisotropy

was observed. The simulation showed that the rectified noise-floor

would causing an underestimation of the ADC along the principal dif-

fusion direction, making it more similar to radial diffusivities and thus

underestimating FA. However, these simulations were limited to sig-

nal arising from a single compartment. In our multicompartment model

simulation, the underestimation of the anisotropy could even be

observed in the low b domain (b < 1000 s/mm2). The estimated FA

values appeared smaller than expected even under the condition

without noise as Figure 7a shows. The decline in FA value will be

exacerbated by a low SNR. When SNR = 30, the simulation results

are fairly close to the noise-free condition.

4.3.2 | Effect of compartmental difference on FA
dependence on b-values—simulation I

Our simulations of in-vivo conditions are also in good agreement with

in-vivo experimental studies. As shown in Figure 7a, in pure WM

(fiso ¼0), FA decreased with increasing b-value even in the absence of

noise, if distinctive diffusivities of the intra- and extra-neurite

F IGURE 10 Diffusion
profiles for tensor fitting with
INVF ranging from 0.5 to 0.7 in
the absence of noise (a–c). Three
estimated diffusion profiles are
shown in blue for each tensor,
and the red profile corresponds
to the presupposed diffusivity.
The estimated diffusion tensor

becomes less anisotropic with the
increase of the b-value
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compartment were assumed, with the ground truth of Dk
in >D

⊥
en . These

parameter settings are in agreement with several recent reports that

used different approaches to address the same question regarding

compartment axial diffusivities (Dhital et al., 2019; Kunz et al., 2018;

Mckinnon et al., 2018). However, in the single-compartment model,

the FA value was kept constant with the same apparent diffusivities

of Simulation I without noise (Figure 7b). These findings suggested

that differences in intra- and extra-neurite compartmental diffusivity

may also be responsible for the FA dependence on the b-value.

As an extension of DTI, multicompartment models have been

studied widely in recent years (Dhital et al., 2019; Gong et al., 2020;

Skinner et al., 2017; Yi et al., 2019; Zhang et al., 2012). Multicompart-

ment diffusion models represent the total DWI signal as a sum of the

diffusion-weighted signal arising from a combination of distinctive

compartments with different underlying cellular microstructures, each

with its own diffusivity profile. We hypothesized that the contribu-

tions of different compartments to signal generation were likely to

alter when diffusion weighting changes, thus raising the FA variation

derived from different b-shells. With increasing b-values, the esti-

mated FAs decrease. This suggested that when the b-value is small,

the intra-neurite compartment contributes more to the observed dif-

fusion signal, due to the larger diffusivity of the intra-neurite compart-

ment than the extra-neurite compartment, whereas when the b-value

is large, the intra-neurite compartment contributes less. Specifically,

the axial diffusivity approaches the lower extra-neurite value and the

radial diffusivity approaches the intra-neurite value with the increase

of the b-value. Whereas axial diffusivity decreases more, the observed

FA would be expected smaller at a larger b-value. Therefore, changing

the contribution of different components to the total diffusion signal

by varying compartmental fractions (INVF) would influence pdFA. The

pdFA would be higher if the actual intra-neurite fraction was higher.

In general, increasing diffusion weighting will lead FA to resemble that

of a compartment with lower diffusion coefficients.

4.3.3 | Interaction of compartmental difference and
noise on FA dependence on b-value—simulation III

Due to differences in diffusion profiles, the impact of noise on intra-

and extra-neurite compartment is also different. Figure 7c,d shows

that the former is more sensitive to the SNR changes. In the presence

of noise, the estimated FA of intra-neurite compartment decreased

with the increasing b-values, and lower SNR made the drop larger.

However, the estimated FA of the extra-neurite compartment had

only a slight dependence on b-value. This could be due to the larger

axial diffusivity of intra-compartment. As diffusion weighting

increases, the signal decays more, which would be more affected by

noise-floor effects. While the settled FA of the extra-compartment is

very small (≈0.1), leading to similar signal attenuation degree in axial

and radial directions. Hence, they are also approximately affected by

the noise-floor effect, making the change of estimated FA smaller

according to different diffusion weighting, which refers to b-value in

this study. Therefore, the existence of noise amplifies the FA

dependence on the b-value caused by the diffusivity profile difference

between compartments as we discussed in Section 4.3.2. Results of

in-vivo data sets (Figure 5) and Simulation III (Figure 9) also supported

this inference.

It is worth noting that the SNR level would have a nonlinear

impact on the correlation between pdFA and NDI. For the in-vivo

experiment (Figure 5), lower SNR data sets had a less significant cor-

relation, with a larger absolute value of pdFA. Further simulations pro-

vided a more comprehensive picture with SNR levels varying from

15 to 100 and as well as noise-free conditions (Figure 9). The results

identified a nonlinear effect with a trend of first increasing and then

decreasing for the correlation coefficient against SNR (Figure 9b). This

could be due to the loss of the specific impact of noise-floor effects

on compartments as we discussed in Section 4.3.1. The Simulation III

suggested that compartmental difference of diffusivity and noise-floor

effect jointly caused the significant correlation between pdFA and

INVF. The highest correlation coefficient can be obtained when the

SNR is between 20 and 60, the presence of noise made the correla-

tion between pdFA and NDI more significant when the SNR is lower

than 60 (Figure 9b). Unlike previous studies suggested that such SNR-

related variation can be substantially reduced when the SNR in raw

DWIs is higher than 20 (Bastin et al., 1998; Hui et al., 2010). Hence,

we concluded that diffusivity differences between intra- and extra-

neurite compartments of white matter provide the basis of the

observed FA dependence on b-values, whereas the noise-floor effects

would significantly amplify this effect.

When we further studied the estimated diffusion profiles in the

absence of noise (Figure 10), we discovered that diffusivity along axial

direction decreased with increasing b-value, while radial diffusivity

remained almost the same, therefore leading to an underestimation of

anisotropy. The increase in INVF could make the decrease in axial dif-

fusivity more noticeable. This indicates that as the b-value increases,

the extra-neurite compartment with lower axial diffusivity is given

more weight in the signal information. The larger the INVF, the more

AD decreases, resulting in more FA changes as the b-value increases.

4.4 | Limitations

There are several limitations to this work. First, it is difficult to accu-

rately match post-mortem MRI (slice thickness of 1.8 mm in this

study) with histology stained slices (thickness of 6 μm) for post-

mortem human brain research, which is a common challenge for most

neuroimaging studies of this type (Kelm et al., 2016; Zhou

et al., 2020). Due to a lack of a robust way to register the hemisphere

image to an atlas, the selected ROIs on this sample were drawn manu-

ally with a certain level of subjective bias. In order to minimize this

confounding factor, we used cortical anatomical landmarks to improve

registration as in previous publications (Cardenas et al., 2017;

Jonkman et al., 2016; Zhou et al., 2020). In future studies, research

into 3D histology data (Morawski et al., 2018) is likely to become

more prevalent, allowing for easier registration of MRI and

histological data.
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We performed a very limited set of simulations without consider-

ing the impacts of axon distribution, axonal dispersion, axon diameter,

axonal undulation, and water exchange. These variables could all lead

to variability in the diffusion-weighted signal generation. In addition,

the difference in T2 between the intra- and extra-neurite compart-

ments (Peled et al., 1999; Wachowicz & Snyder, 2002) may also have

influence on the signal contributions between the two components. It

is worth noting that NODDI derived NDI is a T2 weighted metric

(Gong et al., 2020; Veraart et al., 2019). We did not take different T2

values of intra- and extra-neurite compartment into account, which

might have some influence on the results. These factors should be

considered in future work for more reliable validation.

5 | CONCLUSION

In this study, we investigated the b-value dependence of a range of

dMRI-derived properties in the human brain, including direct compari-

son between post-mortem dMRI and histology. Both in-vivo and

post-mortem results showed consistent declines in FA with larger b-

values. In both experimental and simulated data, the difference in FA

between high and low b-values is considered to be driven by noise-

floor effects, the differing diffusion coefficients of intra- and extra-

neurite compartments in tissue, and their interaction. These findings

suggest that the microstructure of axons may be responsible for FA's

b-value dependence in WM, and that is further amplified by the

noise-floor.
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