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Abstract Motor neurons of the crustacean cardiac ganglion generate virtually identical,

synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a

result of this variability, manipulations that target ionic conductances have distinct effects on

neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary

for proper cardiac function. We hypothesized that robustness in network output is accomplished

via plasticity that counters such destabilizing influences. By blocking high-threshold K+

conductances in motor neurons within the ongoing cardiac network, we discovered that

compensation both resynchronized the network and helped restore excitability. Using model

findings to guide experimentation, we determined that compensatory increases of both GA and

electrical coupling restored function in the network. This is one of the first direct demonstrations of

the physiological regulation of coupling conductance in a compensatory context, and of synergistic

plasticity across cell- and network-level mechanisms in the restoration of output.

DOI: 10.7554/eLife.16879.001

Introduction
The hallmarks of robust central pattern generator (CPG) output are appropriately tuned excitability

of individual neurons combined with circuit-level interactions that maintain appropriate temporal

coordination (i.e., phasing) of these neurons. Through both developmental and ongoing tuning pro-

cesses, CPGs can maintain reliable network output for decades across the lifespan of an individual,

despite constant feedback from the changing nature of both the organismal and natural environ-

ment. Yet underlying this constant reliability of network output exists a surprising amount of variabil-

ity in the individual parameters necessary for producing activity. For instance, despite having nearly

identical output across animals, networks can exhibit a five-fold or more range in intrinsic and synap-

tic conductance values (Marder and Goaillard, 2006; Schulz et al., 2006; Marder, 2011;

Roffman et al., 2012). Such variability in intrinsic conductances is not limited to CPGs, but has been

documented in several cell types of the mammalian brain, including cerebellar Purkinje cells

(Swensen and Bean, 2005), and globus pallidus neurons (Günay et al., 2008). Additionally,

the synaptic strengths between mammalian central neurons have been shown to vary in several brain

regions (Nelson and Turrigiano, 2008; Turrigiano, 2008; Maffei et al., 2012).

The origins and implications of this variability are still an intense area of investigation

(Krubitzer and Kahn, 2003; Turrigiano and Nelson, 2004; Ciarleglio et al., 2015). We hypothesize

that this variability might be a result of ongoing compensatory changes required to maintain reliable
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output over time. This compensation, termed homeostatic plasticity, has been well documented

both for plasticity of intrinsic excitability via changing ionic conductances (Turrigiano et al., 1994),

as well as for changes in chemical synaptic strength (Desai, 2004; Turrigiano, 2012). Variability in

conductances may also be an adaptive trait in and of itself: variable solutions that produce conver-

gent circuit output may provide a selective advantage, or perhaps be a substrate for adaptation and

evolution (Marder and Goaillard, 2006; Grashow et al., 2009).

Regardless of whether such variability is the result of homeostatic compensation, differential tun-

ing across networks, or a combination of these and other heretofore undiscovered causes, a poten-

tial cost to such variability has recently been identified. In the cardiac ganglion (CG) of the Jonah

crab (Cancer borealis), five Large Cell motor neurons (LCs) generate completely synchronous output,

as a result of pacemaker inputs within the network, to drive simultaneous heart muscle contraction in

the crab (Tazaki, 1972). Despite completely uniform and synchronous activity within the network,

LCs show highly variable underlying maximal conductances (Ransdell et al., 2012). These variable

conductances render the neurons susceptible to perturbations that target a subset of ionic conduc-

tances: when high-threshold K+ currents were blocked with tetraethylammonium (TEA), the motor

neurons lost coordinated output and became divergent in their patterns of firing (Ransdell et al.,

2013a). These CG neurons compensate for this change in excitability, presumably to homeostatically

maintain a target level of excitability (Ransdell et al., 2012). However, none of the network level

impacts of this perturbation and plasticity have been investigated. Indeed, it is difficult to study

homeostatic plasticity in intact networks and to simultaneously take into account both properties of

individual cells as well as their network interactions. In the present study, we discovered that LC vari-

ability makes the network vulnerable to desynchronization as a result of TEA exposure, but that com-

pensation resynchronizes the network within 30–60 min via both intrinsic cellular and circuit-level

physiological mechanisms. To examine the underlying mechanisms, we developed a biophysical

computational model of the entire cardiac network. The network model enabled a comprehensive

search of the conductance space for potential compensatory mechanisms that preserved network

synchrony, and we used these findings to guide further experimentation. Our study revealed cooper-

ative homeostatic plasticity among intrinsic conductances and electrical coupling across multiple

cells in the cardiac network. We interpret this as a novel homeostatic compensatory mechanism con-

tributing to the overall robustness of CPG output.

eLife digest Neurons can communicate with each other by releasing chemicals called

neurotransmitters, or by forming direct connections with each other known as gap junctions. These

direct connections allow electrical impulses to flow from one neuron to another via pores in the

membranes between the cells. Unlike communication via neurotransmitters, gap junctions are

usually thought to be hard-wired and unchanging over the life of the animal.

Lane et al. recorded electrical activity in a network of neurons that generates rhythmic heart

contractions in the Jonah crab. Neurons in this network usually all fire an electrical impulse at the

same time, which is crucial to make sure that the whole heart contracts at the same time. The

experiments show that drugs that block potassium channel pores in the membrane cause the

neurons to fire too much and at different times to each other.

However, the network of neurons soon adapted to the changes caused by the drugs and

returned to working as normal. Mimicking these changes in a computer model of the neuron

network, together with experimental data, showed that changes to the gap junctions play a major

role in restoring normal activity to the network.

The next step following on from this research is to understand how a network of neurons ‘senses’

that it is not working normally and changes its electrical activity.

DOI: 10.7554/eLife.16879.002
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Results

Exposure to TEA desynchronizes LC burst waveforms and increases
excitability
Ransdell et al. (2013a) were able to repeatably reduce the magnitude of high-threshold K+ currents

(IKd + IBKKCA) by ~92% in isolated LCs with 25 mM TEA. We used this experimental manipulation on

the 3 anterior LCs in intact CGs (Figure 1A) causing LCs in the same ganglion to change from identi-

cal (Figure 1B) to divergent, asynchronous output (Figure 2A,I,II) after exposure to TEA. After appli-

cation of TEA, motor neurons became noticeably more depolarized during burst potentials and LC

spiking seen on the extracellular recordings increased substantially (Figure 2A). Additionally, com-

parison of intracellular voltage waveforms revealed a loss of conserved output (Figure 2A). These

results are consistent with the hypothesis that variable underlying conductances of the LCs makes

them vulnerable to a uniform perturbation of a subset of conductances such as the TEA blockade

that targets high-threshold K+ conductances. Because our previous results demonstrated that the

change in excitability that accompanies TEA exposure in LCs is accompanied by an increase in

A-type K+ current, we hypothesized that compensation may also occur at the network level to

restore synchrony among LCs subsequent to the TEA block.

Compensation restores both excitability and synchrony following TEA
exposure
To determine whether compensatory responses can restore both excitability and synchrony of LC

output following TEA block, anterior LCs were superfused with TEA for at least 1 hr while

the activity of the individual LCs and the network were continuously recorded. Our data demonstrate

that both synchrony and excitability are restored towards baseline levels over a period of 30–60 min

following TEA exposure. Figure 2A and B illustrate a typical progression through the loss and subse-

quent restoration of synchrony among LCs during one hour of continuous exposure to TEA. Acutely

after application of TEA, we saw a significant reduction in synchrony as measured by R2 (see

Materials and methods; Ransdell et al., 2013a) across LC voltage waveforms (Figure 2B,C, time

point II). Following this reduction, waveform synchrony values consistently recovered towards

CG trunk

extracellular
LC5LC4LC3

LC1
LC2 Saline

or Sucrose

Saline or Saline+TEA

Saline

Pace-
makers

LC3

LC4

LC5

CG trunk

A Banterior

posterior

Figure 1. Experimental setup for the recording and superfusion of CG neurons. (A) Petroleum jelly wells (gray)

allow the posterior LC1 and LC2 as well as the pacemaker small cells (SCs) to be pharmacologically isolated from

the anterior large cells (LC3, LC4, LC5). Pacemaker cells can be maintained in physiological saline, or the network

can be temporarily shut down by replacing saline with 750 mM sucrose. Extracellular recordings are performed

with stainless steel pin electrodes from the ’trunk’ nerve that contains the axons of all 5 LCs and the pacemaker

cells. Intracellular recordings are taken from the anterior LCs. The area outside the petroleum jelly wells is

superfused with pharmacological agents to target only the anterior large cells. (B) Simultaneous intracellular

recordings from the three anterior LCs and extracellular recording of the network output via the trunk nerve,

demonstrating synchrony among LCs in the control ongoing rhythm. Scale bars = 10 mV, recording duration = 9 s.
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Figure 2. Restored excitability and waveform synchrony among LCs after 1 hr of TEA exposure. (A) Representative

recordings of LC3 and LC5 and of network activity over one hour of TEA exposure. Roman numerals (I, II, III, IV)

designate time points of reference throughout the remainder of the figure, as follows: I – control saline, II – acute

TEA exposure identified as the maximum effect on loss of synchrony across LCs (i.e. lowest R2 value), III – 30 min

of TEA exposure, IV – 60 min of TEA exposure. (B) Scatterplots show pairwise correlation of time-matched

voltages (sampled at 10 kHz) of the waveforms shown in the representative traces. R2 values are calculated from

Pearson’s correlation tests for these two cells. Loss and restoration of conserved output is demonstrated by

changes in coherence in the scatterplot as well as in R2 value. (C) Synchrony of waveforms of the two cells seen in

panels A and B plotted as R2 values over the entire time course of the experiment. Roman numerals and large

gray circles represent the values that were obtained from the scatterplots as each time point shown in panel B.

TEA perfusion persists from time zero through 60 min. Box plots show distributions of R2 values from cross-

Figure 2 continued on next page
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baseline levels, often by 30 min, and were no longer statistically different from baseline by 1 hr of

treatment with TEA (Figure 2C, right). To monitor compensatory changes in excitability, five differ-

ent measures of excitability were calculated using both extracellular and intracellular recordings

(Figure 2D; see Experimental Methods). The spikes per burst, average spike frequency, total burst

depolarization and burst amplitude all were significantly increased immediately after exposure to

TEA (’acute’), while the small cell pacemaker (SC)-to-LC phase delay was significantly decreased

(Figure 2D). All 5 measures also then showed a significant change back towards their baseline levels

between the 30 min and 60 min time points. While all measures showed clear shifts towards restora-

tion of baseline excitability, the number of spikes per burst, spike frequency within each burst, burst

amplitude, and total burst depolarization were not completely restored to control levels; the excep-

tion was the SC-LC phase delay which was fully restored (Figure 2D). Preparations exposed to TEA

for 2–3 hr showed no further change in excitability (data not shown). For this reason, time scales lon-

ger than 1 hr were not included in our analyses.

Modelling predicts compensation based on intrinsic conductances
TEA exposure reduces LC synchrony and induces hyperexcitability. Our model development and

selection criteria resulted in a population of 27 model CG networks with variable underlying conduc-

tances of the constituent neurons that successfully recapitulated the biological data observed in TEA

(see Methods, Supplemental Information). Our previous results identified an approximate 2.2 ± 0.8-

fold change in IA in LCs as a result of 60 min of TEA exposure (Ransdell et al., 2012). Therefore, we

used the model networks to explore potential mechanisms of compensation by first increasing and

decreasing each individual maximal membrane conductance by a similar factor of 2. We searched

for changes that would increase LC spike synchrony while countering the hyperexcitability induced

by TEA. To easily visualize the trends, each network was normalized to its initial value for spike syn-

chrony. These data are shown for all conductances in Figure 3.

Our initial goal with the model was to determine whether changes in single conductances were

sufficient to elicit compensatory changes in output that help restore both excitability and synchrony.

While it is not difficult to conceive of a change in multiple aspects of the parameter set that could

achieve restoration of output, it is perhaps not as intuitive – but presumably the most parsimonious

solution – for a single conductance to have such an impact. True to this expectation, while various

manipulations of Gmax values improved either excitability or synchrony, very few conductance

changes improved both. The optimal solution of significantly improving spike synchrony and also sig-

nificantly decreasing the total number of action potentials was achieved in only one case: two-fold

increase in GA resulted in a mean synchrony score that was significantly different from the TEA case

(p<0.05, paired t-test) but not significantly different from control (p=0.157). No other change in a

given conductance resulted in this combination of statistical outcomes. Not every model cell or net-

worked improved uniformly with this conductance change. Therefore, while these results do not rule

out a contribution for other conductances, they do suggest that an increase in GA, as seen in previ-

ous experimental studies on isolated LCs (Ransdell et al., 2012), may be the most likely candidate

for a change in intrinsic conductance promoting synchrony at the network level. These data suggest

that while a single conductance change (increased GA) can help restore both excitability and syn-

chrony, variations in a single voltage-dependent conductance may not be sufficient to account for

Figure 2 continued

correlation analyses of LC voltage waveforms for pairs of LCs from N = 11 preparations. Lines within boxes mark

the median, box boundaries represent 25th and 75th percentiles, whiskers represent 5th and 95th percentiles, and

points represent outlying observations. Groups with significant differences in median synchrony (p<0.05; Wilcoxon

signed rank tests) are denoted with different letters. (D) Excitability of LCs was quantified by five measurements

(mean ± SD). Analysis of each preparation used the average of 10 consecutive bursts at each time point (N = 8

preparations). Number of spikes per burst, spike frequency within each burst, and the latency between pacemaker

firing and first motor neuron spike (SC-LC Phase Delay) were calculated from extracellular traces. Total

depolarization and amplitude of each burst are based on intracellular recordings. Significant differences across

groups (p<0.05; paired t-tests) are denoted with different letters, such that any two bars with a letter in common

are not significantly different.

DOI: 10.7554/eLife.16879.004
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Figure 3. Effects of increasing and decreasing individual ionic conductances on excitability and synchrony in model CG networks. (A) Schematic

representation of model network organization and connectivity. Five large cell (LC) motor neurons are innervated via excitatory synapses from a

common small cell pacemaker input (SCs). LC model neurons consist of two compartments - soma and axon - of which only the somata are pictured.

Somata contain 9 conductances: GCaS, GCaT, GLEAK, GCAN, GA, GBKKCa, GSKKCa, GKd, and GNaP. Paired LCs (1+2, 4+5) have stronger local coupling (black

resistor symbols), and all 5 LCs are reciprocally electrically coupled via weaker gap junctions (gray resistor symbols). An example of LC3 and LC4 model

output within a network burst activity is shown in the red and blue traces under both control and TEA (90% reduction in both GKd and GBKKCa)

conditions. Graphical representations of spike synchrony (raster plots) and waveform synchrony (scatterplots; as in Figure 2) are shown for the model

neurons, demonstrating that both measures reflect the loss of LC synchrony as a result of TEA. (B) Measurements of both output variables (# of spikes

and spike synchrony) were made under three model conditions: control, TEA, and TEA + either a 2x increase (G") or 2x decrease (G#) in a given

conductance. N = 27 distinct model networks. All output measurements are normalized to their initial (control) conditions. Red lines represent the mean

for a given group. Dashed line represents the 1.0 value (baseline) for a given measure. Compensatory responses that restore excitability and synchrony

will tend to move the mean towards baseline.
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the full compensation response. In addition to perturbing only individual conductances, we also var-

ied current kinetics and activation parameters (half-activation voltage V1/2, ± 10 mV, and slope factor

k, by 0.5x and 2x (Ballo et al., 2010) and time constant by ± 10 ms) for all the cell currents individu-

ally, and found that no changes in parameters for a single current could simultaneously restore excit-

ability at the single cell level, and synchrony at the network level (data not shown). While the analysis

has focused only on the parameters of a single current, simultaneous changes in parameters of multi-

ple currents could also potentially provide similar compensation, and that remains to be explored.

However, our analysis does reveal the substantial contribution of changing a single parameter – GA –

on multiple aspects of network compensation, to an extent that is beyond simple intuition. Impor-

tantly, the model also extends the biological data by demonstrating that waveform synchrony can

translate into spike synchrony. Because of the electrotonic distance between the somata and axons

of LCs, we cannot measure spike synchrony directly in this preparation. The model allows us to infer

that waveform synchrony (and loss of synchrony) can indeed translate to the level of the most proxi-

mal cellular output – spiking.

Intrinsic compensation contributes to restoration of synchrony
Model runs predicted that increases in IA help restore LC excitability and synchrony. To test this

experimentally, we silenced pacemaker activity with isotonic sucrose solution (see Methods, Supple-

mental; Figure 1A), and tested the similarity of responses of each individual LC to a biologically real-

istic current stimulus (Ransdell et al., 2013a). We compared LC3 and LC5 to the same current

injection at three time points: control, 5 min post-TEA, and 1 hr post-TEA. Between current injec-

tions, pacemaker activity was restarted by removal of the sucrose block. This allows us to test each

cell in isolation, but compensation occurs in the intact network. The initial voltage responses to our

stimulation protocol in LC3 and LC5 in control conditions are highly similar to one another, and their

level of waveform synchrony was not significantly different from the synchronous activity across these

LCs during intact control network activity (Figure 4A,B). Immediately following TEA application, LC3

and LC5 show disparate output when driven with a common stimulus protocol (Figure 4A). Finally,

our data show significant increases in R2 of voltage activity within 1 hr across isolated LCs

(Figure 4B), demonstrating that intrinsic compensation does improve network synchrony. However,

after 1 hr the synchrony values were significantly lower than control values (Figure 4B,C), suggesting

that intrinsic compensation alone is insufficient to restore synchrony. To determine whether compen-

satory changes in IA occur in the intact network, we measured IA with two-electrode voltage clamp

in LCs before and after 1 hr of TEA exposure. Measurements were made while the network activity

was temporarily halted with sucrose block, and compensation occurred with ongoing network activ-

ity. In all cases peak IA current increased (Figure 4D), with a mean increase of 56% (p<0.05, n = 6,

Wilcoxon signed rank test). These data are consistent with the hypothesis that a compensatory

increase in IA can help promote synchrony in these networks.

Although the waveforms of LC3 and LC5 were not different from one another after 1 hr of com-

pensation, anterior LC burst potentials did not reproduce their original waveform after compensa-

tion (see Figure 2; Panels I and IV). We also used the LCs from data shown in Figure 4A to compare

the voltage responses of individual LCs to a fixed stimulus before and after compensation. Repeat-

able voltage responses under control conditions indicate that trial-to-trial variability is negligible

(mean R2 = 0.997; Figure 4E, control). However, the voltage response after compensation was sig-

nificantly different from the control voltage response (p<0.01, n = 8, Wilcoxon signed rank test), indi-

cating that intrinsic compensation does not restore the original cellular output (Figure 4E; control

vs. TEA [1 Hour]).

Increased model electrical coupling conductance helps restore
synchrony
If intrinsic compensation does not fully restore synchrony, another mechanism must be present to

explain the results observed during network compensation. LCs receive common excitatory inputs

from the pacemakers and one hypothesis is that changing the strength of these chemical synapses

might help to restore LC firing to appropriate levels. LCs in the network are also electrically coupled

to one another via gap junctions which presumably promotes synchrony, although clearly the native

coupling is not able to maintain LC synchrony in TEA (Hagiwara et al., 1959; Tazaki and Cooke,
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Figure 4. Intrinsic compensation involving GA partially restores synchrony after TEA block. A reversible sucrose

block was used to temporarily stop network activity and a current stimulus protocol was delivered to individual LCs

at three time points: control, after 5 min of TEA perfusion (acute), and after 1 hr of TEA perfusion (after

compensation). (A) Representative traces from 2 different preparations compare the responses of LC3 (orange)

and LC5 (blue) to the same current injection (Stimulus Protocol) at each of the three time points. (B) R2 values for

N = 6 preparations at each time point are plotted with the same preparation connected across time points. All 3

conditions were significantly different from one another (p<0.01; paired t-tests). (C) When isolated cell output was

compared with the output in the network, there was no difference in R2 at the control state, but following 1 hr of

compensation in the network, there was a significant (p<0.002 – t-test) difference in synchrony scores (mean ± SD)

between cells when isolated vs. when they are in the intact network. (D) IA was measured by two-electrode voltage

clamp before and after compensation in N = 6 LCs in the intact CG. Voltage clamp data were obtained by

temporarily silencing network activity with 750 mM sucrose. There was a significant increase in IA after 1 hr in TEA

(mean 56 ± 65% increase, p<0.05 –Wilcoxon signed rank test). (E) Similarity of waveform in the same neurons

before and after 1 hr TEA exposure. R2 values were calculated for the output of the same cells before and after

TEA exposure, and are shown as before-and-after values in the same cell connected by a line. Box plots show

distributions of R2 values from cross-correlation analysis of LC voltage waveforms N = 8 cells. Lines within boxes

mark the median, box boundaries represent 25th and 75th percentiles. ’Control’ is the comparison of voltage

waveforms to 2 separate rounds of current injection in the absence of TEA. Although there was improvement in

similarity of waveforms after 1 hr in TEA (panel A), the newly compensated output after 1 hr of TEA exposure does

Figure 4 continued on next page
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1983; Cooke, 2002). A second hypothesis is that increased electrotonic coupling between LCs could

buffer against disparate output and help to restore synchrony.

Using our set of model networks, we increased and decreased the strength of chemical synapses

in 10% increments to test the effects on excitability and synchrony. We then did the same with

model electrical coupling conductance. We found that increasing the strength of either chemical syn-

apses or electrical coupling increased both synchrony and excitability (Figure 5 left). However,

increasing the chemical synaptic conductance in conjunction with TEA blockade also increases spik-

ing of the LCs ~25–30% in contrast to the biological decrease in excitability relative to the acute TEA

exposure seen with compensation. Conversely, only a small change in LC spiking occurs with an

increase in electrical coupling (~9%, Figure 5 left). Reducing the strength of either chemical synapses

or electrical coupling decreased overall spike synchrony (Figure 5 right), violating the assumptions

of compensation based on the biological data. Reducing chemical synaptic strength eventually

ceased LC firing altogether (data not shown).

Increased electrical coupling helps restore synchrony across LCs in
experiments
Increased electrical coupling restored synchrony in model LCs with only a modest effect on excitabil-

ity. To investigate this relationship in experiments, we isolated LCs and used a dynamic clamp to

Figure 4 continued

not recapitulate the original response to the stimulus protocol (significantly different from control; p<0.01 –

Wilcoxon signed rank test).
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Figure 5. Effects of increased or decreased strength of chemical synapses and electrical coupling on excitability and synchrony in model CG networks.

Measurements of two output variables (# of spikes and synchrony) were made under three model conditions: control, TEA (90% reduction in both GKd

and GBKKCa), and TEA + an incremental increase or decrease (up to 100% by 10% increments) for both chemical (pacemaker to LC) or electrical (LC to

LC) connections. N = 27 distinct model networks. All output measurements are normalized to their initial (control) conditions to visualize trends. Dashed

line represents the 1.0 value (baseline) for a given measure. Red lines represent the mean for each group. Each different colour and shape for points

corresponds to one model network, and the same networks are shown across conductance levels. P-values in each plot refer to the results of a one-way

ANOVA across all groups. Asterisks (*) denote groups in each plot that were significantly different from the TEA group via Holm-Sidak post-hoc tests.
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add an artificial coupling conductance. Pairs of LCs from the same network were physically isolated

by thread ligature, exposed to TEA, and simultaneously received the same stimulus protocol, while

the dynamic clamp added a non-rectifying artificial coupling conductance (from 0 to 0.2 mS) between

the cells. The driving force was equivalent to the voltage difference in membrane potential between

the coupled cells. Increasing the artificial coupling conductance significantly increased the correla-

tion coefficient of the waveform between the two cells (Figure 6A), with a synaptic conductance

value of 0.2 mS able to rescue synchrony of LCs to levels observed in intact networks (Figure 6A).

These results provided proof of principle that increasing electrical coupling could be responsible for

resynchronization in the network.
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Figure 6. Changes in electrical coupling associated with compensation in biological CG networks. (A) Artificial electrical coupling restores synchrony in

isolated LCs. With acute exposure to TEA, isolated LCs produce disparate output in response to an identical stimulus. The stimulus protocol consists of

current injections that mimic biological synaptic currents and back propagating action potentials (see Ransdell et al., 2013a) from four consecutive

bursts of network activity. The current was injected simultaneously into isolated cells, while the dynamic clamp was used to provide an artificial coupling

conductance. Representative traces of the same two cells shown in TEA with different levels of synaptic current applied. Only the final burst of the four-

burst input stimulus is shown for clarity. N = 7 different preparations (bottom panel) show an increase in synchrony with increasing coupling

conductance. (B) Biological coupling increases during network compensation. Hyperpolarizing current injections were used to measure coupling

coefficients between LC3 and LC5 during control conditions, with acute TEA exposure (5 min) and after 1 hr compensation in TEA. The input resistance

of LCs was measured and showed no significant change at any time point. No significant differences were observed for coupling coefficient or coupling

conductance between control and acute TEA conditions. Coupling coefficient significantly increased after 1 hr in TEA (Mean increase 85 ± 82% from

control, N = 11, p<0.01, Wilcoxon signed rank test). Measurements from LC4 and LC5 show that coupling conductance increased significantly as a

result of 1 hr TEA exposure (mean increase 49.5 ± 36% from control, N = 13, p<0.001, Wilcoxon signed rank test). Significant differences across groups

are denoted by different letters. Plots show mean ± SD. (C) Representative traces from two different preparations of changes in coupling observed

before (Control) and after 1 hr of TEA exposure. Top traces are between LC3-LC5 and the bottom traces are between LC4-LC5. Measurements were

made in two-electrode current clamp, and the current was injected into LC5. Because current injections were manually timed to occur between bursts

of network activity, slightly different durations of current pulses occurred in the two recordings in the top recordings. Recordings from LC4-LC5 were

used for coupling conductance measurements seen in panel B, as their close proximity allows for much less influence of electrotonic distance on

calculations of conductance.
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We then measured coupling coefficients between LCs during compensation in the intact network.

Coupling coefficients between cells increased significantly after 1 hr in TEA (mean increase 85%,

p<0.01; Figure 6B,C). The coupling coefficient is a useful description of the functional relationship in

coupling, but does not identify the electrophysiological mechanism. Plasticity of coupling properties

can ultimately be influenced by two fundamentally different mechanisms: altered resistance of the

non-junctional membrane of the coupled cells, or modification of gap junctional conductance. Using

two-electrode current clamp, we saw no significant differences in the apparent input resistance of

LCs in control physiological saline, after acute TEA exposure, or after compensation (1 hr TEA expo-

sure; Figure 6B,C). These results indicate that changes in passive membrane conductance (GLeak) are

not responsible for increased coupling coefficients.

To directly test whether coupling conductance between LCs increases as a result of TEA-induced

compensation, we focused on LC4 and LC5 pairs within the same network. In the crab CG, anterior

LCs exhibit strong local electrical and dye coupling (Tazaki and Cooke, 1979, 1983). The branch

containing LC4 and LC5 somata can be separated and electrotonically ’sealed’ from the network by

thread ligature to create ideal conditions for measuring coupling conductance. With two electrodes

in each cell, we used hyperpolarizing current injections to measure resistance and calculate junctional

conductance independent of membrane resistance (as in Bennett, 1966; see Materials and meth-

ods). Coupling conductance (GC) between LC4 and LC5 significantly increased during 1 hr of TEA

exposure (mean increase 49.5%, p<0.01, N = 8; Figure 6B,C).

Interaction of intrinsic and electrical synaptic compensation
Taken together, our experimental and modelling results suggest that an increase in GA is able to

counter the increase in excitability of LCs in TEA in a compensatory fashion, as well as promote res-

toration of synchrony, but was insufficient to restore synchrony fully. Additionally, our results suggest

that an increase in coupling among LCs can greatly promote synchrony with only a modest effect on

excitability. Therefore, we next used our model networks to investigate how GA and GC might inter-

act to promote synchrony by calculating synchrony scores as conductances of all 27 model networks

were adjusted. First, we increased GA alone in 10% increments up to a 100% increase (Figure 7).

Increasing GA up to +40% promoted greater synchrony after TEA blockade, but was unable to fully

restore synchrony even with increasing conductance levels, consistent with our biological data (Fig-

ure 4). Increasing GA beyond +40% did not further improve synchrony (Figure 7), and ultimately

caused LCs to cease firing altogether. We also increased model GC incrementally (from +10% to

+150%), and found that electrical coupling alone was capable of restoring synchrony fully, but this

required a 140% increase in its value (Figure 7). Finally, we increased both GA and GC together in

10% increments, revealing a potentially synergistic relationship: a smaller increase of 70% in each

conductance was able to produce spike synchrony that was indistinguishable from control

(Figure 7).

Discussion
Homeostatic or compensatory plasticity in the nervous system has been the subject of intense inter-

rogation, with studies focusing on both homeostatic synaptic scaling (Turrigiano, 2012; Lee et al.,

2014) and tuning of ionic conductance relationships to maintain a target level of excitability

(Turrigiano et al., 1994; Desai et al., 1999). However, few studies have sought to integrate multiple

mechanisms to directly address emergent network stability from compensatory processes acting at

the level of single neurons. Moreover, only recently has there been an appreciation that variability in

underlying cellular parameters such as conductance magnitudes (Schulz et al., 2006; Pratt and

Aizenman, 2007; Wilhelm et al., 2009), activation properties of channels (Olypher et al., 2006;

Amendola et al., 2012), and synaptic strengths (Olypher and Calabrese, 2007; Wilhelm et al.,

2009; Grashow et al., 2010) may form part of the repertoire of compensatory mechanisms that

endow networks with remarkable robustness characteristics. Homeostatic plasticity has been

reported in single isolated neurons (Swensen and Bean, 2005; Ransdell et al., 2012), in artificial

networks formed in culture (Desai et al., 1999; Ibata et al., 2008), or in thin sections of the CNS

(Karmarkar and Buonomano, 2006; Lambo and Turrigiano, 2013).

Cortical slice preparations have demonstrated homeostatic plasticity of intrinsic conductances

coordinated with chemical synaptic plasticity (Karmarkar and Buonomano, 2006; Lambo and
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Turrigiano, 2013), and Mauthner cells in fish have been shown to exhibit coordinated activity-

dependent changes in both the chemical and electrical components of its mixed synapses

(Yang et al., 1990; Pereda and Faber, 1996). While membrane conductances and properties of

electrical coupling are known to interact in critically important ways to promote synchrony

(Curti et al., 2012; Gutierrez and Marder, 2013), to our knowledge the present study is the first

demonstration of coordinated homeostatic plasticity of intrinsic and electrical synaptic conductances

in a comprehensive network-level example of homeostatic compensation.

We hypothesized that plasticity distributed throughout the network might provide robustness of

network output. Using a combination of pharmacology, electrophysiology, and modelling

approaches in intact neural networks, we first uncovered a striking vulnerability of neural networks to

underlying cellular variability. We then demonstrated that an intact network has mechanisms that

allow for robustness in the output via synergistic compensatory changes across the individual cell

(ionic conductance) as well as trans-cellular (electrical coupling) properties. The interplay of intrinsic

and synaptic parameters, and distributed plasticity in determining network output, is difficult, if not
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impossible, to unravel experimentally. This makes investigations via biophysical models an attractive

alternative to narrow possibilities, and complement experiments, as we have demonstrated.

Multi-component compensation can synergistically restore network
output
Previous modelling studies found that K+ currents can increase or help restore synchrony between

electrically coupled neurons (Pfeuty et al., 2003), so we first hypothesized that a compensatory

increase in A-Type K+ membrane conductance could be a mechanism underlying both restored

excitability and resynchronization. Over the course of 30–60 min, increased IA was associated with

decreasing cellular excitability [see also (Golowasch et al., 1999)] and improvement of coordinated

motor neuron firing. However, intrinsic compensation alone was insufficient to fully restore synchrony

across LCs. A concomitant increase in electrotonic coupling ensured virtually complete resynchroni-

zation. Our modelling results suggest that although a sufficient increase in electrical coupling alone

could restore full synchrony (140% increase), it could not simultaneously restore the original level of

excitability. Only a 70% increase was necessary when accompanied by a concomitant increase in GA.

Therefore, we conclude that multi-component mechanisms are not only necessary for full compensa-

tion, but also that their synergistic action is potentially more efficient than either mechanism operat-

ing in isolation.

Comparison of our results in the context of behavioural/motor
plasticity
While our results occurred in a compensatory context, the underlying mechanisms bear striking simi-

larity to motor output plasticity induced by operant conditioning in Aplysia. In a series of elegant

experiments, it has been shown that chaotic exploratory and consummatory radula biting move-

ments of Aplysia during food searching behaviour can be stably modified by operant conditioning,

leading to prolonged bouts of radula movements with increased frequency and more stereotyped

rhythmic organization (Nargeot et al., 2007; Nargeot and Simmers, 2011). Chaotic biting patterns

result from inherently variable and unsynchronized bursting of CPG neurons that are each randomly

capable of triggering bites (Nargeot et al., 2009). Following operant conditioning, induction of reg-

ular and synchronized bursting of pattern-initiating cells can be attributed to changes in both intrin-

sic excitability and electrical coupling strength. Specifically, changes in intrinsic excitability attributed

to changes in leak conductance underlie the increase in frequency of motor output, while increases

in coupling strength allow for the synchronization and regularization of bursting (Nargeot et al.,

2009; Sieling et al., 2014). The full shift in behavioural and circuit output is therefore the additive

influence of both intrinsic and electrical synaptic conductances. The striking similarity in these under-

lying mechanisms suggests that these kinds of circuit-level mechanisms may be a conserved strategy

for stabilization of synchrony within network output, be it compensatory or in the context of behav-

ioural plasticity.

Physiological regulation of coupling conductance
The speed (within 30 min) and magnitude (up to a doubling of effective coupling) of physiological

changes seen in electrical coupling was remarkable. Although electrical coupling has long been

known to promote synchrony in many systems, including the CG (Tazaki, 1972; Bennett and Zukin,

2004), the physiological interaction of electrical coupling with intrinsic conductances to affect a com-

pensatory output has not been examined. Previous work in the crustacean STG has demonstrated

how the synchronized activity of pacemaker cells is dependent on an interaction of intrinsic conduc-

tances and electrical coupling (Szücs et al., 2000, 2001; Soto-Treviño et al., 2005), and that dis-

tinct circuits can be brought into synchrony via manipulations of electrical and chemical synapses

(Elson et al., 1998; Szücs et al., 2000, 2009). But none of these studies have addressed the interac-

tion of membrane conductance and electrical coupling in a compensatory context. Similarly, plastic-

ity of electrical synapses has drawn considerable attention after being discovered in the mammalian

central nervous system, including the thalamic reticular nucleus (Landisman and Connors, 2005;

Haas et al., 2011), inferior olive (Lefler et al., 2014; Mathy et al., 2014), and retina

(Kothmann et al., 2009; Völgyi et al., 2013). Studies in the thalamic reticular nucleus have sug-

gested that potentially compensatory changes in coupling are important to maintain network
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stability as large changes in intrinsic excitability occur across development (Parker et al., 2009).

These discoveries increased awareness of the complex functional roles and plasticity of coupling

(Pereda et al., 2013; O’Brien, 2014; Haas, 2015), and also spurred research to identify molecular

mechanisms that underlie plasticity and maintenance of these structures (Flores et al., 2012;

Li et al., 2012; Turecek et al., 2014). Our study adds to this growing appreciation for plasticity of

electrical synaptic connections in the context of homeostatic plasticity.

Variability, plasticity, and network output – the bigger picture
Stable levels of intrinsic neuronal excitability and temporal coordination within networks are critical

features across all nervous systems. Underlying both neuronal and network outputs are complex,

and often highly variable intrinsic and synaptic properties of constituent neurons (Marder, 2011;

Norris et al., 2011). Our data demonstrate that the intrinsic variability between cells of the same

type can make networks vulnerable to loss of temporal coordination, in this case desynchronization

of motor neuron output. Although LC activity was fully resynchronized within 1 hr, recovered LCs

never recapitulated their original voltage waveforms. While the intrinsic conductances involved in

our manipulation and compensation (GKd, GBKKCa, GA) have overlapping functions and characteristics

(Ransdell et al., 2012), our findings demonstrate that individual conductances are not truly redun-

dant. Degeneracy of ion channel properties leading to this type of relationship has been put forth as

a mechanism underlying robustness and adaptability in neural networks (Tononi et al., 1999;

Marder and Goaillard, 2006), but our study suggests physiological limits to neural network com-

pensation and robustness. These limits may themselves be a contributing factor to the nature and

progression of pathology in neurodegenerative diseases (Trasande and Ramirez, 2007; Beck and

Yaari, 2008; Small, 2008).

We induce desynchronization and compensation in our studies through pharmacological block of

a subset of K+ conductances with TEA. However, the precise role these mechanisms play in fully

intact biological networks is unclear. Intrinsic conductances can be differentially affected by ubiqui-

tous natural mechanisms such as neuromodulation (Marder, 2011, 2012) or temperature changes

(Tang et al., 2012; Marder et al., 2015). Further, the effectiveness of electrical coupling can be

affected by the modulation of intrinsic cellular conductances (Szabo et al., 2010). Maintaining reli-

able synchronization of the output under changing conditions is not trivial, and understanding the

robustness and the constraints of homeostatic systems that cope with such perturbations remains an

important area for future investigation (Marder et al., 2014).

Materials and methods

Animals
Adult male Jonah crabs, Cancer borealis, were shipped overnight from The Fresh Lobster Company

(Gloucester, MA). Crabs were maintained in artificial seawater at 12˚C until used. Crabs were anaes-

thetized by keeping them on ice for 30 min prior to dissection. The complete CG was dissected

from the animal and pinned out in a Sylgard-lined petri dish in chilled physiological saline (440 mM

NaCl, 26 mM MgCl2, 13 mM CaCl2, 11 mM KCl, and 10 mM HEPES, pH 7.4–7.5, 12˚C). Chemicals

were obtained from Fisher Scientific unless otherwise noted.

Biological methods: Electrophysiology
The CG network is comprised of 9 cells: 4 Small Cell (SC) pacemaker interneurons which give simul-

taneous excitatory input to 5 Large Cell (LC) motor neurons. Superfusate of SCs can be separated

from the anterior LC somata using petroleum jelly wells (Figure 1A). Intact network activity was mon-

itored with intracellular recordings from anterior LCs along with extracellular recording of the net-

work output. For most experiments, the posterior end of the ganglion was maintained in normal

physiological saline and protected from TEA superfusate with a barrier of petroleum jelly. The ante-

rior end of the preparation was superfused at a rate of approximately 2 ml/min. A schematic of this

experimental setup is shown in Figure 1A. All experiments were performed at 12˚C.
Extracellular recordings using a Model 1700 Differential AC Amplifier (A-M Systems, Carlsborg,

WA) were taken with stainless steel pin electrodes from a petroleum jelly well on the ganglionic

trunk containing axons of all 9 neurons in the CG. LC spikes on the extracellular traces are easily
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distinguishable by their large amplitude. The LC somata were desheathed for sharp electrode

recordings. Intracellular recordings were made using glass electrodes containing 3 M KCl (8–25 MW)

and AxoClamp 900A and AxoClamp 2B amplifiers (Molecular Devices, Sunnyvale, CA). Two-elec-

trode voltage clamp (TEVC) and two-electrode current clamp (TECC) protocols were created and

run using Clampex 10.3 software (Molecular Devices).

Somata were isolated for dynamic clamp experiments by tightening a thread ligature past the

anterior branch point on the nerve containing the LC soma. Isolated cells were simultaneously driven

with the same current stimulus, described previously (Ransdell et al., 2013a). Briefly, a stimulus pro-

tocol was generated by recording the voltage waveform from a LC somata during intact network

activity. This consisted of a 20 s recording from a LC3 soma which included four burst potentials

with both pacemaker cell EPSPs and LC back-propagating APs present. In addition to the stimulus

current, dynamic clamp artificial coupling current was applied with NetClamp software (developed in

the Fishberg Department of Neuroscience of the Mount Sinai School of Medicine and available at

http://gothamsci.com/NetClamp/) at a sampling rate of 50 kHz according to the equation: Igap = g*

(Vm1 - Vm2) where g is a non-rectifying coupling conductance under experimental control, and the

voltage difference between the cells (Vm1 - Vm2) determines the driving force.

IA was measured before and after compensation using voltage clamp protocols as described pre-

viously (Ransdell et al., 2012). Briefly, outward currents were measured from a holding potential of

�30 mV and stepped from �50 mV to +5 mV in 5 mV increments in order to measure the high

threshold K+ current IHTK which is blocked by TEA. In LCs, IHTK is predominantly a mix of BKKCa and

delayed rectifier currents (Ransdell et al., 2012). A-Type K+ current (IA) was measured by performing

an identical voltage clamp steps from a holding potential of -80mV and subtracting IHTK. P/N leak

subtraction was used for all TEVC. Coupling in the intact network was measured using TECC in both

cells during the sucrose block. Negative current steps ranging from 1–6 nA were injected into one

cell at a time while measuring voltage changes in both cells. Coupling coefficients were calculated as

the ratio: (DVcoupled cell / DV Injected Cell).

Biological methods: Measurements of intrinsic compensation
To determine whether intrinsic compensation may be contributing to restoration of synchrony in the

biological network, we used a current stimulus protocol simulating realistic network inputs to LCs in

order to deliver the same biologically relevant stimulus at 3 time points (Ransdell et al., 2013a).

Using this reversible sucrose block to suspend pacemaking activity, we were able to compare the

similarity of responses of LC3 and LC5 to the same current injection at three time points. This allows

us to test each cell in isolation with respect to its output waveform, but compensation occurs with

full network activity after removal of the sucrose over the course of 1 hr. We measured individual LC

responses to current injection in control saline, repeated after 5 min of TEA exposure (acute), and

again after 1 hr of TEA exposure.

Our modelling results suggested that an increase in IA may act in a manner to accomplish both

the decrease in excitability and the restoration of synchrony seen in our biological data. In order to

determine whether compensatory changes in IA occur in the intact network, we performed two-elec-

trode voltage clamp in the same LC before and after 1 hr of TEA exposure. In order to track changes

in IA in individual LCs we again used reversible sucrose block to perform voltage clamp immediately

after acute TEA application and again after 1 hr of TEA perfusion. After voltage clamping anterior

LCs, the sucrose was washed out and replaced with physiological saline, allowing the network to

resume normal activity. This process was repeated after 1 hr of compensation.

Biological methods: Data analysis
Intracellular burst waveforms were considered to begin with the first EPSP from pacemaker activity

and ended upon return of the waveform to resting membrane potential. Recordings were analyzed

using Clampfit 10.3 (Molecular Devices) and Spike 2 version 7 (CED, Cambridge, UK) software. Sta-

tistical analyses were performed using SigmaPlot 11.0. Correlation coefficients (R-values) were

obtained by a Pearson correlation, and squared to calculate the coefficient of determination (R2).

Most data are ’before and after’ effects within the same ganglion or cell, and therefore any two

groups were compared with paired t-tests when the data were normally distributed, or Wilcoxon

signed rank tests in the case of non-normality. The sample sizes for comparison of waveform
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synchrony were calculated with power analyses based on projected means and standard deviations

from data reported in our previous study with very similar experimental manipulations of TEA expo-

sure of LCs (Ransdell et al., 2013a), which yielded target sample size of N=6–10 to yield a power of

0.8 to 0.97. Sample sizes for changes in network output and changes in IA after TEA exposure were

based on similar data in our previous work (Ransdell et al., 2012), and yielded target sample sizes

of N=5 to achieve a power of 0.909. Power analyses were conducted based on the use of paired t-

tests to analyze the data. However, when data were not normally distributed we ended up using a

Wilcoxon signed rank test, which was not utilized in our initial power analyses. All sample sizes used

in our studies are reported in Figure Legends and/or in the Results section when significance values

are reported.

To quantify synchrony of LC voltage waveforms, we performed a cross-correlation of the digitized

voltage signal from LC pairs, as shown in Figure 2B. The first pacemaker spike was used to define

the start of each LC burst, and bursts were considered to have terminated upon return to VRest in

the LCs. The coefficient of determination from this cross-correlation (R2) was used to examine how

accurately one burst waveform could predict the waveform in another LC (see Ransdell et al.,

2013a). This cross-correlation was performed for every burst across the full time-course of the exper-

iment (Figure 2C, left). A decrease in R2 therefore indicates a loss or reduction in waveform syn-

chrony. R2 values from 10 consecutive bursts were averaged for all data points presented as

waveform synchrony data, save for the individual points found in Figure 2B and C.

Five different measures of excitability of LCs were calculated using both extracellular and intracel-

lular recordings (Figure 2D). Extracellular recordings from the ganglionic trunk were used to calcu-

late the number of spikes per burst and spike frequency. Because our hypothesis predicts both

increased LC excitability and desynchronization with TEA exposure, it should be noted that there is

a potential confound in distinguishing these effects based on extracellular analysis alone. Axons of

all LCs run through the ganglionic trunk, thus the increased spike count observed could result from

an increase in the total number of action potentials, desynchronization of action potentials across

LCs, or both. We therefore included three additional measures of excitability that helped clarify the

effect. We measured the latency between the onset of SC pacemaker bursting to the first LC spike

in each burst (Figure 2D; SC-LC phase delay). Two other measures of excitability were calculated

from intracellular voltage changes: burst amplitude and total burst depolarization. Burst amplitude

was defined as the maximal voltage change from VRest to the highest peak of the burst, and total

depolarization is the area under the curve above VRest, measured in mV*sec. For all measures of

excitability, values from 10 consecutive bursts were averaged at each time-point in each preparation

(N=8).

Model methods: Single cell models
A detailed model was created with eight voltage-dependent conductances (GA, GKd, GNaP, GCaS,

GCaT, GCAN, GSK(Ca), GBK(Ca)) and passive leak channels. These conductances are defined as: A-type

potassium (GA), delayed rectifier (GKd), persistent sodium (GNaP), transient calcium (GCaT), slow

persistent calcium (GCaS), calcium-dependent non-selective cation (GCAN), two calcium-dependent

potassium currents (GSKKCa and GBKKCa), and leak (GLeak). A single compartment model with bio-

logical dimensions for soma (Ransdell et al., 2010, 2013b) was created in NEURON and its capac-

itance (Cm) and leak conductance (Gleak) were tuned to match the observed biological membrane

time constant (t) and input resistance (Rin). This resulted in a soma with a length of 284.87 mm and

a diameter of 125 mm, with a capacitance of 2.719 mF/cm2. Channels were then added and their

maximal conductances were tuned to match three biological properties observed, i.e., a) Total

outward current b) Response to synaptic drive and c) Response to synaptic drive in the presence

of TEA. These results were obtained from experiments performed on ligatured somata of C. bor-

ealis LCs (Ransdell et al., 2012, 2013a, 2013b). For the network studies another compartment

termed Spike Initiation Zone (SIZ) was added to the model. This compartment was modelled as a

cylinder with a capacitance of 1 mF/cm2, a length of 400 mm, and a diameter of 8 mm, and con-

tained only sodium, potassium and passive leak channels. This compartment allowed us to obtain

spiking activity in the model cells for spike synchrony analysis. The resulting model equations were

as follows:
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C dV
dt
¼ �IA� IKd � INaP� ICaS� ICaT � ICAN� ISKKCa� IBKKCa� ILeak ðSomaÞ

C dV
dt
¼ �INa� IKdr� ILeak ðSIZÞ

The individual currents were modelled as Ic ¼ gmax;cm
phq V �Ecð Þ, where gmax;c is its maximal con-

ductance, m its activation variable (with exponent p), h its inactivation variable (with exponent q),

and Ec its reversal potential (a similar equation is used for the synaptic current but without m and h).

The kinetic equation for each of the gating functions x (m or h) takes the form

dx

dt
¼
x¥ V ; Ca2þ½ �i
� �

� x

tx V ; Ca2þ½ �i
� �

where x¥ is the steady state gating voltage- and/or Ca2þ- dependent gating variable and tx is the

voltage- and/or Ca2þ- dependent time constant. The equations for the active channels in the soma

compartment were fit using biological recordings for these currents from the cardiac ganglion of

Cancer borealis. These currents were fit as follows: Voltage clamp data obtained with Clampfit were

imported into MATLAB (Mathworks, Natick, MA) and fit using the MATLAB curve-fitting toolbox.

Current data were converted to conductance data by dividing by (Vm – ERev), where ERev was as fol-

lows: ENa = +55 mV, EK = �80 mV, ECa = +45 mV, ELeak = �50 mV, and ECAN = �30 mV. The time

axis was adjusted to start from 0 for the beginning of the clamp. The following parameterization was

used:

g tð Þ ¼
X

n

i¼1

Ai 1� exp
�t

tm;i

� �� �

hi � hi � 1ð Þexp
�t

th;i

� �� �

In this equation, Ai ¼Gi;max �mi was the maximal conductance of the current i multiplied by its

voltage-dependent steady-state activation (mi), hi was the steady-state inactivation value, and tm;i

and th;i were the time constants with which activation and inactivation reached steady-state, respec-

tively. This fitting procedure assumed that ionic currents were completely deactivated (m = 0) and

de-inactivated (h = 1) prior to the onset of the voltage clamp. This was fit to each trace in a voltage

clamp experiment, giving the values of each of the four parameters for each test clamp voltage (Vc).

These values were then fit for each current as functions of Vc using the general forms as stated

below. This procedure yielded equations for the currents recorded in voltage clamp that could be

used in simulations according to the Hodgkin-Huxley mathematical formalism.

A Vcð Þ ¼Gmax �m Vcð Þ ¼Gmax� 1þ exp Vc �Vm;1=2

� �

=km
� �� ��1

h Vcð Þ ¼ 1þ exp Vc�Vh;1=2

� �

=kh
� �� ��1

tm Vcð Þ ¼ tbase;mþ tamp;m exp Vc �Vt1;m

� �

=kt1;m
� �

þ exp Vc �Vt2;m

� �

=kt2;m
� �� ��1

th Vcð Þ ¼ tbase;h þ tamp;h exp Vc�Vt1;h

� �

=kt1;h
� �

þ exp Vc �Vt2;h

� �

=kt2;h
� �� ��1

All the maximal conductances (Gi;max) were in �S, time constants in ms and voltages in mV.

Model methods: Calcium dynamics
Intracellular calcium modulates the conductance of the calcium-activated potassium currents (BKKCa

and SKKCa), calcium-activated nonselective cation current (CAN), and influences the magnitude of

the inward calcium current in the LC (Tazaki and Cooke, 1990). A calcium pool was modelled in the

LC with its concentration governed by the first-order dynamics (Prinz et al., 2003; Soto-

Treviño et al., 2005) below:

tCa
d Ca2þ½ �

dt
¼ �F � ICa � Ca2þ

� �

� Ca2þ
� �

rest

� �

where F¼ 0:256 �M=nA is the constant specifying the amount of calcium influx that results per

unit (nanoampere) inward calcium current; tCa represents the calcium removal rate from the pool;

and ½Ca2þ�rest ¼ 0:5 �M. Voltage-clamp experiments of the calcium current (Ransdell et al., 2013b)

showed the calcium buffering time constant to be around 690 ms (tCa).
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Model methods: Searching for LC
neurons within the model
parameter space
After creating a nominal LC model

(Tables 1,2), we wanted to search the conduc-

tance space for other possible conductance com-

binations that might exhibit appropriate LC

output. The properties that had to be maintained

were; a) Input Resistance (Rin) and Resting Mem-

brane Potential, b) Pre-TEA and Post TEA

response to current injection c) Response to Syn-

aptic drive obtained from biological cell.

The rules used to select the potential parame-

ters were as follows (based on biological record-

ings): Synaptic Drive response should have an R2

value of at least 0.8 or higher when compared to

biological Synaptic Drive response. The duration

of the pre-TEA response to a 6 nA, 50 ms current

injection should be less than 120 ms. Also the peak should be less than �22 mV. The duration of the

post-TEA (GBKKCa and GKd reduced by 90%) response should be between 255–667 ms and its peak

should be greater than �15 mV. A 9-D max conductance parameter space (5-fold variation over

each conductance except GLeak) was searched randomly for sets that satisfied the constraints above.

We searched 20,000 different combinations of parameter sets with these criteria, and most of those

which passed did not have a proper termination of activity following current injection (i.e., did not

return to Vrest). We concluded this was due to an inappropriate relationship between ICAN and ISKKCa.

Subsequent trials revealed that a given ratio range (~1:0.83 respectively) of these two currents was

necessary for proper termination of the activity. Larger ratios cause Vrest to be higher due to the

reversal potential (�30 mV) of CAN current. A higher fraction of ISKKCa (reversal potential �80mV)

caused a large AHP after termination and reduced the duration of the post-TEA response. Using the

updated selection criteria with a ratio ICAN to ISKKCa, we found 180 parameter sets that passed. Of

these 180 potential model sets, we selected only the ones that had Synaptic Drive response R2 value

> 0.9 compared to the biological Synaptic Drive response. This resulted in 49 potential parameter

sets.

Biological data showed that IA and IBKKCa had a negative correlation in their magnitudes in LCs

(Ransdell et al., 2012). We added this to our criteria for screening potential parameter sets for the

network studies. We converted biological IA-IBKKCa current data into factor data by dividing IA and

IBKKCa by their respective factor average. GA and GBKKCa values of passed parameters were similarly

divided by its average to get its factor data. The biological data were fitted using a linear polynomial

from 95% to 70% confidence intervals, in steps of 10%. For network studies we used a 70% confi-

dence interval, which left us with 14 potential parameter sets that represented LC model neurons for

use in modeling studies.

Model methods: Development and validation of a population of
conductance-based model networks for studying mechanisms restoring
network synchrony
Our results demonstrate that intact cardiac ganglia are able to compensate for the loss of high-

threshold K+ currents and restore both excitability and synchrony within one hour of TEA blockade.

We next set out to explore the mechanisms by which excitability and synchrony could be restored in

this network. To maximize our ability to interrogate multiple parameters that may be responsible for

compensation in this system, we constructed a population of conductance-based biophysical models

of the CG network. This allowed us to simulate the TEA conductance blockade and then manipulate

individual conductances, both voltage-gated and synaptic, to examine their effects on network excit-

ability and synchrony.

Our 14 parameter sets for LCs were used to create 50 random 5-cell networks of LCs, ensuring

that the same model LC never appeared twice in the same network. The five cells within a network

Table 1. Nominal model conductance values:

Conductance Value (S/cm2)

Leak 2e-4

A 6e-4

BKKCa 7.3e-3

g1_Kd 3e-4

g2_Kd 3.5e-5

CaS 1.7e-4

CAN 1.06e-4

SKKCa 8.79e-5

CaT 1.5e-4

NaP 3.06 e-4

DOI: 10.7554/eLife.16879.010
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were then electrically coupled using conductance values tuned to reflect experimental observations

of coupling coefficients. Small cell (SC) pacemaker drive was simulated as excitatory synapses via the

NetStim function in NEURON. Parameters for the model of the synaptic drive onto LCs were tuned

to get 6 to 9 spikes in the nominal LC model. It was observed biologically that frequency of SC firing

increases within the slow wave oscillation cycle of LCs. Based on these recordings, the model SC

burst initially fired at 18 Hz for first 440 ms and then increased to 25 Hz for 560 ms, with the burst

terminating at 1000 ms.

Our experimental TEA block was simulated in these networks by reducing GBKKCa and GKd con-

ductances by 90% in the 3 anterior LCs based on biological data in LCs (Ransdell et al., 2013a). We

imposed a final set of selection criteria on the randomly generated model networks, rejecting net-

works that increased synchrony or decreased the total number of spikes after the simulated TEA

block, as this was never observed in biological networks. This left 27 networks that reproduced the

biological trends and these were used in subsequent analyses to explore potential conductance

changes that could restore network synchrony.

Somatic burst potentials drive action potentials in LC axons, so divergent burst waveforms would

be expected to cause desynchronized spiking. Our biological data qualitatively agreed with this, but

a precise quantification of synchrony for all spikes within a burst is subject to many ambiguities. Our

model networks easily provided precise spike times for each cell in the network, so we chose to

examine actual spike synchrony in the model to complement the burst waveform analysis in the bio-

logical preparation. Our analysis considered synchrony for paired anterior LCs with a nominal cou-

pling conductance of 0.0182 S using a 25 ms bin width for spike-times (Wang and Buzsáki, 1996).

Spikes occurring in both cells during the same bin were considered synchronized, while spikes that

did not bin together were tallied as desynchronized. Using the definition of synchrony listed in the

next section, these randomly generated model networks exhibited ’control’ synchrony scores rang-

ing from 0.642 to 1.0 with a median value of 0.915 (matching data in biology), where 1.0 represents

perfect spike synchrony.

Table 2. Model current parameters.

Iion xp x
¥

tx (msec)

IA m3 1

1þexp Vþ21:46ð Þ=�17:96ð Þ 3:002þ 4:073
1þexp Vþ24:18ð Þ=2:592ð Þ

h 1

1þexp Vþ21:14ð Þ=25:99ð Þ 9:434þ 11:7
1þexp Vþ1ð Þ=5:317ð Þ

ICaS m2 1

1þexp Vþ24:75ð Þ=�5ð Þ 20þ 50:2
exp Vþ20:25ð Þ=1ð Þ

h 45

40þ Ca2þ½ �
1

0:02

ICaT m 1

1þexp Vþ20ð Þ=�1:898ð Þ 18:51� 3:388
exp V�6:53ð Þ=9:736ð Þþexp Vþ12:39ð Þ=�2:525ð Þ

h 1

1þexp Vþ55:27ð Þ=6:11ð Þ 20:23þ 40

exp Vþ23:48ð Þ=�9:976ð Þþexp Vþ5:196ð Þ=10:84ð Þ

Ikd m1
4 1

1þexp Vþ24:19ð Þ=�10:77ð Þ 25:049þ 25

1þexp Vþ25:84ð Þ=6:252ð Þ

h1 0:3þ 1�0:3
1þexp Vþ15:87ð Þ=5:916ð Þ 550þ 954:9

exp Vþ10:8ð Þ=�15ð Þ

m2
4 1

1þexp Vþ23:32ð Þ=�10ð Þ 100þ 550

exp Vþ15ð Þ=12:46ð Þ

INaP m3 1

1þexp Vþ32:7ð Þ=�18:81ð ÞÞ 3:15þ 0:8464
exp Vþ0:8703ð Þ=�6:106ð ÞÞ

ICAN w ð0:0002 � Ca2þ½ �^2=ð0:0002 � Ca2þ½ �^2þ 0:05ÞÞ ð40=ð0:0002 � Ca2þ½ �^2þ 0:05ÞÞ

ISKKCa w ð0:0001 � Ca2þ½ �^2=ð0:0001 � Ca2þ½ �^2þ 0:1ÞÞ ð4=ð0:0001 � Ca2þ½ �^2þ 0:1ÞÞ

IBKKCa a ½Ca2þ �
1þexpððV�15þ0:08�½Ca2þ �Þ=�15Þ�ð1þexpððVþ5þ0:08�½Ca2þ �Þ=�9Þ�ð2þ½Ca2þ �

1

0:4

b 7

5þ Ca2þ½ �
1

0:2

F = Faradays constant

R = Gas constant

V = Membrane voltage

[Ca2+] = Calcium concentration
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Model methods: Data analysis
In the models, spike synchrony between two cells was calculated based on spike times (Wang and

Buzsáki, 1996). Spike times were recorded from each LC’s Spike Initiation Zone (SIZ). The simulation

time was divided into 25 ms bins. After initializing all bins to zero, each cell spike was added to the

corresponding bin. Synchrony (SY) between two cells A and B was calculated using the following

equation:

SYAB ¼

Pk
l¼1

A lð Þ�B lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk
l¼1

A lð Þ�
Pk

l¼1
B lð Þ

q

where l is the current bin and k is the maximum number of bins. Spikes occurring in both cells during

the same bin were considered synchronized, while spikes that did not bin together were tallied as

desynchronized.

To compare the measures of spike and waveform synchrony in model networks, model waveform

synchrony measures (Figure 3) were performed as described above on filtered voltage traces

(Gaussian lowpass filter, 15 Hz cutoff frequency; Clampfit 10.3) that remove the influence of the axo-

nal spikes on the voltage waveforms. Statistical analyses were performed in SigmaPlot v11.0. The

effects of changing Gmax on the number of spikes and synchrony among TEA-’treated’ model neu-

rons were tested with paired t-tests. Analyses changes in spike number and spike synchrony with

changing coupling and synaptic strengths (Figure 5) were analyzed with One-Way ANOVAs with

post-hoc pairwise comparisons between a given percent change and the TEA case conducted via

Holm-Sidak tests.
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