
RESEARCH ARTICLE

An Objective Measure of Noseband Tightness

and Its Measurement Using a Novel Digital

Tightness Gauge

Orla Doherty1☯, Thomas Conway2☯, Richard Conway2☯, Gerard Murray3☯,

Vincent Casey4‡*

1 Department of Life Sciences, University of Limerick, Limerick, Ireland, 2 Department of Electronic and

Computer Engineering, University of Limerick, Limerick, Ireland, 3 Aaron Value Adding Services Ltd.,Unit M7,

Smithstown Industrial Estate, Shannon, Co.Clare, Ireland, 4 Department of Physics,University of Limerick,

Limerick, Ireland

☯ These authors contributed equally to this work.

‡ Senior authorship.

* vincent.casey@ul.ie

Abstract

Noseband tightness is difficult to assess in horses participating in equestrian sports such as

dressage, show jumping and three-day-eventing. There is growing concern that nosebands

are commonly tightened to such an extent as to restrict normal equine behaviour and possi-

bly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple

model of the equine nose-noseband interface environment was developed in order to guide

further studies in this area. The normal force component of the noseband tensile force was

identified as the key contributor to sub-noseband tissue compression. The model was used

to inform the design of a digital tightness gauge which could reliably measure the normal

force component of the noseband tensile force. A digital tightness gauge was developed to

measure this parameter under nosebands fitted to bridled horses. Results are presented for

field tests using two prototype designs. Prototype version three was used in field trial 1 (n =

15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an

ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12,

frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness

settings in each trial as judged by a single rater using an International Society for Equitation

Science (ISES) taper gauge. Normal forces in the range 7–95 N were recorded at the frontal

nasal plane while a lower range 1–28 N was found at the lateral site for the taper gauge

range used in the trials. The digital tightness gauge was found to be simple to use, reliable,

and safe and its use did not agitate the animals in any discernable way. A simple six point

tightness scale is suggested to aid regulation implementation and the control of noseband

tightness using normal force measurement as the objective tightness discriminant.
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Introduction

Studies of the effects of force induced pressure on human tissue [1] are particularly important

in medicine and biomedical engineering where they have lead to significant advances in surgi-

cal [2] and emergency care [3, 4]. Externally applied pressure comes into play in many veteri-

nary and equestrian activities [5], wound treatment being an obvious example. Pressure is

inadvertently or purposefully applied in the use and control of the horse [6, 7] and so is signifi-

cant in equitation science. Despite this, there are very significant gaps in our knowledge and

understanding of the effects of externally applied forces, sustained or transient, and pressures

in uniform or gradient form, on animal tissue and animal behaviour. Welfare concerns raised

in relation to restrictive bridle nosebands [8] have stimulated interest specifically in the nose-

band-nose environment [9, 10] and in the development of measurement techniques [11, 12]

which could provide a basis for improved understanding. There has long been a recognition of

the need to regulate the use of restrictive nosebands and indeed rules and guidelines have been

developed [13–15]. Regulation is generally fairest and most successful where an accessible

objective measure exists. Noseband tightness has been muted as a relevant measure in relation

to restrictive nosebands but there is no clear agreed definition of tightness in this context. A

count of the number of fingers (human hand) which may be inserted between the band and

the tissue [13], while useful in much the same way as measuring an animal’s height using

human hand width, does not meet basic criterion in relation to scientific measurement and

therefore is inadequate as a basis for robust regulation. Noseband tension (force per unit width

of noseband) is a possible contender particularly if rein tension technology could be adapted

to the noseband environment. However, the relative complexity of the noseband-nose inter-

face compared to the simple ‘free-standing’ rein environment prompts a closer examination of

the former application environment.

Background

Curvature Model of Equine Nose-Noseband Interface

The primary mechanical action produced in a tight noseband when a handler fastens it on a

horse is to produce a tensile or tensional force along the length of the band. The noseband will

generally have some freedom to rotate around the nose and so this tensional force will tend to

equalise around the band and settle at a constant value throughout its length. However,

because the band curves around prominent support tissue, the constant tensile force will give

rise to a non-zero ‘normal force’ component directed towards the tissue, effectively compress-

ing it. The magnitude of this normal force component will depend on the magnitude of the

tensile force but crucially will also depend on the local tissue curvature. The equine nose is not

a regular geometric shape such as a cylinder or sphere (with constant curvature) and so the

effect of a constant tensile force on nose tissue will vary from place to place under the nose-

band, as the curvature of the nose varies. A comprehensive model of the noseband-nose inter-

face for tight nosebands needs to take noseband tension, noseband profile and sub-noseband

surface topology into account in order to provide a realistic map of the ‘force-print’ of a tight

noseband on nose tissue. However, it is possible to gain some useful insights on noseband-tis-

sue mechanical interactions using a greatly simplified curvature model of the equine nose-

noseband environment.

The following assumptions and simplifications are made in order to develop a simple one

dimensional static model of the equine nose-noseband environment from a measurement per-

spective. 1. The tensional force (stretching force) in the tightened noseband is assumed con-

stant along the length of the noseband. This is reasonable provided the noseband is free to slip/
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slide circumferentially over the nose to relieve localised force concentrations. 2. The noseband

length is much greater than its width, i.e. on the order of ten times its width. 3. Curvature

(changes of shape) of the equine nose across the width of the noseband, i.e. longitudinal taper-

ing, will be small relative to the curvature along its length, i.e. circumferentially. As a conse-

quence of 2. and 3. noseband deformation/curvature will occur primarily along its length as it

encircles the nose. 4. The nose will deform to accommodate the tightened noseband but the

degree of accommodation possible will be limited due to hard tissue, i.e. bony inclusions. 5.

The horse does not chew or otherwise change the configuration of its nose under the noseband

during a measurement, i.e. the model is limited to static rather than dynamic analysis. 6. The

profile of the inner surface of the noseband is flat. 7. The noseband strap is non-elastic, i.e.

does not stretch appreciably under normal use conditions.

A tight noseband curves around the nose and encircles it. Based on the assumptions listed

above, the curvature κ is simply 1/R where R is the local radius of curvature or radius of the

osculating circle [16]. This is an imaginary circle formed by completing the arc defined by the

tissue surface locally. Only regions of positive curvature (radius of curvature directed in and

through the tissue) need to be considered since the noseband will not track regions of negative

tissue curvature, i.e. does not conform to the tissue in such regions. Highly curved regions

(small R) will be subject to higher normal (compressive) forces than less curved regions (large

R) for a given applied tensile force. This is expressed in LaPlace’s law [17] where the sub-nose-

band pressure P is determined by P = κT/W where T is the tensile force in the noseband and

W is the noseband width. Alternatively, the tensile force at any point may be resolved into two

components, a tangential component and a normal (tissue directed) component which pro-

duces the pressure in the support tissue. LaPlace’s law takes the form,

N ¼ u� T � k ð1Þ

where u is a constant determined by the local geometry and units system chosen. Therefore, a

mapping of the curvature around a typical equine nose section at the noseband level should

identify anatomical sites with large positive curvature which are likely to experience relatively

large normal force components (and pressures) due to the use of restrictive nosebands. The

circumferential profile of the nose at the noseband is required in order to calculate the curva-

ture at each point along the noseband. Profile sections may be obtained experimentally using

flexible rulers [11] or using inexpensive profilometers (see S1 Fig). However, it is difficult to

obtain a complete profile using such techniques. In an attempt to examine an entire nose sec-

tion, an equine head section provided online by the Online Veterinary Anatomy Museum

(OVAM) [18] was scaled to the dimensions of a living adult horse (S2 Fig) and used to gener-

ate a curvature map for the entire section, Fig 1, using a custom MATLAB (R2015b, Math-

works, Natick, Massachusetts, U.S.A.) script, see S1 File.

Tissue regions of high positive curvature will experience relatively large normal forces. Soft

tissue areas such as muscle and mucus membranes covering the premolar teeth will deform

effectively expanding the area of contact between the noseband and the tissue redistributing

the normal force to some extent as the tightened noseband is accommodated. Ultimately, the

degree of accommodation possible will be limited by hard tissue inclusions such as the teeth in

the case of the lateral aspect of the face. Areas where the curvature is large but which have only

a thin soft tissue overlayer, i.e. little accommodation, will experience the largest normal forces.

This is the situation for the nasal bones and mandibular rami as indicated by the red regions of

the profile. Regions where the curvature is negative, such as the inter nasal bone and inter

mandibular rami areas, will experience zero normal force as the noseband spans linearly over

them in a process often referred to as ‘hammocking’ [19]. An enlarged view of the relative
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variation in this normal force component, based on this simple curvature model, is shown in

Fig 2 for the frontal nasal plane. The force is concentrated, as one would expect, at the frontal

nasal bone regions. The actual force will scale with noseband tensile force according to Eq 1.

The situation for real nosebands is complicated by the fact that the noseband may not nec-

essarily present a flat inner surface across its width but may itself be curved (contrary to

assumption 6 above). The model developed here neglects this and the tapering of the eques-

trian nose (assumption 3) which, together, demand a 2D curvature model. Normal force esti-

mates from this 1D model will therefore be conservative and are likely to err on the low side

[11]. In addition, foam padding may be used under all or some of the noseband. This will pro-

vide some degree of redistribution of the forces coupled to the nose and may also impact the

band curvature but such effects have not been considered in the model.

To summarise, the actual force applied by a noseband to underlying support tissue is deter-

mined by both the noseband tensile force and the local tissue curvature. The curvature model

of the equine noseband-nose interface identifies the nasal plane (nasal bones), super-premolar

cheek region and the mandibular rami as sites likely to experience relatively large normal

forces due to restrictive nosebands and therefore are areas of primary interest as candidate

noseband tightness measurement sites.

Fig 1. Polar (radial distance, cm, and angle, degrees) plot of nose section profile (blue line) and

normal force vector scaled to local curvature (red arrows). The normal force vector is scaled to zero for

negative or zero curvature areas.

doi:10.1371/journal.pone.0168996.g001
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Noseband Tightness Gauge Design Requirements

In addition to the normal requirements for a measurement instrument such as accuracy, reli-

ability and reproducibility, there are additional application environment specific design char-

acteristics for a noseband tightness gauge. Competition officials and stewards routinely carry

out multiple checks on a wide range of animal-rider combinations at multiple events at a given

venue. A noseband tightness gauge, if it is to be used in these checks, must be portable, easy to

carry on the person and easy to operate in one hand. It should be battery operated and have a

low power requirement in order to extend the recharge interval. The gauge should be mini-

mally invasive in the sense that it should not be necessary to adjust the noseband or other ele-

ments of the bridle in order to take a measurement. All measurement involves some degree of

interference or disturbance of the measurement environment. Gauge design must minimise

this so that the measurement reflects as close as possible the true use condition. When

deployed, the gauge must be safe and not pose an injury risk to the horse, rider, handler or

steward. Furthermore, it should not pose an infection transmission risk, i.e. should be sterile

or easily cleaned between animals. Use of the device must not frighten or disturb the animal.

Since the noseband inspection is likely to be one of many specific checks, the tightness gauge

must provide a stable, easily interpreted tightness indicator using a simple measurement pro-

tocol which seamlessly integrates with existing inspection protocols. Finally, the cornerstone

of scientific measurement is traceability. In this context, this means that it must be possible to

calibrate the instrument against physical standards appropriate to the specific measurement.

For a force based gauge this will be a certified weight or set of weights traceable to national and

international authority standards.

Noseband tightness and its measurement

A large variety of small footprint electrical, electronic and microelectromechanical sensors and

transducers exist for force and pressure measurement which may be adapted to a wide range

Fig 2. Relative normal force component over nasal bone regions for a constant tension noseband.

doi:10.1371/journal.pone.0168996.g002
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of measurement environments. The living tissue-leather interface environment presents spe-

cial challenges for these technologies which are developed specifically for fluids (gases and liq-

uids) in the case of pressure sensors [19] and rigid elements in the case of force sensors. Tissue

and leather do not fit into a simple physical phase classification category and so special hous-

ings and couplers, specific to the actual interface of interest, must be devised if the sensor tech-

nology is to be deployed directly at the measurement site. While the value of the actual normal

force at the prominent nasal bone and mandibular rami areas is of particular interest when

assessing the effect of tight nosebands, the noseband will be at its tightest at these sites and so

inserting a probe at such sites would risk adding appreciably to the local tissue compression

and so is excluded on animal safety/welfare grounds. The mandibular rami site is less than

ideal for measurement as it is often covered by a noseband cushioning pad, unrepresentative

of the rest of the noseband. Both the cheek plane and frontal nasal plane (internasal bone

region) are relatively accessible. However, the preferred choice of measurement site is the fron-

tal nasal plane on account of the clear landmarks available for this site and because it is of well

defined form, i.e. has a clear stable geometry.

Mechanically, noseband tensile force is the primary force acting in the nose-noseband envi-

ronment. However, as is clear from the simple 1D model developed above, the local tissue cur-

vature determines the degree, if any, to which this tensile force couples to the underlying tissue

via the variable normal force component. Thus while tension might be the obvious parameter

choice for noseband tightness, particularly since bridle rein tension technology is already well

established in equitation science [20–22], it is the normal force component of this tension

which acts on the underlying tissue and is therefore of more interest from a noseband-nose

interaction perspective. It is also worth noting that rein tension gauges are generally linked

into the rein or cheek piece, i.e. connected in series with it, and even if current technology

were scaled down to dimensions suitable for nosebands, the necessary stringent safety require-

ments are likely to make this approach impractical. However, an interesting approach which

could avoid these risks was tested recently [23] in a research setting.

The concept of ‘finger’ based testing of tack band tightness is well established in equitation

[6]. For this reason, and to avoid measurement artifacts which commonly arise with direct sen-

sor (force and pressure) deployment, a lift-off measurement principle based on an insertable

finger probe was identified as the most appropriate transduction technique for the application

need. The finger probe couples directly to the local normal component of the noseband tensile

force, while at the same time linking to remote environmentally isolated and protected sensors

[24]. A better understanding of the finger probe measurement principle may be gained by ref-

erence to a specific measurement site on a horse such as the nasal plane illustrated schemati-

cally in Fig 3. The finger probe is necessarily intrusive, i.e. it lifts the noseband away from the

tissue to a height, P at the measurement site in order to ‘sense’ the normal component of ten-

sion. Clearly, this lifting will tighten the noseband further (through effective contraction) and

so it is necessary to be able to estimate the actual effective contraction due to lifting, to ascer-

tain its impact. The effective contraction in noseband length, ΔC, due to a lift-off height P is

given as a function of nasal plane width W by,

DC ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þW=22

q

� W ð2Þ

neglecting the slight concavity of the nasal bone. This relationship may be used to calculate the

effective contraction length directly using appropriate measurement data or alternatively may

be read from plots such as the one shown in S3 Fig for a specific configuration.

The lift-off finger probe measures the normal component N of the noseband tensile force T.

Comparison of the free body force diagram geometry and the lift-off geometry, Fig 3, provides

Noseband Tightness and Its Measurement
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a relationship between N and T for the nasal plane application environment geometry,

T ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ ðW=2Þ
2

q

P
N ð3Þ

which may be simplified to T = MN where M is a multiplier factor given by,

M ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ ðW=2Þ
2

q

P
ð4Þ

when W is also measured. This allows one estimate the noseband tensile force from the mea-

sured normal component for the various anatomical geometries likely to arise or likely to be of

interest in equitation.

Design Implementation

A standard industry test finger is typically in the range 12–18 mm diameter. The ISES taper

gauge varies in height from 10 mm at the tip to 16 mm at the base (corresponding width rang-

ing from 16–38 mm tip to base). For this application, a simple square finger probe geometry of

height/width (15 mm) was chosen largely as a compromise between the dimensions given

above and to ensure ease of measurement, Fig 4. The finger has an overall length of approxi-

mately 55 mm comprising a tapered tip (20 mm) to facilitate lifting of the noseband and

Fig 3. Schematic representation of the probe inserted between the noseband and midline of the nasal plane. N is the

noseband force, L is the measured force/load, P is the height of the probe and W is the lift-off width at the nasal plane.

doi:10.1371/journal.pone.0168996.g003
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insertion of the measurement section of the finger (35 mm). Details of the finger probe and

measurement system are revealed in a recent patent application [24]. The finger probe is

inserted under the noseband at the site of interest. The digital tightness gauge provides a direct

estimate of the normal force applied by the noseband to the underlying tissue. In-built firm-

ware maps the measured load to a simple six-point tightness scale for display on an integrated

backlight display, see Table 1.

The contraction length is estimated at less than 1 cm for a probe height of 15 mm and for

nasal plane widths in the range 4–8 cm, see Eq 2. Concavity of the nasal plane along the mid-

line as well as some degree of tissue accommodation will tend to reduce the effective lift-off

height P below the nominal value further reducing the contraction effect. This contraction is

likely to correspond to additional tightening of the noseband by half to two thirds of a normal

noseband punch hole spacing.

It is clear from Eq 4 that the digital tightness gauge measured force will scale with the nose-

band tensile force. For a probe height of 15 mm the scale/multiplier factor is close to unity for

lift-off widths in the range 4–6 cm which, in the absence of actual population metrics, was

deemed to correspond approximately to a nasal plane width range likely to arise in an adult

horse population. At measurement sites such as the cheek, i.e. lateral locations, where the lift-

off width may be larger, the digital tightness gauge measured normal force will be significantly

lower than the band tensile force, reflecting the generally lower tissue curvatures in this area.

Fig 4. Digital tightness gauge, version 4 (DTGv4) deployed at a frontal site—nasal plane. Inset shows a

close up of the gauge along side the ISES taper gauge.

doi:10.1371/journal.pone.0168996.g004
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Therefore, while the finger probe dimensions are tailored specifically to the nasal plane mea-

surement site where the application environment is reasonably well defined, it may be used for

other sites, particularly if the noseband is so tight that the nasal plane site is inaccessible. How-

ever, an additional lift off width measurement would be required in order to estimate the

actual tension in the band by reference to Fig 5 or using Eq 3 directly. In either case, the digital

tightness gauge should prove useful for like-for-like comparisons of noseband tightness within

competition classes and between individual horses since the probe height is constant. Addi-

tionally, with relevant expert group input, it should be sufficient to allow the development of a

simple tightness scale to help formulate guidelines regarding permitted or acceptable levels of

noseband tightness.

A bluetooth wireless module was included in the digital tightness gauge to facilitate data

streaming for development purposes. A key feature of the design is that the gauge is largely

independent of noseband loading point on the finger probe [24]. Details and results of device

field trials are presented below.

Table 1. Digital tightness gauge, tightness scale.

Scale Normal Force (N)

VeryLoose 0 to 5

Loose 6 to 10

ModeratelyTight 11 to 20

Tight 21 to 40

VeryTight 41 to 60

ExtremelyTight Greater Than 60

doi:10.1371/journal.pone.0168996.t001

Fig 5. Relationship between measured normal force and band tensile force for various lift off widths.

doi:10.1371/journal.pone.0168996.g005
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Materials and Methods

The protocol and conduct of these studies were approved by the University of Limerick Ani-

mal Ethics Committee: 2016-1-1-ULAEC and 2016-1-2-ULAEC.

Digital Tightness Gauge Field Trials

Two field trials were carried out at a private breeding and training yard. Version three of the

digital tightness gauge, DTGv3, was used for the first field trial while an ergonomically rede-

signed gauge, DGTv4, see Fig 4, was used for the second trial. All horses were either in training

or had been previously used for riding but were retired for breeding purposes. Snaffle bridles

with cavesson nosebands were used and horses were restrained by familiar handlers. All bri-

dles were fitted with either a single-jointed full cheek snaffle bit or a single-jointed Baucher

snaffle bit. A habituation period was allowed before the introduction of either the ISES taper

gauge or the digital tightness gauge probe beneath the noseband, by holding the gauge or

probe on the surface of the noseband, at the frontal nasal plane for a minimum of 3 seconds

(or a longer duration if deemed necessary based on the behaviour of the horse). The width of

each noseband was measured using a callipers designed to measure skin sickness in the tuber-

culosis skin test. Food was withheld from each horse for a minimum 10 minute period prior to

data collection to minimise chewing or other oral behaviours during data collection. The ISES

taper gauge was used to assist in assessing and adjusting the noseband tightness. Two sites, a

frontal site and a lateral site, were used between the two studies. The frontal site corresponded

to the region under the noseband between the rostral margin of the facial crest and the caudal

margin of the noseband. The lateral site corresponded approximately to the area where the lat-

eral nasal artery and vein pass under the noseband. Three taper gauge tightness levels were

used on each horse. Measurements at these sites are represented by a four letter code where

the first letter identifies either a frontal (F) or lateral (L) site and the remaining three digits

identify the taper gauge tightness: two fingers 2F0; one finger 1F0; half finger 0F5.

The fifteen horses used in trial one ranged in age from four to twelve years. All bridles were

initially fitted with an opened noseband before being adjusted to the taper gauge setting speci-

fied by the random order sequence for the study. The DTGv3 probe was inserted under the

noseband at the frontal nasal plane and aligned with the rostral midline. The lateral noseband

site was not used in this trial. The noseband applied force indicated on the instrument was

recorded once oral immobility had been established. Where mouth movements were dis-

played, readings were recorded once a continuous mouth immobility period of at least three

seconds had occurred and continued for the duration of the reading. The bridle was left in

place but the noseband was opened and left loose once a reading had been logged. The proce-

dure was repeated for the other two ISES taper gauge settings allowing at least a thirty minute

rest period between each bridle noseband tightness reading. All horses were individually sta-

bled. The horses were divided into two groups (a group of seven and a group of eight) and the

study was completed in the first group before proceeding to the second group. The trial was

completed in a single day over a four hour test period.

Twelve horses, four of whom had been used in trial one, ranging in age from four to twelve

years, were used in the second trial. The horses were divided into two groups, a first group of

four and a second group of eight. A stable arrangement of eight stables, four on either side of

an access corridor (American barn-style building) was used for the data logging. Each group of

horses was taken from their individual stables and placed in the ‘data-logging’ stables with two

stables either side of the corridor. Both frontal and lateral noseband sites were used in this

trial. The noseband was initially left unfastened. Following a procedure similar to study one,

the ISES taper gauge was used to adjust the noseband tightness to one of the three prescribed

Noseband Tightness and Its Measurement
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tightness settings: 2F0; 1F0; 0F5. DTGv4 was then used to measure the noseband applied nor-

mal force at both the frontal and lateral locations. Each horse was given a rest period of at least

thirty minutes, with the bridle removed, between readings at the different tightness settings.

All data was collected on the same day over a nine hour period.

Results

Gauge Calibration

The digital tightness gauges were calibrated before commencement of each field trial and cali-

bration was rechecked after field trial completion. The gauge uses a two-point calibration pro-

cedure whereby the operator is prompted to apply zero load followed by a 10 kg load to the

finger probe. A calibration plot was then generated using a dead-weight test sequence whereby

mass was added in 1 kg increments up to a total of 20 kg and then sequentially removed, while

at the same time logging the instrument displayed readings for both the load and unload

sequence, Fig 6. The response indicates excellent linearity (slope of 0.998, correlation coeffi-

cient better than 0.99) with zero offset and negligible hysteresis. Similar responses were found

for version three and four of the gauge. Likewise, these values were found to be stable over a

three week period between initial calibration and post field trial re-testing.

Digital Tightness Gauge: Trial 1

It was possible to measure the noseband forces for all horses using DTGv3 for the frontal two

(F2F0) and one finger (F1F0) tightness settings. However, some difficulty was experienced in

attempts to insert the probe at the frontal site for the half finger (F0F5) setting on three horses.

Therefore, the number of data points is reduced to twelve for this setting. A Shapiro-Wilk test

Fig 6. Digital tightness gauge indicated load for loading/unloading using dead weights in the range

0–20 kg, i.e. 0–196 N.

doi:10.1371/journal.pone.0168996.g006
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indicated normality for all data sets at the 0.05 significance level. Descriptive statistics for

DGTv3 force measurements are presented in Table 2 and the corresponding band tension sta-

tistics are presented in Table 3. Measured sub-noseband force values ranged from a minimum

of 8 ± 2 N for the two finger (F2F0) setting to a maximum of 83 ± 5 N for the half finger setting

(F0F5). The equivalent mass range corresponding to these forces is approximately 0.8–8.3 kg.

Despite significant overlap in the range of force values measured at the different tightness

band settings, there is a clear upward trend in noseband applied force (normal force) from

tightness setting F2F0 to F0F5 as is clear from the combined box plot presented in Fig 7. The

band tension ranged from a minimum of 3 ± 1 N/cm for the two finger setting to a maximum

of 23 ± 2 N/cm for the half finger tightness setting, Table 3. The upward trend in band tension

data is again clearly evident in the combined box plot shown in Fig 8.

Digital Tightness Gauge: Trial 2

It was possible to obtain force measurements with DTGv4 on all horses for all tightness set-

tings at the lateral site. As with trial one, readings were easily obtained for the two finger and

one finger tightness settings at the frontal site. However, it was not possible to insert the gauge

probe in the case of two of the horses for the half finger tightness setting at this site. Summary

noseband force descriptive statistics (reflecting the reduced data set for F0F5) taken at two

noseband sites using DTGv4 (trial two) are presented in Table 4. The measured force ranges

from a minimum of 7 ± 1 N to 95 ± 5 N at the frontal site (equivalent to a mass range of 0.7–

9.7 kg) in going from the two finger to the half finger setting. A significant reduction in overall

values and range occurs for the lateral site: minimum of 1.0 ± 0.6 N for two finger tightness

(L2F0) to a maximum of 28 ± 2 N for the half finger tightness (L0F5), (equivalent mass range

0.1–2.9 kg). Fig 9 shows a box plot which clearly illustrates the distinction between the values

obtained at both sites and the upward trend in values in progressing from the two finger to

half finger tightness for both sites.

Band tension data calculated from the force data (Table 4) and noseband widths were used

to generate the descriptive statistics shown in Table 5. A combined box plot of the data for the

three tightness settings and for both sites is shown in Fig 10.

Discussion

The force ranges measured at the frontal nasal plane (Trial 1: 8–83 N, Trial 2: 7–95 N) were

similar in both trials and corresponded to noseband ISES taper gauge adjustment settings of

Table 2. Descriptive statistics for field trial 1: DGTv3 normal force readings in Newtons (N) for different ISES taper gauge noseband settings. Sam-

ple size n.

Setting Mean STD STE Max Min n Median

F0F5 52.4 16.3 4.7 83 35 12 46.5

F1F0 35.8 15.0 3.9 63 17 15 34.0

F2F0 19.8 8.1 2.1 36 8 15 17.0

doi:10.1371/journal.pone.0168996.t002

Table 3. Descriptive statistics for field trial 1: DGTv3 derived noseband band normal tension data in N/cm, sample size n.

Setting Mean STD STE Max Min n Median

F0F5 23.0 7.8 2.3 39.5 12.3 12 21.6

F1F0 15.9 6.6 1.7 26.3 7.1 15 14.8

F2F0 8.9 3.9 1.0 17.9 3.2 15 8.1

doi:10.1371/journal.pone.0168996.t003
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Fig 7. Box plot of frontal sub-noseband forces measured using DTGv3 for three ISES gauge settings.

Box plot symbols for this and subsequent box-plots: solid black square—mean; rectangle lower and upper

limits—25 and 75 percentiles; whiskers—5 and 95 percentiles; crosses—min and max values; line across

rectangle—median.

doi:10.1371/journal.pone.0168996.g007

Fig 8. Box plot of frontal sub-noseband band normal tensions measured using DTGv3 for three ISES

gauge settings.

doi:10.1371/journal.pone.0168996.g008
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F2F0 at the low force end and F0F5 at the high end. This range corresponds to dead weight

loads in the range 1–9 kg. Noseband settings of less than F0F5 are commonly encountered at

competition level [25]. It is not possible to predict what the corresponding values for zero fin-

ger tight nosebands are likely to be. A nonlinear increase in actual normal force components is

likely with increased noseband tightness due to decreasing soft tissue accommodation. How-

ever, it is likely that the forces to be expected at the nasal plane with nosebands tightened to

less than F0F5, i.e. taper gauge cannot be inserted at the frontal site, will be considerably in

excess of the highest values measured here.

Pain in horses is difficult to measure. A range of studies into levels of force required to stim-

ulate nociceptors in farm and laboratory animals has been reported. Cattle and sheep were

found to have relatively high thresholds [26]. The mean mechanical threshold for stimulation

of nociceptors on a hind limb in cattle was found to be 6.9 N in one study [27] while the corre-

sponding force in sheep is reported as 4.9 N [28]. It is interesting to note that the device used

to apply the force in the cattle study was programmed to cut out at a force value of 20 N to

Table 4. Descriptive statistics for field trial 2: DGTv4 force data in Newtons (N), sample size n.

ISES Mean STD STE Max Min n Median

F0F5 65.1 15.6 4.9 95 46 10 65.5

F1F0 39.0 9.3 2.7 50 20 12 40.0

F2F0 14.2 4.1 1.2 22 7 12 14.0

L0F5 18.6 6.6 1.9 28 3 10 19.0

L1F0 8.8 4.7 1.4 17 2 12 8.5

L2F0 3.3 1.9 0.6 7 1 12 3.0

doi:10.1371/journal.pone.0168996.t004

Fig 9. Box plot of noseband normal forces, frontal and lateral, measured using DTGv4 for three ISES

gauge settings. Dotted lines added to guide the eye.

doi:10.1371/journal.pone.0168996.g009
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prevent tissue damage. It is clear from the forces measured here that noseband forces arising at

localised sites on a horse’s head can be significantly larger than this cut-off threshold. The

large noseband forces arising at F0F5 tightness may explain the reduced frequency of chewing,

swallowing and yawning in horses with tight nosebands [12] since mouth opening will involve

additional mechanical action against the noseband which will add an impulse force compo-

nent or transient component to the forces already acting. Such movements have been found to

produce very large peak forces in nosebands at standard recommended tightness levels [11]. It

would be interesting to have dynamic data for tight nosebands, i.e. less than 1F0 ISES scale, to

establish whether the use of such restrictive settings inhibit activities that could produce such

transients. Generally, there is a need to investigate the pain implications of both sustained and

transient contact forces on animal tissue, in particular, and animal behaviour, in general, in

order to provide meaningful guidelines.

A wider noseband will result in a lower normal force per unit width for a given noseband

tensile force and this will result in correspondingly lower sub-noseband pressures: the coupled

Table 5. Descriptive statistics for field trial 2: DGTv4 derived band normal tension data in N/cm, sample size n.

ISES Mean STD STE Max Min n Median

F0F5 29.3 6.4 2.0 38.2 17.7 10 28.1

F1F0 17.6 5.4 1.6 25.8 8.0 12 16.0

F2F0 6.2 1.7 0.5 9.5 3.5 12 6.0

L0F5 8.3 2.8 0.8 12.5 1.2 10 8.5

L1F0 3.9 2.3 0.7 8.5 1.0 12 3.3

L2F0 1.4 0.8 0.2 2.8 0.5 12 1.2

doi:10.1371/journal.pone.0168996.t005

Fig 10. Box plot of frontal and lateral normal forces per unit width of noseband measured using

DTGv4 for three ISES gauge settings. Dotted lines added to guide the eye.

doi:10.1371/journal.pone.0168996.g010
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force is distributed over a larger area. However, while wider nosebands may therefore reduce

the risk of pain, it has been shown that blood vessel occlusion in humans occurs at lower tour-

niquet pressures for wide tourniquets [29]. Therefore, the effects of wider nosebands on the

local circulatory system has also to be taken into account when assessing the overall physiologi-

cal impact of tight nosebands. The impact of large pressure gradients such as those likely to

occur along the edge of tight nosebands on the local nerves should also be considered. These

gradients may be reduced to some extent by fitting foam or other cushioning materials

between the noseband and the nose but the actual implications of such modifications is diffi-

cult to ascertain based on the current body of knowledge in this field.

The variability in punch hole number and spacing on individual nosebands introduced sig-

nificant variability in the actual tightness setting achievable using the ISES taper gauge.

Depending upon hole position the tightness of a noseband was typically set slightly looser than

the setting that would have been used if noseband tightness were continuously adjustable. Ide-

ally, head dimensions and in particular nasal plane width should be measured in order to

establish an exact multiplier factor for individual animal tightness measurement. While this is

possible, it was deemed impractical in the current study. However, it does point to a consider-

able gap in our knowledge of equine metrics and should be considered in future studies.

One horse, on which measurements were taken during trial, had a deeper than normal con-

cave indent between the left and right nasal bones. This allowed easy insertion of the probe

beneath the noseband and resulted in low force measurements at each of the three noseband

settings. Such anatomical variation will not reduce the hammocking effect and may concen-

trate the load on the nearest convex structures (left and right nasal bone), so the registered

measures will be misleading [11]. However this anatomical variation was found in one of 23

horses and is likely to occur in a small fraction of the general equine population.

Given the dimensions of the probe, elevating the noseband sufficiently to insert the probe

for tightness settings less than F0F5 is not possible. However, since this tightness level is com-

monly used in competitions [25] there is a significant gap in our knowledge relating to magni-

tude of the forces and pressures likely to arise for such settings. Lower profile probes

specifically tailored to such tightly fitted nosebands could be produced if such tight nosebands

are deemed acceptable based on available or emerging evidence.

Current FEI guidelines stipulate that tack stewards should check each noseband for tight-

ness at the cheek [15]. However, noseband applied force at this location is not representative

of peak forces at other locations beneath the noseband and so is likely to be of limited use in

estimating such peak values. In addition, variation in jaw position can radically change the

geometry and hence the force/pressure applied by the noseband at such sites.

Conclusion

The primary force acting in tightened bridle nosebands is tensile in nature. This tensile force

couples to the underlying noseband support tissue where the tissue curvature is positive. Cou-

pling does not occur where the curvature of the support tissue is negative. The value of the nor-

mal force component of the noseband tensile force is the pertinent indicator of the degree of

coupling between the noseband and the support tissue in such areas of positive curvature. This

is the component of the tensile force which produces compression and pressure in the under-

lying tissue. The normal force component of the noseband tensile force was therefore identi-

fied as an appropriate and useful practical objective measure of noseband tightness in horses

involved in equine sports activities.

A digital tightness gauge capable of measuring sub-noseband normal force components

was developed, calibrated and field tested. Prevailing forces will be maximal at sites of high
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curvature such as at the nasal bones and over the mandibular rami. The nasal plane area offers

advantages over other sites for such measurements due to the clear anatomical landmarks

available there and the simple and stable geometry of the site. Consequently, probe design was

optimised for this site.

Normal force data measured using the digital tightness gauge for the frontal nasal plane

ranged in value from 7–95 N. The corresponding normal force range for a lateral noseband

site was 1–28 N. Variability of equine head metrics such as the nasal plane width and the

perimeter of the nose at the noseband site introduce uncertainty in the degree to which the

measured force reflects the exact force at a given site. Many of these uncertainties may be

reduced or eliminated by recording actual feature dimensions such as nasal plane width for

individual horses to allow use of the appropriate multiplication factor. Clearly this is not

practical in a competition environment but is feasible within a research setting where accu-

mulated data could contribute to the creation of a database of equine population metrics.

Availability of such metrics could inform customized gauge design for specific population

groups and categories and facilitate the development of clear differentiated noseband tight-

ness guidelines and controls. In the absence of such data, a simple six point tightness scale is

suggested. The classification scheme and break points between tightness indices will need to

be informed by ongoing evidence based equine and veterinary research relating to the impact

of tight nosebands on animal welfare. Successful implementation of this tightness gauge

technology and its acceptance by regulatory authorities and equestrian sports bodies will be

very much dependent on a productive collaborative effort between equitation scientists, vet-

erinary researchers, and the authorities and associations with interests in equine welfare.

Ultimately, the goal must be to develop a set of standards which are evidence based and

informed by expert opinion and which are implementable and generally acceptable to the

broad equitation community.

Supporting Information

S1 Fig. A Yato (Yato, YT-3736,) plastic profilometer used to transfer nose profile sections

corresponding to normal noseband locations to paper for digitization. (a) Lateral section;

(b) Transferring lateral profile to paper; (c) Frontal section; (d) Transferring frontal profile to

paper.

(TIF)

S2 Fig. Noseband site section profile. (a) The drawing tools in Microsoft Powerpoint 2013

were used to trace the outer profile of an imported equine head cross-section image. The

traced profile was scaled to a particular adult horse dimensions, length 21.5 cm and width 14.5

cm at the noseband site. (b) The profile was digitized using the online package Webplot Dig-

itizer http://arohatgi.info/WebPlotDigitizer/app/.

(TIF)

S3 Fig. Plots of effective noseband contraction as a function of nasal plane width for differ-

ent lift-off finger heights.

(TIF)

S1 File. MatLab Script to plot the curvature of digitized profile data.

(M)

S2 File. Calibration and Field Trial Data Tables (MS Excel) for DTGv3 and DTGv4.

(XLSX)
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