Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[(Pvrrolidin-1-vl)carbothiovlsulfanvl]methyl pyrrolidine-1-carbodithioate

Wei-Lung Chou,^a Kuang-Hway Yih,^b* Gene-Hsiang Lee,^c* Yen-Hsiang Huang^a and Hsiao-Fen Wang^b

^aDepartment of Industrial Safety and Health & Institute Occupational Safety and Hazard Prevention, Hungkuang University, Shalu 433, Taichung, Taiwan, ^bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan, and ^cInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan

Correspondence e-mail: khyih@sunrise.hk.edu.tw, ghlee@ntu.edu.tw

Received 10 September 2010; accepted 8 November 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (S–C) = 0.005 Å; disorder in main residue; R factor = 0.062; wR factor = 0.166; data-to-parameter ratio = 18.3.

The title compound, C₁₁H₁₈N₂S₄, was unexpectedly obtained during studies on the reactivity of the complex tris(acac- $\kappa^2 O, O'$)gallium(III) (acac is acetylacetonate) with C₄H₈NCS₂H in dichloromethane. The title compound shows disordered two pyrrolidine rings with major and minor occupancies of 0.546 (4) and 0.454 (4). Two (pyrrolidin-1yl)carbothioylsulfanyl units are linked together through a methylene C atom and weak $C-H \cdot \cdot \cdot S$ interactions are found.

Related literature

For bis(dialkyldithiocarbamates), $CH_2(S_2CNR_2)_2$, see: R = Me(Thomas, 1945, 1946); R = Et (Heckley *et al.*, 1970); $R = C_5 H_{10}$ (Sharma et al., 1991). For weak $C-H \cdot \cdot S$ interactions, see: Kayed et al. (2008); Pervez et al. (2010); Vangala et al. (2002); Yaqub et al. (2010). For our previous work on the preparation of In(III) complexes, see: Chou et al. (2007). For C=S doublebond lengths, see: Pauling (1960).

Experimental

Crystal data

 $C_{11}H_{18}N_2S_4$ $M_r = 306.51$ Orthorhombic, Pca21 a = 21.9118 (18) Å b = 4.5705 (4) Å c = 14.3452 (12) Å

V = 1436.6 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.64 \text{ mm}^{-1}$ T = 150 K $0.25 \times 0.25 \times 0.15 \text{ mm}$

organic compounds

17016 measured reflections

 $R_{\rm int} = 0.043$

3292 independent reflections

2759 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.856, T_{\rm max} = 0.910$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.166$	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.07	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
3292 reflections	Absolute structure: Flack (1983),
180 parameters	1579 Friedel pairs
17 restraints	Flack parameter: -0.1 (2)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4 - H4A \cdots S3^{i}$	0.99	2.89	3.811 (9)	155
$C10-H10B\cdots S4^{ii}$	0.99	2.99	3.699 (11)	130
$C9 - H9A \cdots S1^{ii}$	0.99	2.87	3.740 (8)	147
$C9' - H9'A \cdots S1^{ii}$	0.99	3.50	4.209 (11)	131
$C5' - H5'B \cdot \cdot \cdot S2^{i}$	0.99	2.94	3.704 (14)	137

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, $z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Science Council of the Republic of China for financial support (NSC98-2113-M-241-011-MY2).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2162).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA.
- Chou, W. L., Chang, H. H., Yih, K. H. & Lee, G. H. (2007). J. Chin. Chem. Soc. 54, 323-330.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Heckley, P. R., Holah, D. G., Hughes, A. N. & Leh, F. (1970). Can. J. Chem. 48, 3827-3830
- Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022-o1023.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
- Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o1169-o1170.
- Sharma, S., Bohra, R. & Mehrotra, R. C. (1991). J. Crystallogr. Spectrosc. Res. 21. 61-66.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, J. C. (1945). US Patent 2 384 577.
- Thomas, J. C. (1946). Chem. Abstr. 40, 177.
- Vangala, V. R., Desiraju, G. R., Jetti, R. K. R., Bläser, D. & Boese, R. (2002). Acta Cryst. C58, 0635-0636.
- Yaqub, M., Pervez, H., Arif, N., Tahir, M. N. & Hussain, M. (2010). Acta Cryst. E66, o1696.

supplementary materials

Acta Cryst. (2010). E66, o3193 [doi:10.1107/S1600536810046027]

[(Pyrrolidin-1-yl)carbothioylsulfanyl]methyl pyrrolidine-1-carbodithioate

W.-L. Chou, K.-H. Yih, G.-H. Lee, Y.-H. Huang and H.-F. Wang

Comment

Formation of methylene bis(dialkyldithiocarbamates), $CH_2(S_2CNR_2)_2$ [R = Me (Thomas, 1946), Et (Heckley *et al.*, 1970), C_5H_{10} (Sharma *et al.*, 1991)] have been reported in the literature as by-products in the reactions of transition metal halides with anhydrous sodium dialkyldithiocarbamates when methylene chloride was used as solvent or reaction of anhydrous sodium dialkyldithiocarbamates with methylene chloride under refluxing conditions (Sharma *et al.*, 1991).

Our previous report showed complexes $[In(S_2CNC_5H_{10})_3]$, $[In(pyS)_3]$ and $[In(pyS)_2(acac)]$ (acac: acetylacetonate; pyS: pyridine-2-thionate) are prepared by reacting the complex tris(acac- $\kappa^2 O$, O')indium(III) with HS₂CNC₅H₁₀, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively (Chou *et al.*, 2007). To test the generality of this substitution reaction, we studied the reaction of tris(acac- $\kappa^2 O$, O')gallium(III) complex and C₄H₈NCS₂H. During studies on the reactivity of complex tris(acac- $\kappa^2 O$, O')gallium(III), with C₄H₈NCS₂H in dichloromethane, we unexpectedly obtained the white crystals of title compound (I), identified as methylene bis(pyrrolidinyldithiocarbamate) by X-ray structure, NMR and Mass spectroscopic analyses. It consists of two pyrrolidinyldithiocarbamate units, bridged by a methylene group, *i.e.* C₄H₈N—CS—CH₂—S—CK3—NC₄H₈. The ¹H NMR spectrum of (I) in CDCl₃ shows one singlet at 5.33 ppm., assignable to SCH₂S. The IR spectrum shows the following characteristic bands, 1470 cm⁻¹ (vC=N), 1305 cm⁻¹ (vC-N), 990 cm⁻¹ (vC=S), 915 cm⁻¹ (vC-S). The FAB mass spectrum shows the molecular ions C₁₁H₁₈N₂S₄ with the characteristic isotopic distribution patterns.

The solid-state structure has been established by X-ray crystallography. The molecular structure of the title compound is shown in Fig. 1. In (I), the C1—S2 and C6—S4 bond lengths of 1.725 (10) and 1.693 (8) Å, respectively, are slightly longer than a normal C=S double bond (*ca* 1.61 Å) (Pauling, 1960), while the C1—S1 and C6—S3 distance of 1.743 (10) and 1.827 (8) Å, respectively, are clearly single bonds. The angle of S3—C11—S1 (114.05 (18)°) is larger than the ideal tetrahedral value of 109.47°, probably due to repulsion between the two C=S bonding electron pairs. Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and refined ratios of the major and minor components being 0.546 (4): 0.454 (4). As a result of two different packings are shown in Fig. 2(*a*) and (*b*). The weak interactions of C—H···S (3.683 (6) - 3.823 (11) Å) in (I) are also found in those of (*E*)-2-[1-(1-benzothiophen-3-yl)ethylidene]hydrazinecarbothioamide (3.613 (3) - 3.762 (4) Å) (Kayed *et al.*, 2008), 4-(5-chloro-2- methylphenyl)-1-[2-oxo-5-(trifluoromethoxy)indolin-3-ylidene]thiosemicarbazide (3.245 (4) Å) (Pervez *et al.*, 2010), bis(4-aminophenyl)disulfide (3.7387 (18) Å) (Vangala *et al.*, 2002) and 1-[1-(4-bromophenyl)ethylidene]-4-(2,4-dimethoxyphenyl)thiosemicarbazide (3.774 (3) Å) (Yaqub *et al.*, 2010), respectively.

Experimental

The synthesis of the title compound (I) was carried out as follows. 10 ml of CH₂Cl₂ was added to a flask of Ga(acac)₃ (0.367 g, 1.0 mmol) and C₄H₈NCS₂H (0.345 g, 3.0 mmol). The solution was stirred for 2 days at room temperature. The solution is concentrated under vacuum and n-hexane (10 ml) was added to initiate precipitation. The pale-white solids were isolated by filtration (G4), washed with n-hexane (2 *x* 10 ml) and subsequently drying under vacuum yielding [CH₂(S₂CNC₄H₈)₂] (0.459 g, 50%). Further purification was accomplished by recrystallization from 1/10 CH₂Cl₂/n-hexane. The pale-white crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH₂Cl₂ solution of the title compound at room temperature for 3 days. Spectroscopic analysis: ¹H NMR (CDCl₃, 298 K, δ , p.p.m.): δ 1.65, 1.74 (m, 4H, NCCH₂), δ 2.98, 3.29 (m, 4H, NCH₂), 5.33 (s, 2H, SCH₂). 13C {¹H} NMR (CDCl₃, 298 K, δ , p.p.m.): δ 24.8 (s, NCH₂CH₂), 49.8 (s, NCH₂), 50.0 (s, SCH₂S), 191.5 (s, CS). MS (m/*z*): 306.5 (*M*⁺). Anal. Calcd for C₁₁H₁₈N₂S₄: C, 43.10; H, 5.92; N, 9.14. Found: C, 43.31; H, 5.69; N, 9.02.

Refinement

Two pyrrolidinyl groups are found to be disordered over two positions (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) and (C1', C2', C3', C4', C5', C6', C7', C8', C9', C10') and the occupancies are refined to 0.546 (4) and 0.454 (4).

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing two independent molecules and the 50% probability displacement ellipsoids.

Fig. 2. The packing diagram of (I), showing two different packing patterns.

[(Pyrrolidin-1-yl)carbothioylsulfanyl]methyl pyrrolidine-1-carbodithioate

Crystal data	
$C_{11}H_{18}N_2S_4$	
$M_r = 306.51$	
Orthorhombic, Pca21	

F(000) = 648 $D_x = 1.417 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2c -2ac a = 21.9118 (18) Å b = 4.5705 (4) Å c = 14.3452 (12) Å V = 1436.6 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3292 independent reflections
Radiation source: fine-focus sealed tube	2759 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.043$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -28 \rightarrow 28$
$T_{\min} = 0.856, T_{\max} = 0.910$	$k = -5 \rightarrow 5$
17016 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.166$	$w = 1/[\sigma^2(F_o^2) + (0.1007P)^2 + 0.6346P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.003$
3292 reflections	$\Delta \rho_{max} = 1.05 \text{ e } \text{\AA}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
17 restraints	Absolute structure: Flack (1983), 1579 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.1 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 2540 reflections

 $\theta = 2.3 - 26.6^{\circ}$

 $\mu = 0.64 \text{ mm}^{-1}$

Block, light-brown

 $0.25\times0.25\times0.15~mm$

T = 150 K

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) х \boldsymbol{Z} v **S**1 0.34241 (4) 0.48896 (18) 0.20742 (6) 0.0247(3)S2 0.24742 (5) 0.4861 (2) 0.05150 (8) 0.0332 (3) S3 0.40977 (4) 0.48200 (19) 0.02225(7)0.0292(3)S4 0.50250(6) 0.4996(2) 0.18040 (8) 0.0333(3)N1 0.23596 (13) 0.7324 (7) 0.2179 (2) 0.0280(7) N2 0.51532 (12) 0.7401 (7) 0.0131(2)0.0292(7)C1 0.2724 (4) 0.593(2)0.1603 (7) 0.0232 (12) 0.546(4)C2 0.1742(5)0.840(3)0.1934(7)0.0354 (9) 0.546(4)H2A 0.1450 0.6753 0.1894 0.043* 0.546(4)H2B 0.1749 0.9430 0.1327 0.043* 0.546(4)C3 0.1558 (4) 1.0519 (19) 0.2724 (6) 0.0388 (19) 0.546(4)H3A 0.1691 1.2541 0.2580 0.047* 0.546(4)H3B 0.1111 1.0507 0.2820 0.047* 0.546(4)C4 0.1889 (4) 0.935(2) 0.3579 (6) 0.039(2)0.546(4)0.1669 0.3857 0.047* H4A 0.7670 0.546(4)H4B 0.1943 1.0887 0.4057 0.047* 0.546(4)C5 0.2514 (4) 0.838(2)0.3155(7) 0.0288 (11) 0.546(4)0.2803 H5A 1.0043 0.3132 0.035* 0.546(4)H5B 0.2698 0.6784 0.3528 0.035* 0.546(4)C1' 0.1543 (10) 0.2682 (6) 0.549(3) 0.0232 (12) 0.454 (4) C2' 0.1763 (6) 0.843(4)0.1926 (8) 0.0354(9)0.454(4)0.6948 H2'A 0.1520 0.1589 0.043* 0.454(4)H2'B 0.1794 1.0226 0.1541 0.043* 0.454 (4) C3' 0.1491 (4) 0.910(2)0.2897 (7) 0.0388 (19) 0.454(4)H3'A 0.1174 1.0640 0.2862 0.047* 0.454(4)H3'B 0.7321 0.3184 0.047* 0.1314 0.454 (4) C4' 0.2053 (4) 0.3437 (9) 0.039(2)1.016(2)0.454(4)H4'A 0.1985 1.0058 0.4119 0.047* 0.454 (4) H4'B 0.2164 1.2183 0.3262 0.047* 0.454(4)C5' 0.2549 (5) 0.3119 (10) 0.793(3)0.0288 (11) 0.454(4)H5'A 0.2962 0.8811 0.3136 0.035* 0.454 (4) H5'B 0.2544 0.6145 0.3508 0.035* 0.454(4)C6 0.4816(3)0.6102 (15) 0.0724 (6) 0.0200 (9)* 0.546(4)C7 0.5772 (5) 0.855 (3) 0.0389(7) 0.0366 (10) 0.546(4)H7A 0.6954 0.044* 0.6075 0.0428 0.546(4)H7B 0.9611 0.0990 0.044* 0.5760 0.546(4)C8 0.5912 (4) 1.0600 (16) -0.0409(6)0.033(2)0.546(4)H8A 0.5747 1.2579 -0.02870.040* 0.546(4)H8B 0.6358 1.0747 -0.05130.040* 0.546 (4) C9 0.9224 (18) 0.5603 (4) -0.1231(5)0.0301 (17) 0.546(4)H9A 0.5837 0.7523 0.036* -0.14640.546(4)H9B 0.5551 1.0652 -0.17430.036* 0.546(4)C10 0.4984 (4) 0.827(3) -0.0837(8)0.0322 (10) 0.546 (4) 0.9902 H10A 0.4687 -0.08390.039* 0.546(4)H10B 0.039* 0.4813 0.6600 -0.11910.546(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C6'	0.4807 (5)	0.551 (2)	0.0695 (8)	0.0200 (9)*	0.454 (4)
C7'	0.5740 (6)	0.853 (4)	0.0417 (8)	0.0366 (10)	0.454 (4)
H7'A	0.5983	0.7013	0.0740	0.044*	0.454 (4)
H7'B	0.5693	1.0245	0.0832	0.044*	0.454 (4)
C8'	0.6031 (4)	0.939 (2)	-0.0505 (8)	0.033 (2)	0.454 (4)
H8'A	0.6318	1.1039	-0.0417	0.040*	0.454 (4)
H8'B	0.6256	0.7717	-0.0778	0.040*	0.454 (4)
C9'	0.5511 (5)	1.027 (2)	-0.1120 (8)	0.0301 (17)	0.454 (4)
H9'A	0.5618	1.0074	-0.1788	0.036*	0.454 (4)
H9'B	0.5383	1.2315	-0.0996	0.036*	0.454 (4)
C10'	0.5010 (5)	0.808 (4)	-0.0837 (10)	0.0322 (10)	0.454 (4)
H10C	0.4599	0.8968	-0.0892	0.039*	0.454 (4)
H10D	0.5027	0.6299	-0.1230	0.039*	0.454 (4)
C11	0.37625 (18)	0.2698 (7)	0.1150 (4)	0.0358 (8)	
H11A	0.4081	0.1426	0.1423	0.043*	
H11B	0.3444	0.1413	0.0882	0.043*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0171 (4)	0.0341 (5)	0.0230 (6)	0.0012 (3)	-0.0019 (4)	0.0022 (3)
S2	0.0255 (5)	0.0514 (7)	0.0228 (6)	-0.0023 (4)	0.0000 (4)	-0.0059 (4)
S3	0.0214 (5)	0.0404 (6)	0.0259 (7)	-0.0009 (3)	0.0048 (4)	-0.0009 (4)
S4	0.0291 (5)	0.0535 (8)	0.0174 (6)	0.0030 (4)	0.0006 (4)	0.0072 (4)
N1	0.0272 (14)	0.0342 (15)	0.0226 (15)	0.0002 (12)	0.0001 (12)	0.0005 (12)
N2	0.0245 (13)	0.0388 (17)	0.0244 (15)	0.0028 (12)	0.0007 (12)	0.0005 (13)
C1	0.0175 (18)	0.031 (3)	0.0217 (19)	-0.0108 (19)	0.0036 (15)	0.003 (2)
C2	0.0293 (18)	0.049 (2)	0.0284 (18)	0.0045 (17)	-0.0025 (15)	-0.0022 (18)
C3	0.044 (3)	0.042 (5)	0.030 (4)	0.011 (3)	0.016 (3)	0.014 (3)
C4	0.026 (4)	0.059 (5)	0.033 (4)	-0.008 (3)	0.008 (3)	-0.002 (3)
C5	0.0359 (19)	0.025 (3)	0.0251 (18)	0.0014 (19)	-0.0016 (16)	-0.007 (2)
C1'	0.0175 (18)	0.031 (3)	0.0217 (19)	-0.0108 (19)	0.0036 (15)	0.003 (2)
C2'	0.0293 (18)	0.049 (2)	0.0284 (18)	0.0045 (17)	-0.0025 (15)	-0.0022 (18)
C3'	0.044 (3)	0.042 (5)	0.030 (4)	0.011 (3)	0.016 (3)	0.014 (3)
C4'	0.026 (4)	0.059 (5)	0.033 (4)	-0.008 (3)	0.008 (3)	-0.002 (3)
C5'	0.0359 (19)	0.025 (3)	0.0251 (18)	0.0014 (19)	-0.0016 (16)	-0.007 (2)
C7	0.0239 (18)	0.053 (3)	0.033 (2)	-0.0054 (17)	-0.0006 (16)	0.0003 (19)
C8	0.028 (3)	0.020 (5)	0.052 (5)	0.003 (3)	-0.010 (3)	0.009 (3)
C9	0.039 (3)	0.030 (5)	0.021 (3)	0.005 (3)	0.013 (3)	0.000 (3)
C10	0.037 (2)	0.036 (2)	0.0245 (19)	0.0014 (17)	-0.0037 (15)	-0.0016 (17)
C7'	0.0239 (18)	0.053 (3)	0.033 (2)	-0.0054 (17)	-0.0006 (16)	0.0003 (19)
C8'	0.028 (3)	0.020 (5)	0.052 (5)	0.003 (3)	-0.010 (3)	0.009 (3)
C9'	0.039 (3)	0.030 (5)	0.021 (3)	0.005 (3)	0.013 (3)	0.000 (3)
C10'	0.037 (2)	0.036 (2)	0.0245 (19)	0.0014 (17)	-0.0037 (15)	-0.0016 (17)
C11	0.0294 (15)	0.0314 (17)	0.047 (2)	-0.0009 (17)	0.0098 (14)	0.003 (2)
Geometric para	meters (Å, °)					
S1—C1		1.743 (10)	C2'—	H2'A	0.99	00

supplementary materials

S1—C1'	1.816 (14)	C2'—H2'B	0.9900
S1—C11	1.820 (5)	C3'—C4'	1.533 (12)
S2—C1'	1.571 (14)	C3'—H3'A	0.9900
S2—C1	1.725 (10)	С3'—Н3'В	0.9900
S3—C6'	1.724 (11)	C4'—C5'	1.556 (12)
S3—C11	1.802 (5)	C4'—H4'A	0.9900
S3—C6	1.827 (8)	C4'—H4'B	0.9900
S4—C6'	1.678 (12)	C5'—H5'A	0.9900
S4—C6	1.693 (8)	С5'—Н5'В	0.9900
N1—C1	1.313 (10)	С7—С8	1.511 (11)
N1—C1'	1.426 (13)	С7—Н7А	0.9900
N1—C5'	1.438 (13)	С7—Н7В	0.9900
N1—C2'	1.448 (14)	C8—C9	1.498 (10)
N1—C2	1.483 (11)	C8—H8A	0.9900
N1—C5	1.520 (10)	C8—H8B	0.9900
N2—C6	1.273 (8)	C9—C10	1.531 (10)
N2—C6'	1.406 (11)	С9—Н9А	0.9900
N2—C7'	1.445 (13)	С9—Н9В	0.9900
N2—C10'	1.457 (14)	C10—H10A	0.9900
N2—C10	1.491 (11)	C10—H10B	0.9900
N2—C7	1.500 (11)	C7'—C8'	1.520 (12)
C2—C3	1.543 (11)	С7'—Н7'А	0.9900
C2—H2A	0.9900	С7'—Н7'В	0.9900
C2—H2B	0.9900	C8'—C9'	1.498 (11)
C3—C4	1.522 (10)	C8'—H8'A	0.9900
С3—НЗА	0.9900	С8'—Н8'В	0.9900
С3—Н3В	0.9900	C9'—C10'	1.541 (12)
C4—C5	1.563 (10)	С9'—Н9'А	0.9900
C4—H4A	0.9900	С9'—Н9'В	0.9900
C4—H4B	0.9900	C10'—H10C	0.9900
С5—Н5А	0.9900	C10'—H10D	0.9900
С5—Н5В	0.9900	C11—H11A	0.9900
C2'—C3'	1.546 (12)	C11—H11B	0.9900
C1—S1—C1'	7.3 (7)	C2'—C3'—H3'A	111.4
C1—S1—C11	103.1 (4)	C4'—C3'—H3'B	111.4
C1'—S1—C11	98.2 (5)	C2'—C3'—H3'B	111.4
C1'—S2—C1	6.3 (9)	H3'A—C3'—H3'B	109.2
C6'—S3—C11	100.1 (4)	C3'—C4'—C5'	101.9 (9)
C6'—S3—C6	8.2 (4)	C3'—C4'—H4'A	111.4
C11—S3—C6	103.5 (3)	C5'—C4'—H4'A	111.4
C6'—S4—C6	9.3 (5)	C3'—C4'—H4'B	111.4
C1—N1—C1'	8.8 (10)	C5'—C4'—H4'B	111.4
C1—N1—C5'	120.5 (7)	H4'A—C4'—H4'B	109.2
C1'—N1—C5'	124.8 (7)	N1—C5'—C4'	101.6 (8)
C1—N1—C2'	124.2 (7)	N1—C5'—H5'A	111.5
C1'—N1—C2'	119.6 (7)	C4'—C5'—H5'A	111.5
C5'—N1—C2'	115.3 (6)	N1—C5'—H5'B	111.5
C1—N1—C2	124.6 (6)	C4'—C5'—H5'B	111.5
C1'—N1—C2	119.8 (7)	H5'A—C5'—H5'B	109.3

C5'—N1—C2	114.9 (6)	N2—C6—S4	126.4 (5)
C2'—N1—C2	1.5 (13)	N2—C6—S3	112.7 (5)
C1—N1—C5	126.7 (6)	S4—C6—S3	119.8 (4)
C1'—N1—C5	131.7 (7)	N2—C7—C8	102.4 (7)
C5'—N1—C5	8.1 (8)	N2—C7—H7A	111.3
C2'—N1—C5	108.7 (6)	С8—С7—Н7А	111.3
C2—N1—C5	108.4 (5)	N2—C7—H7B	111.3
C6—N2—C6'	10.3 (7)	С8—С7—Н7В	111.3
C6—N2—C7'	119.5 (6)	H7A—C7—H7B	109.2
C6'—N2—C7'	122.4 (7)	C9—C8—C7	104.1 (7)
C6—N2—C10'	127.7 (6)	С9—С8—Н8А	110.9
C6'—N2—C10'	124.3 (7)	С7—С8—Н8А	110.9
C7'—N2—C10'	112.7 (6)	С9—С8—Н8В	110.9
C6-N2-C10	127.1 (5)	C7—C8—H8B	110.9
C6' - N2 - C10	124.5 (6)	H8A—C8—H8B	109.0
C7' - N2 - C10	113.0 (6)	C8 - C9 - C10	103.3 (7)
$C10' - N^2 - C10$	38(12)	C8—C9—H9A	111 1
C6 - N2 - C7	1215(5)	C10—C9—H9A	111.1
C6' - N2 - C7	121.5 (5)	C8-C9-H9B	111.1
C7' - N2 - C7	2 3 (9)	C10—C9—H9B	111.1
$C10' - N^2 - C7$	110.8 (6)	H9A-C9-H9B	109.1
C10 - N2 - C7	111.1 (5)	$N_{2} - C_{10} - C_{9}$	101.5 (6)
N1-C1-S2	120.9(7)	N2H10A	101.5 (0)
N1 - C1 - S1	120.9(7) 1151(7)	C9-C10-H10A	111.5
82—C1—S1	123.6 (6)	N2-C10-H10B	111.5
N1 - C2 - C3	105.8 (7)	C9-C10-H10B	111.5
N1 - C2 - H2A	110.6	$H_{10}A = C_{10} = H_{10}B$	109.3
$C_2 = H_2 A$	110.6	N2_C6'84	109.5 118.6 (7)
N1-C2-H2B	110.6	N2C6'83	110.0(7)
$C_3 = C_2 = H_2 B$	110.6	S4-C6'-S3	127.1 (6)
$H_2 \Delta (2 - H_2 B)$	108.7	N2	127.1(0) 102.7(8)
C4-C3-C2	104.3 (7)	N2H7'A	102.7 (0)
C4 - C3 - H3A	110.9	C8'-C7'-H7'A	111.2
$C_2 = C_3 = H_3 \Delta$	110.9	N2_C7'_H7'B	111.2
C4-C3-H3B	110.9	C8'-C7'-H7'B	111.2
$C_2 = C_3 = H_3 B$	110.9	H7'A - C7' - H7'B	109.1
$H_{3} = C_{3} = H_{3} B$	108.9	11/A = C/=11/D	105.2 (9)
$13A - C_{3} - 113B$	101.8 (7)	$C_{2}^{0} = C_{3}^{0} = C_{4}^{0}$	103.2 (5)
$C_3 = C_4 = C_3$	111 /	C7'	110.7
C_{5} C_{4} H_{4A}	111.4	C9'-C8'-H8'B	110.7
$C_3 = C_4 = H_4 B$	111.4	C7'-C8'-H8'B	110.7
C5—C4—H4B	111.4	H8'A - C8' - H8'B	108.8
H4A_C4_H4B	109.3	C8'-C9'-C10'	102.2 (9)
N1 - C5 - C4	104.6 (6)	C8'	102.2 (5)
N1_C5_H54	110.8	C10'-C9'-H9'A	111.3
C4—C5—H5A	110.8	C8'-C9'-H9'B	111.3
N1-C5-H5B	110.8	C10'-C9'-H9'B	111.3
C4—C5—H5B	110.8	H9'A_C9'_H9'B	109.2
H5A-C5-H5B	108.9	N2-C10'-C9'	103.7 (9)
		010 07	())

supplementary materials

N1—C1'—S2	124.3 (9)	N2—C10'—H10C	111.0
N1—C1'—S1	105.3 (8)	C9'—C10'—H10C	111.0
S2—C1'—S1	128.8 (8)	N2—C10'—H10D	111.0
N1—C2'—C3'	101.0 (8)	C9'—C10'—H10D	111.0
N1—C2'—H2'A	111.6	H10C—C10'—H10D	109.0
C3'—C2'—H2'A	111.6	S3—C11—S1	114.05 (18)
N1—C2'—H2'B	111.6	S3—C11—H11A	108.7
C3'—C2'—H2'B	111.6	S1—C11—H11A	108.7
H2'A—C2'—H2'B	109.4	S3—C11—H11B	108.7
C4'—C3'—C2'	102.0 (9)	S1—C11—H11B	108.7
C4'—C3'—H3'A	111.4	H11A—C11—H11B	107.6
C1'—N1—C1—S2	52 (6)	C10'—N2—C6—S4	172.3 (10)
C5'—N1—C1—S2	173.4 (8)	C10—N2—C6—S4	177.1 (8)
C2'—N1—C1—S2	-8.8 (15)	C7—N2—C6—S4	-9.9 (11)
C2—N1—C1—S2	-7.1 (13)	C6'—N2—C6—S3	-70 (4)
C5—N1—C1—S2	179.6 (7)	C7'—N2—C6—S3	-179.6 (10)
C1'-N1-C1-S1	-120(7)	C10'—N2—C6—S3	4.0 (12)
C5'—N1—C1—S1	0.9 (12)	C10—N2—C6—S3	8.7 (10)
C2'-N1-C1-S1	178.7 (10)	C7 - N2 - C6 - S3	-178.2(7)
C2-N1-C1-S1	-179.6(8)	C6'—S4—C6—N2	-114(4)
C_{5} N1-C1-S1	71(12)	C6' - S4 - C6 - S3	54 (3)
C1' - S2 - C1 - N1	-95 (7)	C6' - S3 - C6 - N2	106 (4)
C1' - S2 - C1 - S1	77 (7)	C11 - S3 - C6 - N2	172.9 (4)
C1'—S1—C1—N1	126 (6)	C6'—S3—C6—S4	-63 (4)
C11 - S1 - C1 - N1	173 6 (7)	C11 - S3 - C6 - S4	37(5)
C1' - S1 - C1 - S2	-47 (6)	C6-N2-C7-C8	-164.2 (6)
C11—S1—C1—S2	1.4 (8)	C6'—N2—C7—C8	-176.1 (7)
C1—N1—C2—C3	-166.2(8)	C7'—N2—C7—C8	-133 (32)
C1' - N1 - C2 - C3	-174.8(9)	C10'-N2-C7-C8	13.9 (13)
C5' - N1 - C2 - C3	13 3 (13)	C10 - N2 - C7 - C8	98(12)
C2' - N1 - C2 - C3	-93 (32)	$N_{2} - C_{7} - C_{8} - C_{9}$	-32.0(10)
$C_{5} = N_{1} = C_{2} = C_{3}$	81 (11)	C7 - C8 - C9 - C10	42.8 (10)
N1 - C2 - C3 - C4	-29.8(11)	C6-N2-C10-C9	-170.8(6)
$C_2 - C_3 - C_4 - C_5$	38.6 (10)	C6' - N2 - C10 - C9	-1585(7)
C1 - N1 - C5 - C4	-1699(8)	C7' - N2 - C10 - C9	171(13)
C1' - N1 - C5 - C4	-160.6(9)	$C_{10} - N_{2} - C_{10} - C_{9}$	-70(11)
C5' - N1 - C5 - C4	-128(7)	C7 - N2 - C10 - C9	156(11)
C2' - N1 - C5 - C4	175(11)	C_{8} C_{9} C_{10} N_{2}	-35.2(10)
$C_2 = N_1 = C_5 = C_4$	15.9(10)	C6-N2-C6'-S4	-66(4)
C_{3} C_{4} C_{5} N_{1}	-336(9)	C7' = N2 = C6' = S4	10.4(13)
C1 - N1 - C1' - S2	-116(7)	C10'-N2-C6'-S4	-1790(9)
C5' - N1 - C1' - S2	-1794(10)	C10 = N2 = C6' = S4	-1744(8)
C2' - N1 - C1' - S2	79(17)	C7 - N2 - C6' - S4	12.3(12)
$C_{2} = N_{1} = C_{1} = S_{2}$	96(16)	C6-N2-C6'-S3	97 (4)
$C_{5}-N_{1}-C_{1}'-S_{2}$	-1742(8)	C7'—N2—C6'—S3	174.0 (10)
C1 - N1 - C1' - S1	51 (6)	C10'-N2-C6'-S3	-154(12)
C5' - N1 - C1' - S1	-12.6(13)	C10-N2-C6'-S3	-10.8(11)
C2'-N1-C1'-S1	174 7 (10)	C7-N2-C6'-S3	175 9 (8)
$C_2 = N_1 = C_1 = S_1$	1764(8)	C6—S4—C6'—N2	49 (3)
			. (3)

C5—N1—C1'—S1	-7.3 (14)	C6—S4—C6'—S3	-111 (4)
C1—S2—C1'—N1	73 (7)	C11—S3—C6'—N2	-174.7 (6)
C1—S2—C1'—S1	-91 (7)	C6—S3—C6'—N2	-60 (4)
C1—S1—C1'—N1	-45 (5)	C11—S3—C6'—S4	-12.9 (7)
C11—S1—C1'—N1	-177.6 (7)	C6—S3—C6'—S4	102 (4)
C1—S1—C1'—S2	121 (7)	C6—N2—C7'—C8'	170.5 (8)
C11—S1—C1'—S2	-11.6 (12)	C6'—N2—C7'—C8'	159.0 (8)
C1—N1—C2'—C3'	166.3 (8)	C10'—N2—C7'—C8'	-12.6 (16)
C1'—N1—C2'—C3'	157.5 (10)	C10—N2—C7'—C8'	-16.7 (15)
C5'—N1—C2'—C3'	-15.8 (15)	C7—N2—C7'—C8'	21 (30)
C2—N1—C2'—C3'	59 (31)	N2-C7'-C8'-C9'	31.1 (14)
C5—N1—C2'—C3'	-20.9 (13)	C7'—C8'—C9'—C10'	-37.1 (14)
N1—C2'—C3'—C4'	35.6 (13)	C6—N2—C10'—C9'	166.5 (7)
C2'—C3'—C4'—C5'	-42.5 (12)	C6'—N2—C10'—C9'	178.5 (7)
C1—N1—C5'—C4'	167.5 (8)	C7'—N2—C10'—C9'	-10.1 (15)
C1'—N1—C5'—C4'	176.6 (9)	C10-N2-C10'-C9'	84 (11)
C2'—N1—C5'—C4'	-10.5 (14)	C7—N2—C10'—C9'	-11.4 (14)
C2—N1—C5'—C4'	-12.0 (12)	C8'—C9'—C10'—N2	28.7 (13)
C5—N1—C5'—C4'	26 (6)	C6'—S3—C11—S1	84.1 (4)
C3'—C4'—C5'—N1	32.6 (11)	C6—S3—C11—S1	76.5 (3)
C6'—N2—C6—S4	98 (4)	C1—S1—C11—S3	79.2 (4)
C7'—N2—C6—S4	-11.3 (12)	C1'—S1—C11—S3	84.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4A···S3 ⁱ	0.99	2.89	3.811 (9)	155
C10—H10B···S4 ⁱⁱ	0.99	2.99	3.699 (11)	130
C9—H9A…S1 ⁱⁱ	0.99	2.87	3.740 (8)	147
C9'—H9'A…S1 ⁱⁱ	0.99	3.50	4.209 (11)	131
C5'—H5'B····S2 ⁱ	0.99	2.94	3.704 (14)	137

Symmetry codes: (i) -x+1/2, y, z+1/2; (ii) -x+1, -y+1, z-1/2.

Fig. 2