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Abstract
Chimeric antigen receptor T (CAR-T) cells have emerged as novel and promising immune therapies for the treatment of multiple types
of cancer in patients with hematological malignancies. There are several key components critical for development and application of
CAR-T therapy. First, the design of CAR vectors can considerably affect several aspects of the physiological functions of these T cells.
Moreover, despite the wide use of g-retrovirus and lentivirus in mediating gene transfer into T cells, optimal CAR delivery systems are
also being developed and evaluated. In addition, several classes of mouse models have been used to evaluate the efficacies of CAR-
T cells; however, each model has its own limitations. Clinically, although surprising complete remission (CR) rates were observed in
acute lymphoblastic leukemia (ALL), lymphoma, and multiple myeloma (MM), there is still a lack of specific targets for acute myeloid
leukemia (AML). Leukemia relapse remains a major challenge, and its mechanism is presently under investigation. Cytokine release
syndrome (CRS) and neurotoxicity are life-threatening adverse effects that need to be carefully treated. Several factors that
compromise the activities of anti-solid cancer CAR-T cells have been recognized, and further improvements targeting these factors
are the focus of the development of novel CAR-T cells. Overcoming the current hurdles will lead to optimal responses of CAR-T cells,
thus paving the way for their wide clinical application.
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Studies conducted since the past few decades have revealed the
critical roles played by immune cells in cancer surveillance and
development. Of the diverse immune cell types, T cells have been
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the focus of cancer immunology because of their ability to
specifically recognize cancer cells via T cell receptors (TCRs)
through peptide-major histocompatibility complexes (pMHC)
and by triggering strong immune responses. Therefore, the aim of
several researchers dedicated to developing cancer immune
therapeutic strategies has been to reactivate tumor antigen-
specific T cells or redirect bystander T cells to recognize certain
antigens expressed by tumor cells with high specificity. The
development of checkpoint blockage therapies and cancer
vaccines as well as adoptive cell transfer (ACT) technology
represents the major translational achievements of the funda-
mental findings in this field of research.
In recent years, the clinical application of chimeric antigen

receptor T (CAR-T) cells has achieved major success in the
treatment of several types of hematological malignancies. In
2017, the U.S. Food and Drug Administration approved CAR-T
cell therapy for the treatment of relapsed or refractory (R/R)
acute lymphoblastic lymphoma (tisagenlecleucel) and diffuse
large B-cell lymphoma (axicabtagene ciloleucel). Meanwhile,
there is an increase in the number of CAR-T cell clinical trials
being registered and ongoing at ClinicalTrials.gov.1–4 These
breakthroughs and progresses emphasize the significant value of
ACT therapy and encourage its further development. In this
review, our primary aim is to provide a brief introduction on the
design of CAR vectors, CAR gene delivery, mouse modeling, and
current clinical results of CAR-T cell therapies, and to summarize
the hurdles faced and potential solutions for these aspects.
1. THE DESIGN OF CAR VECTORS

CARs are recombinant membrane receptor molecules that are
generally expressed on the surface of T cells. The extracellular
www.blood-science.org
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domain of CAR contains monoclonal antibody-derived single-
chain variable fragments (ScFv) that mediate binding with tumor-
associated antigens (TAAs) and a space/hinge domain typically
derived from the FC fragment of IgG to extend ScFv from the T
cell membrane. To locate CAR on the cell membrane, a
transmembrane fragment follows the extracellular domain.
The intracellular domains contain CD3z and co-stimulatory
domains, which together mimic the canonical first and second
signals to induce T cell activation. Upon encountering target
tumor cells, CAR binds with TAA and induces the activation of
CD3z and co-stimulatory signals, followed by triggering of
downstream phosphorylation cascades, which then activate T
cells to proliferate and elicit effector functions such as
cytotoxicity and cytokine secretion.5–7 The cytotoxicity of
CAR-T cells depends on the secretion of perforin and granzyme
and the expression of Fas/Fas ligand, which can directly lyse
target cells or mediate apoptosis. IFN-g, which can upregulate
MHC expression by tumor cells, also drives the polarization of
M1 macrophages. Secretion of the lymphocyte growth factor IL-
2 supports the robust proliferation of CAR-T cells, whereas GM-
CSF promotes the activation and expansion of myeloid cells to
induce systemic immune responses.8 The first-generation CAR-T
cells utilize only CD3z to activate T cells without incorporating a
co-stimulatory domain, resulting in poor in vivo antitumor
efficacy of these cells. The second-generation CAR-T cells, which
generally utilize CD28 or 4-1BB endoplasmic domains as a co-
stimulatory signal, have demonstrated remarkable efficacies in
patients with leukemia.9,10 Furthermore, the third-generation
CAR-T cells incorporated with another co-stimulatory domain
together with CD28 or 4-1BB, such as ICOS, CD40, OX40,
TLR2, and DAP10, have been reported and functionally
evaluated in preclinical models or clinical trials.11–14
2. DELIVERY OF CAR VECTORS INTO T CELLS

A typical technical strategy formanufacturing autologousCAR-
T cells with viral vectors primarily includes the following steps:
enrichment of PBMCs from peripheral blood by apheresis,
magnetic isolation of T cells, activation of T cells, viral
transduction, expansion, and harvesting and freezing of cells.15–
17 Although the reliability of g-retrovirus and lentivirus has been
extensively confirmed, novel gene delivery approaches are still
being developed to reduce the possibility of oncogenic mutations
caused by stochastic viral integration, enhance the efficiency of
large gene transfer, and simplify the manufacturing processes.
Currently, the most commonly used gene delivery approach for

CAR-T cell manufacture is the replication of defective g-retrovi-
rus and lentivirus mediated by gene integration, although some
disadvantages are associated with this approach. First, both these
viruses are produced by the transient transfection of virus-
encoding plasmids into packaging cell lines; theoretically,
replication-competitive retro/lentivirus (RCR/RCL) could be
generated by the recombination of genes encoding the viral
genome and structural components.18,19 Therefore, the current
viral packaging system uses three to four plasmids to separately
encode these components. However, this requires the preparation
of large amounts of plasmids, which is labor-intensive.
Moreover, because of the instability of the virus and its short
half-life period, the harvested viral supernatant must be quickly
used or cryopreserved.15,20 Furthermore, impurities such as
plasmid DNA and nucleic acids and proteins released by
packaging cells must be detected and removed, which drastically
increases process complexity and economic cost.20,21
www.blood-science.org
Another method to deliver CAR into T cells is the transposon/
transposase system, which uses electroporation to transfer
plasmids into cells and mediates CAR integration with its
transposase activities. Both sleeping beauty and PiggyBac (PB)
systems have been evaluated for CAR gene transfer.22–26

Compared with retroviruses and lentiviruses, this approach
can significantly reduce the complexity of the manufacturing
process and avoid the potential risks caused by RCR/RCL.
However, cell viability is more seriously affected by this approach
as both electroporation and exogenous plasmids could act as
inducers of cell death. Thus, electroporation of mRNA encoding
the CAR into the cytoplasm of T cells has been demonstrated to
increase cell viability and reduce the genotoxicity and side effects
caused by constitutive CAR expression.27,28 Clinical trials of
mesothelin-specific CAR-T cells based on this strategy are
ongoing (NCT01355965). More recently, the CRISPR-CAS9
gene editing system has been employed for CAR gene transfer.
This approach allows the integration of the CAR gene into
specific sites, such as the TCR a constant (TRAC) locus29; thus
avoiding the generation of oncogenic mutations potentially
caused by stochastic integration. Meanwhile, the CRISPR-CAS9
system has also been used to generate universal CAR-T cells. The
TCR and b-2-microgloblin coding genes are disrupted in these
cells to compromise graft-versus-host responses and prevent cells
from being attacked by host T cells in allogenic situations.30–32
3. MOUSE MODELS FOR EVALUATING CAR-T
CELLS

In general, studies evaluating the antitumor activities of CAR-T
cells use both in vitro cell culture-based assays and in vivo tumor-
bearing mouse models. In vitro assays are used to assess certain
aspects or functions, such as cytokine secretion, deregulation,
and cytotoxicity, as well as proliferation upon target cell
stimulation. These assays can indicate the recognition capability
of CAR but are not as helpful for evaluating efficacy and
predicting the patient’s response. The tumor-bearing mouse
models are at least able to provide a physiological or pathological
environment that is similar to the human body to a certain degree.
To date, mouse models used for evaluating the efficacy of CAR-T
cells can be classified into four types: syngeneic, transgenic,
xenograft, and humanized models.

3.1. Syngeneic Models
Syngeneic mouse models typically use immunocompetent mice

and murine tumors and T cells. The advantage of using these
models is that the composition and the functions of immune
system in these models are normal. Because CAR-T cells can
trigger systemic immune responses that involve multiple types of
immune cells to mediate antitumor activities and adverse effects,
such as CRS and neurotoxicity, syngeneic mouse models are
extremely useful to study the interaction between CAR-T cells
and other host immune cells, such as macrophages and myeloid-
derived suppressor cells (MDSC), and analyze the synergy
between CAR-T cells and other immunostimulating drugs.33–35

However, considering the subjective differences in mouse and
human biology and the differences in target antigens and CAR
sequences, these models cannot model human CAR-T cells
targeting human cancer.

3.2. Transgenic Models
Given that syngeneic mouse models do not express human

TAAs, transgenic human TAA-expressing immunocompetent
149

http://www.blood-science.org


Table 1

Target antigens of CAR T-cells in the published clinical trials

Diseases References

CD19 B-ALL, CLL, NHL, MM 46–56

CD22 B-ALL 57

CD33 AML 58

BCMA MM 59,60

NKG2D AML,MM 61

CD30 Hodgkin lymphoma 62,63

Kappa light chains NHL,CLL,MM 64

LeY AML 65

CAIX RCC 66

CEA Metastatic gastrointestinal cancers 67,68

FRa Ovarian cancer 69

MSLN PDAC, MPM 27,28

HER2 GBM, sarcoma, biliary tract cancer, pancreatic cancer 70–72

GD2 Melanoma, GBM 73,74

IL13Ra2 GBM, melanoma 75

C-MET Breast cancer 76

PSMA Prostaste cancer 77

CEACAM5 CEACAM5+ malignancy 78

EGFR Biliary tract cancer 79

EGFRvIII GBM 80

CD133 Cholangiocarcinoma 81,82

MUC1 Seminal vesicle cancer 83

CLL=chronic lymphocytic leukaemia; GBM=glioblastoma; MPM=malignant pleural mesothelioma;
NHL=non-Hodgkin lymphoma; PDAC=pancreatic ductal adenocarcinoma; RCC= renal cell
carcinoma.
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mice have been developed. In this model, CAR-T cells are
produced by modifying murine T cells with human extracellular
domains and murine intracellular domains. This model can
reflect the off-target effect of CAR-T cells that may recognize
TAA expression in normal tissues. Furthermore, transplantation
of murine cancer cell lines that stably express human TAAs in this
model enables the recognition of humanTAA by human ScFv and
induces systemic immune responses elicited by mouse immune
cells.36–38

3.3. Xenograft Models
The successful construction of severe combined immunode-

ficient mice (SCID mice) that possess defects in the development
of T and B cells allows xenotransplantation of human tissues and
cells, including human cancer cell lines, tumor tissues of patient-
derived xenografts, and immune cells. In recent decades, SCID
mice have been continuously upgraded to generate NOD-SCID
and NOD-SCID IL2Rg�/� mice. The former carries a defect in
the innate immune system, and the latter was introduced with an
IL-2 receptor g mutation to completely block its lymphocyte
development, including NK cells. This genetic modification
drastically enhances the efficiency for the transplantation of
human xenografts.39,40 Application of these mouse models
enables the functional evaluation of human CAR-T cells against
human cancer, and they have also been recognized as a common
platform for the development of CAR-T cells targeting novel
target antigens or disease types.
However, despite the advantages of xenograft mouse models,

there are certain drawbacks. First, these models have a
compromised immune system, owing to which they cannot
model the interplays and crosstalk of CAR-T cells between other
host immune cells.41 In addition, the native TCR expressed by
human T cells can recognize murine xeno-antigen-MHC
complexes, thereby leading to hyperactivation of these infused
T cells and finally the induction of xenogeneic graft-versus-host
disease (xeno GVHD) in these mice.42,43 Because of this
xenoactivation, the growth kinetics and tissue distribution of
infused CAR-T cells in these mice may not be able to simulate that
of human conditions, and the lethality of xeno GVHD can
interfere in cancer, resulting in death, thereby leading to an
inaccurate evaluation of efficacy.

3.4. Humanized Models
To construct human immune system in the immunodeficient

mice, the NOD-SCID IL2Rg�/� mice can be transplanted with
human CD34-positive hematopoietic stem and progenitor cells
(HSPCs) to reconstitute human lymphoid and myeloid cells in
these mice.43 Human cancer cells can be subsequently trans-
planted into these mice after successful reconstitution. CAR-T
cells produced from the same donor ofHSPCs (e.g., isolating both
T cells andHSPCs from a cord blood sample) can be administered
to these mice.41,44 Moreover, the construction of a BLT mouse
model (co-transplantation with human bone marrow, fetal liver,
and thymus in immunodeficient mice) can better mimic normal
human T cell development and selection processes in the
thymus41 and avoid the development of xeno GVHD. It has
been reported that the reconstitution rate of human myeloid cells
in CD34+ HSPC-transplanted mice is much lower than that
under normal conditions, and the maturation of these cells is
hindered because of the lack of several types of human cytokines,
including stem cell factor, GM-CSF, andM-CSF. Certain types of
myeloid cells, such as macrophages, can be activated by CAR-T
cells and play important roles in systemic immune responses.
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Therefore, human cytokine transgenic immunodeficient mice
were developed to facilitate the reconstitution and differentiation
of myeloid cells from HSPCs. This model has been used to mimic
CRS caused by CD19-specific CAR-T cell therapy.45
4. CLINICAL APPLICATIONS AND HURDLES OF
CAR-T CELL THERAPY

Table 1 summarized the information regarding the target
antigens and disease types from the published results of clinical
trials of CAR-T cell therapies. More importantly, we will discuss
the current status and hurdles of CAR-T cell therapies for
both hematological and solid malignancies reflected by the
current clinical results, and summarize those findings from pre-
clinical studies which aim to improve the performance of CAR-T
cells.

4.1. Acute Lymphoblastic Leukemia
CD19-specific CAR-T cells containing either CD28 or 4-1BB

co-stimulatory domain have shown interesting clinical outcomes
in R/R B-cell acute lymphoblastic leukemia (B-ALL), generally
with complete remission rates of >70%. Patients typically
received a preconditioning regimen comprising cyclophospha-
mide and fludarabine to deplete lymphocytes and reduce the
leukemia burden before CAR-T infusion to induce better
expansion and persistence of CAR-T cells. CRS and neurotoxici-
ty were the major life-threatening adverse effects caused by CAR-
T cell-triggered immune responses.53,84,85 Administration of
tocilizumab, an IL-6R antagonistic mAb, has been widely used to
alleviate CRS. Moreover, a safe and potent anti-CD19 CAR-T
cell therapy was reported recently, as indicated by the fact that no
CRS or neurological events were observed and the CR rate
remained at >50%.86
www.blood-science.org
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However, despite the remarkable CR rate, up to 50% of
CAR19 T cell-treated patients suffered from leukemia relapse
within 1 year after therapy and were generally resistant to the
secondary infusion of the same CAR-T cell product. In some
patients, relapse occurred because of the antigen loss of CD19,
and the subsequent infusion of CD22 CAR-T cells was able to
elicit immune responses in these cases.57 Dual-antigen targeting
CAR-T cells may also be helpful in the prevention of antigen loss
caused by leukemia relapse.87

Nevertheless, the relapsed tumor cells retain CD19 expression
in the majority of patients with relapse, and the mechanisms
underlying these relapses remain elusive. It is speculated that
CAR molecules are immunogenic and can induce host immune
responses, which canmediate elimination of infused CAR-T cells.
In fact, Turtle et al found that host anti-CAR immune responses
are mediated by CD8 T cells in some patients.88 The application
of humanized ScFv may enhance CAR-T cell persistency and
reduce the relapse rate. Vaccination has been reported to improve
the persistence of CD19 CAR-T cells in patients; however, the
relapse rate remains high.89 Furthermore, clinical trials using 4-
1BB co-stimulated CAR-T cells have reported better duration of
CAR-T cells compared with that of CD28. It has also been
suggested that 4-1BB induces T cell exhaustion to a lower extent
compared with induced by CD28, and this effect contributes to
superior T cell persistency.90 However, the choice between CD28
and 4-1BB remains controversial, and a recent study demon-
strated better efficacy of CD28-calibrated CAR-T cells.91

Moreover, Ruella et al reported that the transduction of single
leukemia cells induced resistance to CAR-T cell therapy.92 More
recently, Hamieh et al found that trogocytosis, the process of
antigen transfer from target cells to the surface of CAR-T cells,
can induce fratricide and exhaustion of CAR-T cells and mediate
tumor escape93; their findings further indicate the complexity and
the unknown mechanisms underlying leukemia relapses.

4.2. Acute Myeloid Leukemia
Numerous clinical studies aimed at reproducing the success of

CD19-specific CAR-T cells in BALL, CD33, CD123, NKG2D,
and Lewis Y-specific CAR-T cells have been reported thus far.
Although responses were observed for CD33 and CD123 CAR-T
cell therapies, the myeloablative effect caused by these CAR-T
cells has hindered their application and the impact prognosis in
patients.94–96 In contrast, NKG2D chimeric receptor T cells and
Lewis Y-specific CAR-T cells exhibited no significant toxicity but
limited responses.61 In a recent preclinical study, Kim et al
developed a novel technology with genetic inactivation of CD33
in hematopoietic stem cells to enable the application of CAR-T
cell therapy for the treatment of AML.97 Targets that are more
specific are urgently required to be confirmed to elicit substantial
responses with acceptable adverse effects for patients with AML.
CLL1, FLT3-ITD, CD44v6, CD7, and folate receptor b are
targets that have already been evaluated in preclinical stages, and
their clinical outcomes are worth looking into.96,98

4.3. Lymphoma
The response rate of CD19-specific CAR-T cells in patients

with lymphoma (primarily DLBCL and transformed follicular
lymphoma, t-FL) is generally in the range of 50% to 80%, and the
CR rate is 40% to 60%.A high relapse rate (>60%) has also been
observed with long-term follow-up.52,99–101 Except for the
abovementioned mechanisms responsible for leukemia relapse,
lymphoma tissue microenvironment can suppress the activity of
CAR-T cells through the expression of PD-L1 or through the
www.blood-science.org
recruitment of tumor-associated macrophages to mediate relapse.
Co-targeting these targets with CAR-T cells may be effective to
overcome this immune suppression.102,103

4.4. Multiple Myeloma
Multiple myelomais plasma cell-derived cancer and has the

ability to produce immunoglobulin, which results in tissue
damage. Despite significant improvement in the prognosis of
patients through targeted therapies, including proteasome
inhibitors, epigenetic modulators, immune-stimulating drugs,
as well as monoclonal antibodies, MM remains largely incurable.
B-cell maturation antigen (BCMA), a membrane receptor
expressed during B-cell differentiation into plasma cells, is highly
specific for MM cancer cells.48,60,104,105 Furthermore, bb2121, a
BCMA CAR-T-cell therapy that targets R/R MM, was reported
to achieve an 85% objective response rate and a 45% CR rate
according to a recent publication,59 thereby demonstrated the
feasibility of its wide clinical application.

4.5. Solid Tumors
In contrast to the surprising performance of CAR-T cell

therapy in hematological malignancies, its clinical application for
the treatment of solid cancers remains challenging. Recently
published phase I trials have demonstrated that rare CR can be
induced in patients with solid cancers. The tested disease types,
efficacies, toxicity, and the available targets have been intensively
reviewed.106–114 It was suggested that factors such as the
immunosuppressive tumor microenvironment, poor T cell
infiltration and persistency, tumor antigen heterogeneity, and
off-target toxicities are major obstructions that limit the efficacy
of CAR-T cells against solid cancers. To overcome these
impediments, several researchers have attempted to enhance
the effector functions, persistency, and alleviation of T cell
exhaustion through further modification or optimization of CAR
with other signaling domains, such as 4-1BB ligand,115 CD27,116

CD40 and its ligand,117–120 OX-40,11 ICOS,12,121,122 TLR2,13

DAP10,14 JAK-STAT,123 and cytokines, including IL-7,124,125

IL-12,126,127 IL-15,128–130 and IL-18.131,132 Notably, Adachi
et al reported a significant synergy between the cytokine IL-7 and
the chemokine CCL19 in enhancing CAR-T cell infiltration into
the tumor tissue.133

The tumor microenvironment generally comprises immuno-
suppressive cells such as MDSC and immunosuppressive
molecules such as PD-L1 and TGF-b, which dampen T cell
responses. Targeting MDSC by administering all-trans-retinoic
acid (ATRA),134 poly I:C,135 or infusing chimeric NKG2D
receptor NK cells136 has demonstrated synergistic activities with
CAR-T cell therapies. Meanwhile, targeting immunosuppressive
molecules such as PD-1/PD-L1 and TGF-breportedly improved
the potency of CAR-T cells against certain solid cancers.31,137–141

A recent study also revealed that the transcription factor NR4A is
a protein that limits CAR-T cell functions, and its inhibition
improves the potency of CAR-T cells.142 Furthermore, oncolytic
viruses (OV) have been suggested to stimulate systemic immune
responses and destroy solid tumor microenvironments; therefore,
combining the therapeutic strategy of OVs with CAR-T cells
could have significant potential in treating solid cancers.143–145

It has been demonstrated that primary cancer cells possess
considerable genetic and phenotypic heterogeneities146 and can
thus escape from the attack of CAR-T cells against single
targets.87 Induction of host immune responses by CAR-T cells
may help prevent this.34,147–149 In addition, dual or multispecific
CAR-T cells may be used as a strategy to overcome antigen
151
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escape. However, the off-target effect may also be amplified
because of the potential expression of individual antigens on
normal tissues.81 A well-designed study conducted by Roybal
et al described a precision novel design of tumor recognition by T
cells with combinatorial antigen-sensing circuits,150 which may
prevent the induction of off-target responses.
5. CONCLUSIONS AND PERSPECTIVES

The success of CAR-T cell therapy has been inspiring in the
field of cancer immunology, especially in treating B-cell-derived
hematological malignancies. However, the manufacturing pro-
cesses, including the CAR delivery method, need to be further
improved. Animal models are being developed and upgraded to
better mimic the human body and human cancers. Further
research must focus on challenges such as the relapse of B-cell
leukemia/lymphoma/MM, lack of available targets for AML, and
the low efficacies in treating solid cancers. Adverse effects,
including CRS and neurotoxicity, should be considered, better
modeled, and rationally intervened, while preserving normal
antitumor activities. Participation and cooperation of both
researchers and physicians could contribute to the step-by-step
resolution of these challenges to improve prognosis for a wide
range of patients with cancer.
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