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Application of fluorescence 
spectroscopy using classical right 
angle technique in white wines 
classification
Ramona-Crina Suciu1, Liviu Zarbo1, Francois Guyon2 & Dana Alina Magdas1*

The potential of excitation - emission matrices (EEM) measurements using classical right angle 
technique, in conjunction with chemometrics, was prospected for white wine classification with 
respect to their cultivar and geographical origin. For this purpose, wines belonging to four cultivars 
(Chardonnay, Pinot Gris, Riesling and Sauvignon) from two different countries (Romania and France) 
were investigated. The excitation – emission matrices were statistically processed using parallel factor 
analysis (PARAFAC). According to Soft Independent Modeling Classification Analogy (SIMCA) model, 
for cultivar differentiation, only 3 out of 107 wine samples (1 Pinot Gris (Romania); 1 Riesling (Romania) 
and 1 Sauvignon (France)) were misclassified while for geographical origin assessment, only 2 wines 
(1 Romania and 1 France) were misclassified. This study  demonstrates the potential of excitation 
– emission fluorescence matrices spectroscopy using the classical right angle technique in wine 
authentication, without sample dilution.

The development of new reliable analytical methods, able to detect different types of food and beverages frauds, 
represents nowadays, a constant preoccupation of research and control laboratories. From all investigated matri-
ces, wine represents one of the most studied commodities. Beside the already acknowledged methods for wine 
control, new analytical approaches (IR, Raman/SERS, 1H-NMR, fluorescence spectroscopies) in conjunction with 
chemometrics, were successfully applied for wine classification1–5. One of the analytical techniques which present 
a high potential for wine cultivar discrimination is represented by the three – dimensional fluorescence spec-
troscopy, which is a fast, noninvasive, sensitive and affordable technique, involving successive acquisitions of 
excitation or emission spectra at multiple emission or excitation wavelengths. The advantage of this analytical 
technique is that all the information regarding the fluorescence characteristics can be entirely acquired by chang-
ing excitation and emission wavelengths simultaneously. The resulting emission – excitation data matrix (EEM) 
provides a total intensity profile of the sample over the range of scanned excitation and emission wavelength.

During the last years, 3-way fluorescence spectroscopy, using front-face technique, combined with the parallel 
factor analysis (PARAFAC)6–8, was successfully applied for the discrimination of different wine types. PARAFAC 
decomposes the three – dimensional signal into a fixed number of statistical components, with specific contribu-
tions, called scores, describing more specifically the variability of all analyzed EEMs9. The advantage of PARAFAC 
over other statistical methods such as principal component analysis (PCA) is the unicity of the decomposition. 
The wine fluorescence spectra can be further analyzed using principal component analysis (PCA). While the 
PCA components do not necessarily have a clear physical meaning, they can be  efficiently used to understand 
and classify the wine data. Once PCA is performed, one can progress further by modelling the data using Soft 
Independent Modeling of Class Analogy (SIMCA)10. After a SIMCA model is obtained for a wine cultivar, geo-
graphic region, etc., the distance of a new sample data to the model is used to determine if the wine belongs to 
that class or not11.

The effectiveness application potential of this analytical technique in wine classification stems from the fact 
that the types and amounts of fluorescence molecules in wines (i.e. polyphenols, vitamins and amino acids)12,13 
depend on the cultivar and grapes maturity but also on the wine technology.
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The main objective of this paper is to prospect the potential of excitation – emission matrix (EEM) fluo-
rescence spectroscopy, in conjunction with Parallel Factor Analysis (PARAFAC), principal component analysis 
(PCA) and Soft Independent Modeling of Class Analogy (SIMCA) for the discrimination, with respect to cultivar 
and geographical origin, of a wine set containing samples with very distinct geographical origins coming from 
Romanian and France. In this regard, a number of 107 white wine samples, from four cultivars (Chardonnay, 
Pinot Gris, Riesling, Sauvignon Blanc) were considered for this study. Our choice of the methodology is driven 
by the need to have an easy, affordable and accessible way to discriminate white wines that typical food control 
labs can employ.

Materials and Methods
Sample description.  The sample set, involved in this study, was formed by 107 wines, produced in two 
countries, Romania and France. Thus, a number of 65 wines originating from Romanian (Ro) vineyards, from 
five consecutive vintages (2012–15; 2013–13; 2014–15; 2015–11 and 2016–11) and belonging to four cultivars 
Chardonnay (13), Pinot Gris (9), Riesling (20) and Sauvignon Blanc (23) were chosen. For comparison, 42 wine 
samples from France (Fr), from two cultivars, Chardonnay (16) and Sauvignon Blanc (26) produced in three 
vintages (2012–14; 2013–17 and 2017–11) were also involved in this study.

Fluorescence measurements.  The photoluminescence measurements were carried out using an 
ABLE&Jasco V 6500 spectrofluorometer with a xenon lamp of 150 W. 100 μL wine samples were placed in a micro 
quartz cell (Starna, 3 × 3 mm, vol.: 300 μL) and the spectra were recorded at ambient temperature. The slits of the 
excitation and emission monochromators were both set at 5 nm. The number of scans was established, after same 
experimental measurement, at one, in order to avoid sample alteration by UV excitation beam. At the beginning 
of each day, the blank is measured and its value is valid for subsequent sample measurements. The acquisition 
speed was set at 500 nm/min, the response at 1 s, and the data pitch at 1 nm as a compromising solution between 
noise in the spectra and collection time. The excitation and emission wavelengths range were 250–500 nm and 
275–600 nm, respectively, with wavelength increments of 5 nm. The landscapes were registered as multiple emis-
sion spectra. The wavelength system was calibrated every day by means of the Raman peak to account for a 
possible wavelength drift of the instrument. The spectrofluorometer used a conventional right – angle optical 
setup. Total scanning time per sample was approximately 30 min. The measurements were performed within a 
short period of time (10 days) to minimize the effect of instrumental fluctuation (e. g. lamp intensity) in a similar 
manner which was previously reported by other authors5.

Chemometrics methods and software.  Principal component analysis (PCA) was performed to make a 
descriptive analysis of the spectral data and Soft Independent Modeling of Class Analogy (SIMCA) was applied 
to classify this data.

EEM data analysis was performed by using PLS_Toolbox 7.9.5, demo version (Eigenvector Research Inc., 
Wenatchee, WA) working under Matlab version 7.1.0 (the Mathworks Inc., Natick, MA). Before analysis, EEMs 
data were corrected for Rayleigh and Raman scattering by using FLUCUT function, included in PLS_Toolbox. In 
the development of models for wine samples, according to cultivar and geographical origin, a free trial version of 
SIMCA 13 (Umetrics Suite of Data Analytics Solutions, Umea, Sweden) was used.

Parallel factor analysis (PARAFAC).  PARAllel FACtor analysis of the corrected EEM data was performed, in 
order to extract the relevant information. To model the set of fluorescence data, the EEMs of the 107 samples were 
arranged in a three-dimensional array X of size × × = × ×I J K 107 51 66, where I is the number of samples, 
J is the number of emission wavelengths, and K is the number of excitation wavelengths. The PARAFAC decom-
position can be written as:

∑= +
=

x a b c e
(1)

ijk
f

F

if jf kf ijk
1

where F is the number of PARAFAC components. The matrix A with matrix elements aif is called score, while the 
matrices B and C are the emission and the excitation loadings, respectively.

In the simplest model, the fluorescence data can be seen as the sum of the signals coming from a number of 
non-interacting fluorophores. The PARAFAC decomposition is very similar to this sum, and includes all the 
deviations from this simple model in the array of residuals E of elements eijk. The PARAFAC decomposition is 
made such that the norm of E is minimal. Within this model, the score matrix element aif can be interpreted as the 
concentration of the fluorophores f in the sample i. The loading matrix element bif is a scaled estimate of the emis-
sion spectrum of the f-th fluorophore at the j-th frequencey, while the loading matrix element ckf is proportional 
to the absorption coefficient of the fluorophore at the k-th excitation frequency5,14. A non-negativity restriction 
must be imposed since concentration and emission/excitation coefficients cannot be negative. Percentage of core 
consistency were calculated in all cases, using the CORe CONsistency DIAgnotic test (CONCORDIA) in order to 
have an initial idea about the optimal number of components5.

Principal component analysis (PCA).  The multivariate statistical method used for wines classification are prin-
cipal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). For both methods 
standardization is performed by grouping data by each grape cultivar: Chardonnay (C), Pinot Gris (PG), Riesling 
Italian (R) and Sauvignon Blanc (S) and wine geographical origin: Romania (Ro) and France (Fr).

To perform principal component analysis on fluorescence data, at a fixed excitation frequency, labeled k, 
we can form a two-dimensional I × J matrix X from the original I × J × K array X. The goal of PCA is to reduce 
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the size of the data matrix X by removing redundant data. To that end, we need to find a new set of axes in the 
J-dimensional frequency space and project the data onto them. The axes need to be chosen as the ones on which 
the data has maximum variance. It turns out that the unit vectors along this new set of axes are eigenvectors of the 
matrix XXT. Along these new axes, the data can be decomposed as15:

∑= +
=

′x t p e ,
(2)ij

r

R

ir jr ij
1

where R is the number of components, or the rank of the decomposition. The I-dimensional vectors tr represent 
the scores, or the coordinates of the samples in the new principal component space16. The loadings Pr represent 
the proportions, or weights by which the old variables enter into the principal component r. The prime symbol in 
Eq. (2) is for matrix transposition. The idea of PCA is to retain only the only the components that explain most of 
the variance in the sample data, so R is considerably smaller than J. The matrix E of components eij takes care of 
the errors in representing the data in terms of a few principal components.

Soft independent modeling of class analogy (SIMCA).  SIMCA method for pattern recognition and classifica-
tion was introduced10 as a tool for drug design. Subsequent research17–19 has improved upon the reliability and 
robustness of the method. SIMCA relies on PCA for data classification. Typically, from the score plots obtained 
after performing PCA on the data, one can already see the grouping of the samples. SIMCA is a method to model 
these groups of data, or classes. The SIMCA models are then used to determine if other samples belong or not to 
the classes.

For example, to classify wines according to cultivar, one selects a subset of data, called a training set, which 
contains subsets of wine samples of known cultivar. PCA is then independently performed on each subset of 
known cultivar. The subset of samples would fill a volume in the subspace spanned by the principal components. 
The shape of the surface enclosing this volume is sensitive to outliers, so the next step is to remove true outliers. 
This is done by comparing the distance of the sample to the principal component subspace to a critical distance s0 
specific to the class. Once this is done, a model exists for data corresponding to each wine cultivar. To determine 
if new data belongs to a given class, its distance to the class model is computed and compared to s0.

SIMCA is a method to classify data and is built around PCA. For example, if the cultivar is known for some of 
the wines, one forms a training set containing the fluorescence data for those wines. Each class of the training set 
contains the wine samples for a given cultivar. One performs PCA on a given class and then uses SIMCA to deter-
mine new elements and outliers of that class. SIMCA models are sensitive to fake outliers, i.e. samples belonging 
to a given class, but very far from other members of that class, and there are various methods to mitigate their 
effect on the models.

The main difference between PCA and SIMCA is the supervised classification. In the case of PCA classifica-
tion, a sample is spatially positioned with respect to its analytical data measure for each variable (i.e. fluorescence 
wavelength). This spatial organization of the samples is realized independently of the class of the sample. At some 
point, samples grouping (clouds) can be observed. These are the PCA classes. SIMCA is classifying the sample 
according to their class by searching among the samples’ analytical data some discriminant analogies among the 
classes. Thus, SIMCA is a supervised classification method. The mathematical model is assigning a correlation 
factor to each variable; as a result, a model can be used to predict to which class will an unknown sample belong. 
Each group is characterized by a centroid and the class distance within the group is a factor providing the power 
of the model for class discrimination. The larger this class distance, the better is the model.

Model validation can be achieved in two different ways. The first one is leave-one-out cross-validation 
(LOOCV). During the model elaboration, intermediate models are built after some samples are excluded. These 
samples are then classified using this intermediate model. Then, the excluded samples are re-integrated in the 
sample matrix and another set of samples is excluded. This operation is repeated for all the samples. When there 
are enough authentic samples, the second possibility is to split them into two batches, one for the model and one 
to test the model. In both validations, the result is a diagonal-only classification table only if the model discrimi-
nates the samples well enough.

In this work, the samples are the wines coming for Romania and France. The variables of the fluorescence data 
table are the fluorescence absorption and emission wavelengths, while the defined classes differentiate the samples 
by country and four cultivars (Chardonnay, Pinot Gris, Riesling, Sauvignon Blanc).

Results and Discussion
Three - dimensional fluorescence spectra of wines.  The typical EEM surface of each investigated wine 
cultivar is presented in Fig. 1. The shape of the EEM, obtained for each cultivar, shows a specific profile con-
taining several fluorophores, which allows the observation of several differentiations, with regard to the wine 
cultivar (Table 1). Because of the wide range of naturally occurring fluorescent compounds, that exists in a wine 
sample, the specific emission – excitation matrix represents an overlapped signal of the fluorophores individual 
contribution.

According to the spectra presented in Fig. 1a–d, there are differences in peaks/shoulders numbers among 
Romanian wine cultivars. Thus, wine cultivars are characterized by different number of peaks, as follows: 
Chardonnay - four (excitation/emission wavelengths: 280/365 nm, 295/415 nm: 305/430 nm and 355/430 nm); 
Pinot Gris - two (280/325 nm and 340/445 nm); Riesling - four (265/305 nm, 280/305 nm, 310/435 nm and 
350/450 nm) while Sauvignon - four (280/320 nm, 280/360 nm, 305/435 nm and 355/445 nm). Apparently, beside 
differentiation in terms of peak numbers and general spectra shape, that exists among investigated cultivars, the 
specific fingerprint of each variety could also be observed based on individual intensities of characteristic signals 
(Table 1).
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A comparison of Romanian wine samples (Chardonnay and Sauvignon), with their corresponding French 
sorts (Fig. 1a–f), revealed high similarities among their general shapes, suggesting that an evident cultivar finger-
print is present in EEM spectra. Moreover, the fluorescence profile of French wines (Fig. 1e,f), shown four main 

Figure 1.  Typical surface excitation – emission matrices for samples of class (a) Chardonnay - Ro, (b) Pinot 
Gris - Ro (c) Riesling - Ro, (d) Sauvignon - Ro, (e) Chardonnay - Fr and (f) Sauvignon – Fr.

Wine cultivar

Peaks location λ ex/λ em (nm) Fluorescence intensity (a. u.)

I II III IV I II III IV

Chardonnay 280/365 295/415 305/430 355/430 575 390 427 435

Chardonnay - Fr 280/360 295/420 300/420 360/445 375 217 215 300

Pinot Gris 280/325 340/445 — — 700 215 — —

Riesling 265/385 280/305 310/435 350/450 207 295 375 285

Sauvignon 280/310
280/370 305/435 355/445 — 285

335 188 200 —

Sauvignon - Fr 280/320
280/360 315/435 340/450 — 328

355 188 200 —

Table 1.  Fluorescence spectral characteristics by wine cultivar.
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signals, similar with their corresponding Romanian cultivars (Table 1). Despite this, it could be observed that the 
peak center of the maxima vary slightly among wines, shifts that will appear due to the natural existing differences 
among the samples, in terms of their general composition.

Nevertheless, by comparing the EEM wine spectra of samples originated from the two countries, a geographi-
cal influence, observed mainly in terms of signals relative intensities could also be intuited, making this technique 
a possible tool for geographical discrimination, as well.

Results of the chemometric approaches for cultivar differentiation.  To classify wines by their culti-
var, we have used three chemometric methods, parallel factor analysis (PARAFAC), principal component analysis 
(PCA) and SIMCA which builds its data models on the PCA results.

PARAFAC models were built in order to extract the characteristic excitation and emission profile of the main 
fluorophores characteristic to each wine cultivar. The optimum number of factors for each PARAFAC model was 
selected comparing the quality parameters of the model built for an increasing number of factors and the best 
models obtained were 2-factor PARAFAC models.

Factor 1 (red in Fig. 2a,b) has a maximum excitation at 280 nm for maximum emission at 350–360 nm. As 
previously reported in literature, the peaks in this region are characteristic to tryptofan, gallic and protocatechuic 
acids13,20–22. The pair of excitation/emission wavelengths corresponding to the maximum fluorescent intensity 
for the second component (blue in Fig. 2a,b) is 304–350/430–440 nm. According to the literature, the excitation/
emission wavelengths of this factor are characteristic to phenolic acids23 and phenolic aldehydes24–26. Phenolic 
compounds represent the best-known fluorescent molecules that are naturally present in wine and which are 
directly related to grape cultivar and wine aging26. The small shifts that appear in the characteristic excitation/
emission pairs of a certain wine compounds, from one sample to another, are due to the different vicinities of 
molecules, that conduct to a slightly different environment5.

PCA was carried on the emission spectra to investigate the samples grouping with respect to wine cultivar. A 
good classification using CORCONDIA was achieved using the first two or three PCs of the PCA performed on 
the emission spectra recorded at the excitation wavelengths at λex = 280 nm, which represent the best predictor 
for the phenolic contents in wine27 and emission spectra between 295–600 nm. For the fluorescence emission data 
collection, discrimination as function of wine cultivar was achieved.

Chardonnay cultivar (Fig. 2c) is characterized by three fluorescent components PC1, PC2 and PC3 which, 
explains the variability as follows: PC1 = 87,6%, PC2 = 7,51% and PC3 = 3,33%. First component PC1, comprised 
two main positive loadings located at 315 nm and 360 nm, respectively. The loading from 315 nm is characteristic, 
according to previously reported studies, to flavonoid class (catechin and epicatechin)28 while, the second loading 
from 360 nm, could represent overlapped signals coming from different wine constituents like: phenolic acids: 
gallic24, syringic acid25, phenolic aldehydes (2,5 Dihydroxybenzaldehyde)25 and amino acids (tryptofan)20. PC2 
is characterized by positive loadings at: 433 nm, and around 361 nm, attributed to overlapped signals of catechin 
and epitatechin25, gallic24 and protocatechuic25. Apart from this, were observed negative loadings for a band cen-
tered at 305 nm, representative for tyrosine7, indicating a negative relationship between these different classes of 
fluorescence molecules present in wines.

The last principal component PC3 is formed by two main loadings signals centered at 305 and 436nm29, which 
are typical bands for tyrosine and tyrosol30 and phenolic compounds of the type of chlorogenic acid, caffeic acid, 
coumarins and stilbenes, respectively31,32.

Pinot Gris cultivar (Fig. 2d) is defined by two components PC1 (83.37%) and PC2 (9.24%). The first compo-
nent (PC1) profile has a narrow maximum centered around 327 nm due to p-hydroxybenzoicacid33 and also a 
sharp emission maximum at 363 nm. The pair of excitation/emission wavelengths corresponding to the fluores-
cence intensity for PC2 is 280/317, associated with catechin and epicatechin28,33. For this second component a 
negative loading centered at 396 nm, typical for naturally fluorescent compounds present in wine, was obtained24.

Riesling cultivar (Fig. 2e) is characterized by three principal components that are defining its specific finger-
print in distinct total variance: PC1 (86.54%), PC2 (3.78%) and PC3 (4.68%). The 280/315 wavelength, charac-
teristic for flavonoid class (catechin and epicatechin28) and 280/365 nm which might come for overlapped signals 
from different phenolic acids25, represents the PC1. The pair excitation/emission maxima at 280/376 nm from the 
second component, PC2, originates from phenolic compounds such as gallic24 and/or syringic acid25. Finally, PC3 
(comprises two components the one from 280/303 nm, attributed to amino-acids (tyrosine and tyrosol)30, and the 
loading from 280/411 nm which could appear due to the presence of fluorescent cinnamic acids7.

For Sauvignon Blanc cultivar, the first component PC1 accounted for a percentage of 82.53% to its charac-
teristic pattern (Fig. 2f). This component has two pairs of excitation/emission wavelengths at 280/313 nm and 
280/358 nm being characteristic to flavonoid class (catechin and epicatechin)25,28. The spectral pattern associ-
ated with the PC2 and PC3 exhibited positive loadings at 380 nm, matches with stilbenes compounds such as 
trans-resveratrol34 and negative one at 303, characteristic for tyrosine7.

The obtained results after PCA statistical treatment, suggested the possibility to classify the sample set based 
on wine cultivar. Based on this assumption, SIMCA classification was performed, using three - dimensional flu-
orescence spectra of the entire wine set. SIMCA enables the sample classification into an already existing group, 
assigning new objects to the class to which they show the largest similarity.

For the cultivar discrimination of wine samples, the PCA classes, previously established for each wine sort: 
Chardonnay (C), Pinot Gris (PG), Riesling (R) and Sauvignion Blanc (SB) were used in the development of 
SIMCA model.

The achieved classifications, according to SIMCA model are shown in Fig. 3 and Table 2 (Supplementary). 
According to the SIMCA models, only 3 out of 107 Romanian and French wines were misclassified at a 95% 
confidence level. The misclassified samples belonged to both countries, as follows: 1 Pinot Gris (Romania); 1 
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Riesling (Romania) and 1 Sauvignon (France). A R-Square value of 0.985 was obtained for this this model while 
its capacity of prediction was situated around 98%.

By default, SIMCA 13 uses a leave-one-out cross validation method. In one round of cross validation, row 
data (observations) is left out of the model, then loading vectors without this data are calculated. Then column 
data (variables) is left out and scores are calculated. The data that was left out, is then predicted from the model. 
If the data predicted from the model is close enough to the original data, then the model is valid. These steps are 
performed for each row and column of the data, and at each of these cross-validation rounds, a prediction error is 
calculated by summing the squares of the differences between the original and predicted row (column) elements.

Figure 2.  PARAFAC fluorescent loadings for the two components of the non-negativity constrained PARAFAC 
model constructed on the basis of the fluorescent EEM of 107 wine samples and results of principal component 
analysis carried out with λex = 280 nm. The loadings of the first principal components (PC1 – PC2 or PC1 – 
PC3) as well as the corresponding explained variance (%) are shown. (a) excitation, (b) emission. factor 1 in red, 
factor 2 in blue. (c) Chardonnay, (d) Pinot Gris, (e) Riesling and (f) Sauvignon.
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Classification of wines with respect to geographical origin.  For the geographical differentiation of 
samples (Romania vs. France) it was obtained that the optimum number of factors, for each PARAFAC model 
(Fig. 4a,b) is 4.

After performing PCA, the best classification was achieved using emission spectra (290–600 nm) recorded 
at excitation wavelength 280 nm. The fluorescence spectra showed different shapes, given mainly by the distinct 
bands intensities of each individual compounds as well as, small signals shifts due to the particular compositions 
of wine samples.

Figure 3.  Nearest classes for SIMCA submodels.

Figure 4.  PARAFAC fluorescent loadings for the four components of non-negativity contained PARAFAC 
model constructed on the basis of the fluorescent EEM and results of principal component analysis carried out 
with λex = 280 nm. (a) excitation. (b) emission, factor 1 in red, factor 2 in blue, (c) Romanian and (d) French 
wine.
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Romanian wines (Fig. 4c) are characterized by four principal components PC1, PC2, PC3 and PC4, that are defin-
ing their specific fingerprint in a distinct variance (PC1 = 85.81%, PC2 = 6.49%, PC3 = 4.15% and PC4 = 2.75%). 
First component PC1 is formed by two main positive loadings signals centered at 310 nm and 365 nm which are typ-
ical bands for catechin, epicatechin25,34 and gallic acid24. PC2 is characterized by a negative loading at 305 nm, which 
is a typical signal of tyrosine and tyrosol7 and also by a positive loading at 380 nm, representative for stilbenes com-
pounds such as trans-resveratrol34. PC3 is characterized by positive loadings at: 303 nm, a typical signal of tyrosine 
and tyrosol30, 420 nm attributed to fluorescent cinnamic acids7, and as negative loading, a band centered at 340 nm.
The last principal component PC4 is formed by negative loadings at 303 nm associated with tyrosine and tyrosol30, 
and another one around 430 nm. Apart of these, another pair 280/345 nm, responsible for amino acids was obtained.

French wines (Fig. 4d) are categorized by four fluorescent components PC1, PC2, PC3 and PC4, that are 
defining their specific fingerprint in distinct total variance: PC1 = 87.09%, PC2 = 9.33%, PC3 = 1.47% and 
PC4 = 1.09%.

The first component (PC1) is a broad peak centered at 325 nm with a shoulder at 353 nm, which is due to 
overlapped signals of p-hydroxybenzoic acid33, catechin, epicatechin33. The profile loadings for PC2 shown a 
negative loading at 300 nm matching with tyrosine and tyrosol7, and two positives at 360 nm which agrees with 
the presence of gallic24, syringic acid25, and a broad emission from 400–500 nm. The later loading matched with 
individual molecules, such as: gentisic acid, flavonols (quercetin, quercitrin), vitamins i.e. riboflavin, or more 
condensed structures involving quinone moieties12,13,23,29,35.

The component PC3 matched well with the catechin and epicatechin (310 nm)34, anthocyanins (370 nm) and 
gentisic acid, flavonols like quercetin, quercitrin, vitamins, quinone (445 nm)12,13,23,29,35.

The fourth principal component analysis shows a negative loading at 300 nm typical signal of tyrosine and 
tyrosol30 and two positive loadings at 360 and 445 nm.

SIMCA models were developed using previously established PCA classes for each wine sort: Romanian 
(Ro) and France (Fr). According to the SIMCA models (Fig. 5 and Table 3-Supplementary), only 2 out of 107 
Romanian and France wines were misclassified at a 99% confidence level. The 2 misclassified samples belonged 
to both countries: 1 Romania and 1 France. For this model the R-Square value was 0.925 and the capacity of pre-
diction around 96%.

Conclusion
A data set of 107 wines belonging to four cultivars (Chardonnay, Pinot Gris, Riesling and Sauvignon) from two 
different countries (Romania and France) was evaluated by applying excitation – emission fluorescence matrices 
spectroscopy in conjunction with chemometrics, in order to classify the samples with respect to their cultivar and 
geographical origin.

A simple visual characterization of EEMs typical surface, pointed out specific profiles, containing several 
fluorophores, characteristic to each cultivar, with peak maxima that slightly vary among wines. Moreover, the 
comparison of Romanian wine samples (Chardonnay and Sauvignon), with their corresponding French sorts 
indicated the presence of a cultivar fingerprint in EEM spectra. The geographical influence, observed in EEM 
wine spectra, is mainly emphasized through differences in relative intensities of the characteristic signals.

PARAFAC gave information about the potential fluorescent compounds present in each wine, allowing their 
differentiation according to their cultivar and geographical origin. A good classification was achieved using the 
first three PCs of the PCA for the cultivar and the four PCs of the PCA for the geographical discrimination, per-
formed on the emission spectra recorded at the excitation wavelengths at λex = 280 nm. The developed SIMCA 
models proved a higher capacity of prediction: 98% for the simultaneous cultivar classification and 96% for the 
geographical discrimination.

Received: 14 June 2019; Accepted: 14 November 2019;
Published: xx xx xxxx

Figure 5.  Nearest classes for SIMCA submodels.
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