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In this work, the potential of a novel hydroxyapatite decorated with carbon

nanotube composite (CNT-HAP) for fluoride removal was investigated. The synthesized

CNT-HAP composite was systematically characterized by X-ray diffraction(XRD),

Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM)

and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to

investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has

a maximum adsorption capacity of 11.05 mg·g−1 for fluoride, and the isothermal

adsorption data were fitted by the Freundlich model to calculate the thermodynamic

parameters. Thermodynamic analysis implies that the adsorption of fluoride on

CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows

pseudo-second-order model. The effects of solution pH, co-existing anions and reaction

temperature on defluorination efficiency were examined to optimize the operation

conditions for fluoride adsorption. It is found that the optimized pH-value for fluoride

removal by CNT-HAP composite is 6. In addition, among five common anions studied in

this work, the presence of HCO−

3 and PO3−
4 could considerably affect the fluoride removal

by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal

by CNT-HAP is analyzed, and an anion exchange process is proposed.

Keywords: fluoride removal, hydroxyapatite decorated with carbon nanotube (CNT-HAP), ion-exchanged, hydroxyl

anions, removal mechanism

INTRODUCTION

Fluoride is an essential element for both human and animals. However, it may be useful or harmful
to human bodies, depending on its concentration in drinking water and total ingested amount
(Chen et al., 2012; Sharma et al., 2017). It is recommended by World Health Organization (WHO)
that the most appropriate concentration of fluoride in drinking water is 0.5–1.5 mg·L−1, exceeding
which people could have dental and / or skeletal fluorosis such as softening of bones, mottling
of teeth and neurological damage (Liu et al., 2015; Zhang L. E. et al., 2017). Unfortunately, the
Unfortunately, the concentration of fluoride has been found to be as high as 30 mg·L−1 in the
drinking water of about 25 countries across the world, including India, Mexico and China (Amini
et al., 2008). And the fluoride pollution in drinking water is even worse and worse. (Jagtap et al.,
2012; Roy and Dass, 2013). Therefore, it is necessary to remove the excess fluoride from drinking
water.
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Currently, there are several methods available for
defluorination, such as chemical precipitation (Xin et al.,
2016; Huang et al., 2017), membrane filtration (Zhang J.
et al., 2017), electrolysis (Schaefer et al., 2017), ion exchange
(Popat et al., 1994; Jamhour, 2005), and adsorption (Rehman
et al., 2015; Lin et al., 2016). Among the above-mentioned
methods, adsorption is a most attractive option owning to its
low cost, high efficiency, and good flexibility (Mohan et al.,
2017). Hydroxyapatite [Ca10(PO4)6(OH)2, HAP] is a natural
mineral with abundance in bone and skeletal tissues. It has
been demonstrated to be a promising candidate adsorbent for
fluoride removal because of its easy synthesis, high recyclability,
and good biocompatibility (Beladi et al., 2017; Lei et al., 2017).
Jiménez-Reyes. et al. reported that the defluorination capacity of
HAP was 4.7mg of fluoride/g of adsorbent in the pH range of
5.0–7.3 (Jiménez-Reyes and Solache-Ríos, 2010). Sundaram et al.
prepared the HAP / chitosan nanocomposite for fluoride removal
with a defluorination capacity of 1.56 mg·g−1 (Gao et al., 2009).
There are two factors contributing to the removal of fluoride by
HAP: ion exchange and electrostatic interaction (He et al., 2015).
In this process, fluorapatite [Ca5(PO4)3F] or mixed fluorinated
HAP [Ca5(PO4)3(OH-F)] which are thermodynamically more
stable are formed.

However, the practical application of HAP in fluoride removal
from drinking water is still limited by its low defluorination
capacity. It has been well established that adsorbents with
high surface areas and active sites density can be fabricated
by tailoring the morphology and pore size (Chen et al.,
2016). Moreover, adsorbents with hierarchically meso- and
/or macroporous networks enable the fast diffusion of guest
molecules in the channels, thus facilitating their access to active
sites. Among various kinds of materials, carbon nanotubes
(CNT) are particularly attractive because they not only have the
characteristics mentioned above, but also can act as adsorbents
for fluoride removal. For example, Li et al. (2003) reported use of
aligned CNT to remove fluoride, and an adsorption capacity of
4.5mg·g−1 was achieved in the aqueous solution with the fluoride
concentration of 15 mg·L−1.

In a very recently study, Neelgund et al. (Neelgund and Oki,
2016) found that CNT could improve the photothermal efficiency
(PTE) of HAP, and HAP could also overcome the poor dispersion
of CNT. In this work, we proposed the combination of HAP
with CNT for fluoride removal from aqueous media. To the
best of our knowledge, there are few study on such a subject.
The major objectives of our work are: (1) to characterize CNT-
HAP composite by XRD, FTIR, SEM, and TGA; (2) to compare
the defluorination performance between HAP and CNT-HAP
composite;(3) to optimize the operation conditions for fluoride
removal; (4) to disclose the underlying mechanism of fluoride
removal.

EXPERIMENTAL SECTION

Materials
All the chemicals were purchased fromTianjin DamaoChemicals
Co. Ltd., (China), and used directly without further purification.
The water used in this work was in ultrapure grade.

Preparation of CNT-HAP Composite
CNT-HAP composite was synthesized by co-precipitation. The
pH of aqueous solutions of Ca(NO3)2 (0.25 mol·L−1) and
(NH4)2HPO4 (0.3·mol L−1) (Ca/P = 1.67) were adjusted to 10.0
by NH3·H2O. The CNT (5 wt‰) was functionalized by HNO3,
and then added into the aqueous solution of Ca(NO3)2. The
solution was ultrasonicated until a homogeneous solution was
formed (A). The aqueous solution of (NH4)2HPO4 was dripped
slowly into the solution A under vigorous stirring for 1 h at
45◦C to generate precipitates. Afterwards, the pH of solution
was adjusted to 10.0 by NH3·H2O. The mixture was aged for
24 h at room temperature to form colloids. The colloids were
centrifuged, washed with ultrapure water for several times, milled
with ethanol, dried at 80◦C, and finally calcined at 200◦C for 2 h
to give CNT-HAP composite.

Materials Characterizations
The phase composition and crystal structure of CNT-HAP
composite were characterized by an X-ray powder diffractometer
(XRD, D8 ADVANCE X), using Cu Kα (40 kV, 40mA) radiation
in the scanning range of 10–80◦. The chemical structure was
characterized by a Fourier transform infrared spectrometer
(FTIR, Nicolet 5700,) in the wavenumber range of 400–4,000
cm−1. The elemental composition was examined by an X-ray
photoelectron spectroscopy (XPS, Axis Ultra DLD), using Al Kα

radiation. The morphology was examined by a scanning electron
microscope (SEM, JSM 6701F) at the accelerating voltage of 5 kV.
The specific surface area was calculated by Brunauer-Emmett-
Teller (BET) equation from the N2 adsorption-desorption
isotherms determined by a porosity analyser (JW-BK132F). The
pH-values were determined by a pH electrode (pH SJ-4A). The
concentrations of fluoride in aqueous solutions were determined
by ion chromatography (IC, ICS-1100).

Adsorption Experiments
The adsorption experiments were performed by the batch
method to investigate the effects of different parameters (e.g.,
temperature, reaction time, pH and co-existing ions) on fluoride
removal by CNT-HAP. In a typical run, 0.01 g of CNT-HAP was
mixed with 20mL of aqueous solution containing fluoride, and
the mixture was stirred at the rate of 180 rpm and temperature of
25◦C for 24 h to achieve the adsorption equilibrium.

RESULTS AND DISCUSSION

X-Ray Diffraction
The XRD patterns of HAP, CNT and CNT-HAP composite are
presented in Figure 1. The diffraction peaks of HAP could be
indexed to hexagon-phased HAP with considerable intensities
at 26, 33, 34, 35, and 40◦ (JCPDS file 09-0432). In comparison
with the diffraction patterns of HAP, those of CNT-HAP are very
similar, indicating the successful incorporation of HAP into the
matrices of CNT. However, it is worth noting that the diffraction
patterns of CNT could hardly be observed in those of CNT-
HAP composite, which should be attributed to the overlap of
the major diffraction peaks of CNT and HAP at 26◦. On the
other hand, if CNT was directly wrapped by as-synthesized
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HAP, the characteristic peaks of CNT can also not be observed
in the diffraction patterns of CNT-HAP composite. This could
also elucidate successful synthesis of CNT-HAP. In addition, the
sharp and symmetric diffraction peaks confirm good crystallinity
of synthesized CNT-HAP composite.

Infrared Spectroscopy
The FT-IR spectra of HAP, CNT and CNT-HAP are shown in
Figure 2. The broad peaks at 3,150–3,550 cm−1 are assigned to
the O-H vibration (Xu et al., 2013). The bands at 1,030–1,040,
600–610, and 550–570 cm−1 are associated with the stretching
vibration of phosphate, confirming the presence of HAP in CNT-
HAP composite. Besides those peaks associated with HAP, the
C-H stretching vibration appears at 2,800–3,000 cm−1 while the
C-H bending vibration is observed at 1,370–1,400 cm−1 (Zhang
et al., 2012). The peaks at 1,630–1,640 cm−1 are attributed to
the C= O stretching vibration. All these characteristic peaks can
also be found in the acidified CNT, confirming the pliable phase
composition of CNT-HAP composite, which is in accordance
with the results concluded from XRD patterns.

Scanning Electron Microscopy
The SEM images of CNT, HAP and CNT-HAP are presented in
Figure 3. HAP displays faint lamellar morphology and compact
internal structure, while CNT-HAP displays legible lamellar
morphology because the introduction of CNT is beneficial for
the nucleation and crystallization of HAP. The vertical growth
of HAP along CNT implies that CNT-HAP has higher specific
surface area than HAP. In Figure 3c, the characteristic tubular
structure cannot be observed in CNT-HAP, suggesting that CNT
is wrapped by HAP on the surface, which is consistent with the
results concluded from XRD patterns. The SEM images proves
the successful synthesis of CNT-HAP and the assembly of HAP
on the surface of CNT.

Adsorption Isotherms
The adsorption isotherms of fluoride on HAP and CNT-
HAP at 25, 35, and 45◦C were determined, as shown in
Figure 4. The adsorbed amounts of fluoride by HAP and CNT-
HAP both increase rapidly at low fluoride concentrations,
and the increasing trend gradually fades out at high fluoride
concentrations. With the increase of temperature, the adsorbed
amounts of fluoride increase continuously. The maximum
adsorption capacity (qm) of fluoride on CNT-HAP at 25◦C is
11.05 mg·g−1, being higher than pristine HAP and other HAP-
based materials reported in the literature (Table 1; Gao et al.,
2009; Sairam Sundaram et al., 2009; Jiménez-Reyes and Solache-
Ríos, 2010; Liu et al., 2010; Kanno et al., 2014; Prabhu and
Meenakshi, 2014; He et al., 2017; Nigri et al., 2017; Zúñiga-Muro
et al., 2017).

To better understand the adsorption behavior of fluoride, the
Langmuir and Freundlich models were used to correlate the
adsorption data. The Langmuirmodel (Equation 1) applicable for
monolayer adsorption process (Li et al., 2012; Reynel-Avila et al.,
2016).

qe =
qmkLce

1+ kLce
(1)

FIGURE 1 | XRD patterns of CNT-HAP (a), HAP (b), and CNT (c).

TABLE 1 | Comparison of fluoride adsorption capacities of pristine HAP and

various HAP-based materials.

Adsorbents Adsorption

capacities

(mg·g−1)

Cinitial

(mg·L−1)

pH References

HAP powder 4.7 20 7.0 Jiménez-Reyes and

Solache-Ríos, 2010

Nano-HAP/Chitin 3.0 10 7.0 Sairam Sundaram

et al., 2009

Al-HAP adsorption

membrane

7.15 10 7.0 He et al., 2017

HAP-coated-limestone 9.3 50 7.0 Kanno et al., 2014

Synthetic nano-HAP 4.8 80 5.0–6.0 Gao et al., 2009

DTAB-HAP powder 3.436 10 7.0 Prabhu and

Meenakshi, 2014

Nano-HAP/Chitosan 1.56 10 7.0 Sairam Sundarama,

2008

Synthetic siderite 1.775 3–20 4.0–9.0 Liu et al., 2010

bone char 4.81 10 7.2–7.7 Nigri et al., 2017

cerium-containing bone

char

13.6 10 7.0 Zúñiga-Muro et al.,

2017

Where qe (mg·g−1) is the adsorbed amount of fluoride at
equilibrium; Ce (mg·L−1) (mg·L−1) is the concentration of
fluoride in supernatant solution at equilibrium; qm (mg·g−1)
represents the maximum adsorption capacity; and kL (L·mg−1)
represents the adsorption equilibrium constant. The Freundlich
model (Equation 2) is applicable for the description of
adsorption data on heterogeneous surfaces at low to intermediate
concentrations (Mahmoud et al., 2016).

qe = kFCe
1
n (2)

Where kF (mg1−n
·Ln·g−1) i the adsorption capacity when

the equilibrium concentration of ion equals to 1; and n is
the dependent degree of adsorption capacity on equilibrium
concentration, with the value of 1∼10. The fitted parameters for
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two adsorption models as well as the correlation coefficients (R2)
are shown in Table 2. According to the values of R2 and fitted
curves shown in Figure 4, it is obvious that the Langmuir model
is better for describing the adsorption behavior of fluoride on
HAP, implying that the adsorption energy is constant and the
adsorption capacity is limited by the amounts of active sites.
In contrast, the Freundlich model is better for describing the
adsorption behavior of fluoride on CNT-HAP, implying that the
adsorption of fluoride is subjected to multi-layer and physical-
chemical adsorption.

Adsorption Thermodynamic Analysis
The thermodynamic parameters such as Gibbs free energy
change (1G◦), adsorption enthalpy (1H◦) and adsorption
entropy (1S◦) could be calculated from the adsorption data
according to eqs. 3∼6 (Luo et al., 2015; Wang et al., 2015; Singh
and Anil Kumar, 2016).

1G
◦
= −RTlnKd (3)

∆S◦ = −

(

∂∆G◦

∂T

)

P

(4)

∆H◦
= ∆G◦

+ T∆S◦ (5)

InK = 1S◦/R− 1H◦/RT (6)

Where R is the gas constant (8.314 J·mol−1
·K−1); T is the

absolute temperature (K); and Kd is the adsorption equilibrium
constant. As shown in Table 3, the negative values of 1G◦

indicate that the adsorption process of fluoride is spontaneous.
The much lower values of 1G◦For fluoride adsorption on CNT-
HAP than on HAP at the same temperature suggests the easier
adsorption of fluoride on CNT-HAP than on HAP. The positive
value of 1S◦ elucidate that the organization of fluoride ions on
the surface of adsorbents is more random than in the aqueous
solutions. The positive values of 1H◦ suggest that the adsorption
of fluoride on HAP and CNT-HAP is endothermic.

Adsorption Kinetics
The adsorbed amounts of fluoride were plotted vs. adsorption
time to examine the adsorption kinetics, as shown in Figure 2.
The amounts of fluoride adsorbed byHAP andCNT-HAP rapidly
increase in the first 2 h. Then the adsorption rate slows down

TABLE 2 | Fitted Langmuir and Freundlich model parameters for fluoride

adsorption on HAP and CNT-HAP composite at different temperatures.

Samples Temperatures

(◦C)

Langmuir model Freundlich model

qm /

(mg·g−1)

KL /

(L·mg−1)

R2 kF n R2

HAP 25 5.01 0.55 0.9772 2.63 6.56 0.8932

HAP 35 6.25 0.50 0.9493 3.07 5.88 0.9136

HAP 45 6.81 1.08 0.9479 4.07 7.77 0.8933

CNT-HAP 25 11.05 0.18 0.9142 3.57 3.96 0.9735

CNT-HAP 35 13.57 0.17 0.9075 4.26 3.88 0.9695

CNT-HAP 45 16.78 0.17 0.8835 5.08 3.74 0.9831

and reaches equilibrium at 240 and 300min, respectively. The
adsorption kinetic data were fitted by pseudo-first-order model
(Equation 7), and pseudo-second-order model (Equation 8),
respectively (Naowanat et al., 2016; Subbaiah and Kim, 2016; Sun
et al., 2017).

qt = qe

(

1− e−k1 t
)

(7)

qr =
q2ek2t

1+ qek2t
(8)

Where k1 (min−1); k2 (g·mg−1
·h−1) are the pseudo-first-order

and the pseudo-second-order rate constant, respectively; qt
(mg·g−1) is the adsorbed amount of fluoride on adsorbents at
time t (min); qe (mg·g−1) is the equilibrium adsorption capacity.
The nonlinear fitting for qt vs. t is presented in Figure 5. All
the fitted kinetic kinetic parameters as well as the correlation
coefficients (R2) are listed in Table 4. Obviously, the kinetic data
of fluoride adsorption on HAP and CNT-HAP are well fitted
to the pseudo-second-order model, indicating that the fluoride
removal processes are subjected to chemical reaction (Tadjarodi
et al., 2016), which determines the overall adsorption rate.

TABLE 3 | The thermodynamic parameters of fluoride adsorption on HAP and

CNT-HAP composite.

Adsorbents T(◦C) 1G0

(kJ·mol−1)

1H0

(kJ·mol−1)

1S0

(J·mol−1
·K−1)

lnKd

CNT-HAP 25 −16.53 6.67

CNT-HAP 35 −17.78 20.68 124.38 6.94

CNT-HAP 45 −19.03 7.19

HAP 25 −15.54 19.80 118.72 6.27

HAP 35 −16.81 6.56

HAP 45 −17.90 6.77

FIGURE 2 | FT-IR spectra of CNT, HAP, and CNT-HAP.
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TABLE 4 | Fitted kinetic parameters for fluoride adsorption on HAP and CNT-HAP

composite.

Samples Pseudo first-order Pseudo second-order

k1 / qe / R2 k2 / qe / R2

(min−1) (mg·g−1) (g·mg−1
·min−1) (mg·g−1)

HAP 0.22 4.73 0.9204 0.09 4.85 0.9827

CNT-HAP 0.20 5.70 0.3956 0.05 5.97 0.8277

Effects of Solution pH and Co-existing
Anions
The adsorption of fluoride on HAP and CNT-HAP from aqueous
solutions with different pH values ranging from 3.0 to 10.0 was
investigated (Figure 6A). Obviously, the CNT-HAP composite
exhibits considerably higher adsorption capacities for fluoride
than HAP, thereby displaying great potential application in
defluorination from aqueous media. As for the effect of solution

FIGURE 3 | SEM images of CNT (a), HAP (b), and CNT-HAP (c).

FIGURE 4 | Adsorption isotherms of fluoride on HAP (A) and CNT-HAP (B) at three different temperatures (adsorbents dosage: 0.5 g·L−1, pH: 7.0).
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pH, the fluoride adsorption capacities first increase in the pH
range of 3.0–6.0, but then decrease in the pH range of 6.0–
10.0. Therefore, the optimal pH-value for fluoride removal is
6.0. Under such a weakly acidic condition, the surface of CNT-
HAP and HAP would be protonated, thus increase the density
of active sites on the surface (Jiménez-Reyes and Solache-Ríos,
2010; Nie et al., 2012). In contrast, the surface of CNT-HAP and
HAP would be saturated with negative charges under alkaline
condition, which restrains the diffusion of fluoride ions on the
surface, thus resulting in lower adsorption capacities. Our results
are consistent with some other works, which reported the high
fluoride removal efficiency in acidicmedia owing to the attraction
of fluoride anion to the positively charged adsorbents surface, and

FIGURE 5 | Nonlinear fitting for kinetic data of fluoride adsorption on HAP and

CNT-HAP.

FIGURE 7 | XPS spectra of the HAP (A) and CNT-HAP (B) before and after

fluoride adsorption.

FIGURE 6 | Effects of pH (3.0–11.0) (A) and coexisting anions (B) on the removal of fluoride by HAP and CNT-HAP (adsorbents dosage: 0.5 g·L−1, C0 = 10 mg·L−1,

reaction time = 24 h, temperature = 25◦C).
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FIGURE 8 | Illustration of the underlying mechanism for fluoride removal by CNT-HAP.

the low fluoride removal efficiency in alkaline media due to the
repulsion of fluoride anion from the negatively charge adsorbents
surface.

In addition, the removal of fluoride in the presence of five
co-existing anions (Cl−, NO−

3 , HCO−

3 , SO
2−
4 , and PO3−

4 ) were
investigated, and results are shown in Figure 6B. As can be seen,
the introduction of Cl−, NO−

3 , and SO2−
4 have slightly negative

effect on the fluoride removal efficiency, while the introduction
of HCO−

3 and PO3−
4 has significantly negative impact. This

phenomenon can be explained by the charge/radius (Z/r, Å) of
these anions. In our case, the order of Z/r values of some common
anions is PO3−

4 (3/2.38) > SO2−
4 (2/2.30) > F− (1/1.33) > OH−

(1/1.37) > HCO−

3 (1/1.56) > NO3 (1/1.79) > Cl (1/1.81) (Yang
et al., 2014). Clearly, the Z/r value of PO3−

4 is the largest among
these anions, suggesting that PO3−

4 could easily form bond with
Ca2+ in competition with F−, and reduce the fluoride adsorption
capacities (Nie et al., 2012). The Z/r value of HCO−

3 (1/1.56)
is similar to that of OH− (1/1.37), as a result, it could replace
the OH− in HAP, which subsequently influence the fluoride
adsorption capacities. SO2−

4 , though with high Z/r value as well,
has only slight effect on the fluoride adsorption capacities because
of its large ionic radii (2.30 Å). Cl− and NO−

3 also have only slight
influence on the fluoride adsorption capacities because of they
have lower ability for binding with the active sites on adsorbents
than F− (Mohanty et al., 2005).

Brunauer-Emmett-Teller Analysis
The BET surface area of CNT-HAP composite was determined to
be 70.94 m2

·g−1, being much larger than CNT and HAP (32.60
and 20.78m2

·g−1), which is consistent with the results concluded
from SEM images. The enhancement of specific surface area in
CNT-HAP composite can be explained by the vertical growth of
HAP on the surface of CNT, although they are not assembled
compactly. Consequently, the CNT-HAP composite exhibits
improved internal density.

Generally, the fluoride removal by HAP is subjected to ion
exchange, during which the original hydroxyl anions attached
to HAP are replaced by fluoride anions (Chen et al., 2016).
To examine the reaction mechanism for fluoride adsorption on
CNT-HAP, the XPS spectra of HAP and CNT-HAP before and
after fluoride adsorption were collected and shown in Figure 7.
As shown in Figure 7A, the F 1s signal locating at 680 eV can
be observed in the XPS spectra of HAP after fluoride adsorption,
indicating that fluoride is binding to the surface of HAP. In the
XPS spectra shown in Figure 7B, the F 1s signal locating at 680 eV

also appears after fluoride adsorption on CNT-HAP, which is
similar to the case of fluoride adsorption on HAP. Therefore, we
confirm that the fluoride removal by CNT-HAP is also subjected
to anion exchange mechanism.

Based on the results obtained, the underlying mechanism
for fluoride removal by CNT-HAP is proposed and depicted in
Figure 8. First, the HAP is doped with CNT via co-precipitation
method to produce CNT-HAP composite. The HAP is mainly
loaded on the surface of CNT, and the CNT-HAP composite is
of large surface area. Then the hydroxyl anions in HAP adsorb
fluoride via ion exchange. The hydroxyl ion in solution will
increases the pH of the bath solution during the experiments,
thus the reaction was suitable to occur in a weakly acidic
condition, which was consistent with the result showed above. In
summary, it is suggested that the significantly enhance fluoride
removal efficiency of CNT-HAP is attributed to the cooperative
effect of surface hydroxyl anions in HAP and large surface area of
CNT.

CONCLUSION

The hydroxyapatite decorated with carbon nanotube was
prepared and used as an effective adsorbent for fluoride removal.
The adsorption of fluoride on CNT-HAP could be well described
by the Freundlich model. The nature of the adsorption process
is spontaneous and endothermic. The kinetics of adsorption
follows pseudo-second-order. The defluorination capacity can be
significantly affected by the solution pHand co-existing anions.
Combining the results from XRD, FTIR, SEM, BET, and XPS
analysis, it is demonstrated that the adsorption mechanism
follows an anion exchange process. The efficiency of fluoride
removal by CNT-HAP is greatly enhanced in relative to the
pristine HAP, because the introduction of CNT can enlarge the
specific surface area of HAP, thereby affording more surface
hydroxyl anions to be replaced by fluoride.
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