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Abstract: With an incidence of 68 new cases per 100,000 people per year, an estimated total number
of up to 350,000 new non-small-cell lung cancer (NSCLC) cases are diagnosed each year in the
European Union. Up to 10% of NSCLC patients are eligible for therapy with novel ALK (anaplastic
lymphoma kinase) inhibitors, as they have been diagnosed with a mutation in the gene coding
for ALK. The ALK inhibitor therapy costs add up to approx. 9000 € per patient per month, with
treatment durations of up to one year. Recent studies have shown that up to 10% of ALK cases
are misdiagnosed by nearly 40% of pathologic investigations. The current state-of-the-art ALK
diagnostic procedure comprises a Fluorescent in situ Hybridization (FISH) assay accompanied by
ALK inhibitor therapy (Crizotinib). The therapy success ranges between a full therapy failure and
the complete remission of the tumor (i.e., healing), but the biomedical and systemic reasons for this
range remain unknown so far. It appears that the variety of different ALK mutations and variants
contributes to the discrepancy in therapy results. Although the major known fusion partner for ALK
in NSCLC is the Echinoderm microtubule-associated protein-like 4 (EML4), of which a minimum of
15 variants have been described, an additional 20 further ALK fusion variants with other genes are
known, of which three have already been found in NSCLC. We hypothesize that the wide variety of
known (and unknown) ALK mutations is associated with a variable therapy success, thus rendering
current companion diagnostic procedures (FISH) and therapy (Crizotinib) only partly applicable in
ALK-related NSCLC treatment. In cell culture, differing sensitivity to Crizotinib has been shown for
some fusion variants, but it is as yet unknown which of them are really biologically active in cancer
patients, and how the respective variants affect the response to Crizotinib treatment. Moreover, it has
been demonstrated that translocated ALK genes can also be observed in healthy tissues and are
not compulsorily associated with tumors. Therefore, it is important to keep in mind that even for
the known variants of ALK fusion genes, the biological function is not known for all variants, and
that no information is available on the homogeneity of ALK fusion variants within a single tumor.
These facts, in concert with data for ALK mutation prevalence and therapy outcomes of a German
cohort of NSCLC patients, support the hypothesis that, by using novel companion diagnostic tools in
combination with therapy outcome predictions, massive cost savings could be possible in European
Health Care systems without a loss of patient care.
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1. Introduction

In the era of personalized medicine, the molecular diagnostics of non-small cell lung cancer
(NSCLC) have become more and more complex, and therapeutic interventions nowadays are highly
targeted, and sometimes restricted to narrow clinical entities [1–6]. Lung carcinomas, in contrast to
other carcinomas, are characterized by a relatively high frequency of genetic alterations [7].

An example for such a narrow therapy window is the tyrosine kinase inhibitor (TKI) treatment of
ALK-mutated NSCLC. According to several studies, the prevalence of ALK-positive NSCLC ranges
between 2% and 7% of the entire NSCLC cohort [7–12]. ALK mutations are usually detected by either
a FISH assay or by immunohistochemistry, and for both methods CE IVD- and even FDA-approved
assays exist [12,13].

The average cost for ALK-specific TKI ranges between 6000 and 9000 €, while the costs for ALK
diagnostics vary between 40 and 80 € per assay [14,15]. In addition, it is important to note that the
median increase in progression free survival under ALK-specific TKI therapy is 4 months [16–19], with
a range between 2 months and total remission [16–19]. Taking into account that ALK fusion mutations
can theoretically occur with up to 21 fusion partner genes, of which even EML4 can form up to
18 variants, this latter fact implies that an optimized diagnostic algorithm accompanied by a prediction
software tool that correlates the likelihood of therapy response of a variant (as determined in vitro) is
capable of saving enormous therapy costs by excluding those variants that are not susceptible to TKI
therapy. Based on these considerations, we addressed the question of how much the development of
such an assay would cost, how much the assay itself would cost, and how much could be saved in
healthcare reimbursement budgets by such an assay. As a basis, we have extrapolated data from our
own clinical cohort of NSCLC patients with FISH-confirmed ALK mutation and epidemiological data
reported to and published by the Robert-Koch-Institute.

2. Results

Lung cancer is one of the most frequent cancers worldwide. According to the Robert Koch
Institute (RKI) data on NSCLC in Germany, approximately 35,000 male and 20,300 female patients are
newly diagnosed with lung cancer per year, with a low five year survival rate of 21% for female and
16% for male patients in 2012 [20].

Approximately 40–50% of patients with NSCLC are tested in stage IV, while NSCLC includes 85%
of all newly diagnosed lung cancers [21]. Taking into account the data from the RKI and the prognosis
for 2016, 85% of 55,300 patients, i.e., 47,005 patients, are likely to be diagnosed with NSCLC each year.
Of those patients, 18,802–23,503 will be diagnosed in stage IV (i.e., 40–50%). Approximately half to one
third of those patients will be eligible for ALK testing.

As shown recently, ALK testing methods require significant improvement: von Laffert and
colleagues have shown that, in up to 10 percent of clinical cases, ALK diagnostics were incorrect in up
to 40% of pathology departments, although in most cases FDA-approved methods were used [22,23].
This diagnostic challenge is complicated by the fact that there is an increasing number of identified ALK
variants in NSCLC for which the prevalence, the treatment response, and clinical significance remain
unknown [1,2]. Whilst the overall positivity rate of mutated ALK in NSCLC is published as being between
2 and 7 percent, the response rate to the ALK inhibitor Crizotinib was described as 57%, with a remarkably
high rate of progression-free survival of 72% after 6 months of ALK-inhibitor therapy [17,24]. Thereby,
the response rate ranges between full remission and total lack of response, a phenomenon that can
most likely be attributed to the high number of different variants. Unfortunately, this topic has not yet
been addressed, and only the median progression-free survival during ALK-inhibitor therapy has been
published, with an increased rate of 7.7 vs. 3 months, i.e., a median improvement of 4 months [25].
Therefore, it was our aim to analyze to what extent these internationally accepted data also apply to
the situation in Germany in general and to the clinical cohort in our hospital in particular.

Our cohort consisted of patients in Cologne, and the region within approximately 100 km of
Cologne (Table 1). The patients coming to our hospital were either transferred to our hospital because
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of a pre-diagnosed NSCLC or because of clinical symptoms of lung cancers. Therefore, no limitations
existed with respect to age, sex, or ethnic background; thus, the cohort is not a “study-cohort”, but
reflects daily hospital practice. In our cohort in 2014, 645 patients were diagnosed with lung cancer, of
which 574 suffered from NSCLC. The total number of NSCLC during the entire observation period
was 1722 registered patients with NSCLC. Of those, 860 patients were in NSCLC stage IV. A total
number of 60 patients out of the 860 NSCLC stage IV patients tested positive for ALK mutation, and
thus in principle were eligible for Crizotinib therapy. This latter number corresponds to a percentage of
3.8% ALK-positive NSCLC in the entire cohort, thus being in a range comparable to other cohorts [26].
Out of the 60 patients who were, in principle, eligible for Crizotinib therapy, only 22 received Crizotinib
therapy, whilst the remaining patients received alternative or palliative therapy.

Table 1. Overview on the patient cohort that was used as the basis for the subsequent health-economic
analyses (target date for ongoing therapy 30 June 2016).

Patient
No.

Age at Therapy
Start (Years) Sex Smoking

Status

Length of
Crizotinib Therapy

(Month)

Exitus Letalis
Post Therapy

(Month)

1 75 female ex-smoker 1
2 69 female never-smoker 15 28
3 75 male ex-smoker 2 2
4 50 female ex-smoker 15 15
5 74 male ex-smoker 4
6 62 male smoker 9
7 73 male smoker 1 1
8 76 female ex-smoker 25, ongoing
9 65 male ex-smoker 2

10 48 male ex-smoker 1
11 63 male smoker 2 3
12 56 male ex-smoker 1 1
13 53 female smoker 4
14 55 male never-smoker 1, ongoing
15 48 female ex-smoker 1 2
16 62 female ex-smoker 2
17 65 female smoker 2
18 71 male ex-smoker 2 2
19 54 male unknown 15
20 51 male never-smoker 4
21 55 male smoker 1 1
22 79 male ex-smoker 8, ongoing

mean: 62.68 years
average therapy
duration: 5.36

months

median: 62.5 years median therapy
duration: 2 months

Out of the 22 patients receiving Crizotinib therapy, 14 were male (63.6%) and 8 were female
(36.4%). The mean age was 62.68 years, ranging between 48 and 79 years, with a median age of
62.5 years. Seven patients were smokers, 11 patients were former smokers, 3 patients had never been
smokers, and for one patient the smoking status remained unknown. The therapy duration had a mean
of 5.36 months, whilst the median therapy duration was 2 months, and thus significantly lower than in
other published studies. The majority of patients had therapy durations of max. 4 months (16 out of 22,
i.e., 72.7%); only 13.6% were still receiving therapy at the cut-off date of this study. Serious differences
were also observed in the clinical courses during treatment. Three patients died within the month
when the Crizotinib therapy was initiated, while another patient died 28 months after the therapy start.
In one case (patient 1), the therapy had to be stopped due to side effects, and in one case the daily dose
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was reduced after two weeks. Six patients received an additional therapy (chemotherapy or radiation
therapy). Only one patient had a stable remission, and continued to receive Crizotinib therapy even
25 months after therapy onset.

In the case of the cohort described above, the cost for the ALK-inhibitor therapy was
118 months × 6087.77 = 718,356.86 € (Table 2). No further differences in therapy costs could be identified
between ALK-positive and ALK-negative patients. It was surprising that in our patient cohort the median
and the average therapy duration were below those of published studies. Thereby, it has to be mentioned
that our cohort was not a “controlled” study cohort but an observational study, and reflected the “real life”
daily patients coming to a German hospital specialized in the therapy of lung diseases.

Table 2. Cost calculation for ALK-inhibitor therapy in our hospital and extrapolation of costs for
Germany per year. * (data for 2015 and 2016 not fully available); ** (extrapolation based on the portion
of patients under ALK-inhibitor therapy in our hospital); *** (These costs are a rough estimation as the
costs for the drugs may vary between EU member states).

Clinical and Therapy
Information Our Hospital Germany European Union

patients with lung carcinoma 645 (in 2014) * 55,300 (2016) 411,765
(extrapolated)

patients with NSCLC 574 (in 2014) * 47,005 (85%) 350,000 (85%)

number of ALK positive
patients eligible for ALK therapy
≥1 month

20 (per year from
2012–2015)

470–940
(1%–2% of NSCLC)

3500–7000
(1%–2% of NSCLC)

number of ALK positive
patients treated per year 7.33 172–355 ** 1283–2566 **

average duration of
ALK-inhibitor therapy 5.36 months

median duration of
ALK-inhibitor therapy 2 months

total cumulated average therapy
duration per year 39.29 months 921.92 months–

1902.8 months **
6877.1 months–

13,754.2 months **

total cumulated median therapy
duration per year 14.66 months 344–710 months ** 2566–5132 months **

total costs per year based on
average therapy duration 239,181.18 € 5,612,436.92 €–

11,583,808.76 € **
41,864,864.11 €–

83,729,728.22 € ***

total costs per year based on
median therapy duration 89,246.71 € 2,094,192.88 €–

4,322,316.70 € **
15,621,218.14 €–

31,242,436.27 € **

The costs for ALK testing with immunohistochemistry (IHC) or fluorescence in situ hybridization
range between 80 and 90 € per sample. This calculation is based on the list prices for ALK FISH
assays from the German branches of vendors of ALK FISH assays (Abbott, Wiesbaden, Germany;
ZytoVision, Bremerhafen, Germany; KreaTech, Amsterdam, The Netherlands). The cost for the novel
assay was calculated by analogy to the costs of Respifinder and Meningofinder assays (multiplex
assays making use of the same technology proposed here) by our co-author Guus Simons (CEO of
Pathofinder, Maastricht, Germany). We calculated that a novel assay that can distinguish between
all known ALK fusion variants, including other variants that determine eligibility for ALK-inhibitor
therapies like ROS fusions, would also cost about 80 € per sample. Such an assay could be based on
MLPA and preamplification as already used for other purposes by PathoFinder, and could include a
software tool that enables therapy outcome predictions based on cell culture and correlated therapy
data. Therefore, the initial development costs for such an assay would reach a maximum of 6 million €
as a single investment (our exact calculation, based on a Horizon2020 grant proposal submitted to
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the European Commission, was 5,183,566 €). The proposed assay should undergo clinical evaluation;
that is, the clinical outcome of therapy in relation to ALK fusion variants needs to be included in the
interpretation software tool. This goal can be easily achieved by combining cell culture data with cell
culture phenotyping assays, making use of the different variants and clinical observations. The in vitro
phenotyping would either be based on cell lines with known ALK mutations, or these mutations
would have to be included in the cells by recombination technology like CRISPR/Cas or Cre/loxP
assays. The predictions should be based on the combinations of in vitro and in vivo data. If a variant is
not treatable in vitro, it won’t be treatable in vivo. Thereby, dose effects and toxicity profiles have to be
taken into account. The prediction software should be constructed by analogy with the Geno2pheno
software used for HIV therapy outcome prediction, and make use of machine learning approaches.

Based on these latter specifications, we then assumed that such an assay could have predicted
the outcome of Crizotinib therapy in our patient cohort, i.e., the 6 out of 22 patients (27.3%) treated
could have been predicted as responders, whilst the remaining patients could have been identified as
non-responders (72.7%); thus, the high-cost Crizotinib therapy could have been avoided in 72.7% of
cases, resulting in a remarkable cost-saving potential (Table 2).

The frequency of ALK translocations in NSCLC was published as 1–2% [27]; i.e., based on the
above-mentioned epidemiological data of approximately 47,005 newly diagnosed NSCLC patients [28]
per year, a minimum of between 470 and 940 patients per year would be eligible for ALK testing
in Germany.

Taking international studies into account, the frequency of ALK translocations would be 4–6%,
resulting in a maximum of 1880–2820 patients per year being eligible for ALK-inhibitor therapy.

Excluding 2 patients of our cohort of 22 ALK-positive patients, where in one case Crizotinib
therapy was stopped and in the other, therapy was initiated at the cut-off point of this study,
the remaining 20 ALK-positive patients were used for the subsequent calculations. Of these
20 ALK-positive patients, we calculated a number of 7.33 ALK-positive patients under Crizotinib
therapy; i.e., our cohort reflects 20/940 = 2.13% to 20/470 = 4.26% of German patients with ALK
therapy, i.e., (470/20) × 7.33 = 172 to (940/20) × 7.33 = 355 patients per year in Germany under
Crizotinib therapy in Germany (data from Table 2).

Based on these calculations, the average yearly therapy duration is 172 to 355 patients ×
5.36 months = 921.92 to 1902.8 months, with a median yearly therapy duration of 172 to 355 ×
2 months = 344 to 710 months.

Based on a cost of 6087.77 € per month for Crizotinib therapy [29], the average costs for Crizotinib
therapy in Germany could be estimated by 921.92 to 1902.8 months × 6087.77 € = 5,612,436.92
to 11,583,808.76 €, with median therapy costs of 344 to 710 months × 6087.77 € = 2,094,192.88 to
4,322,316.70 €. As the international published data for the prevalence of mutated ALK are 4–6% (see
above), these costs have to be multiplied by a factor of 2, resulting in a maximum average cost for
Crizotinib therapy of 23,167,617.52 €, and a median cost of 8,644,633.40 €, respectively [30].

Using the data from Tables 1 and 2 as a basis, the cost-saving potential for our patient cohort
would have been 31 months × 6087.77 € = 188,720.87 €, if the non-responder rate of 72.73% had been
predicted in advance of therapy. Extrapolated to the estimation for the entire German cohort, the
cost-saving potential would be 4,081,772.31 €–8,424,588.15 € if the average therapy duration is used as
the basis for the calculation, and 1,523,049.37 €–3,143,503.05 € if the median therapy duration is used
as the basis for the calculation.

Taking into account the overall population of the European Union, which is estimated to be
510.1 million people [31], the putative cost-saving potential would be 11,006,270.64 €–22,012,541.27 €
per year based on the average therapy duration of non-responders, and 11,361,311.57 €–22,722,623.14 €
based on the median therapy duration of non-responders, per year (Table 3).
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Table 3. Calculation of the yearly cost-saving potential.

Kliniken der Stadt Köln gGmbH Germany European Union

number of ALK-positive patients with
ALK-inhibitor therapy per year 7.33 172–355 1283–2566

non-responders 72.73%

cost-saving potential based on average
therapy duration of non-responders 62,880.72 € 1,475,509.41 €–

3,045,382.78 €
11,006,270.64 €–
22,012,541.27 €

cost-saving potential based on median
therapy duration of non-responders 64,909.13 € 1,523,106.48 €–

3,143,620.94 €
11,361,311.57 €–
22,722,623.14 €

average cost-saving potential calculated
on our cohort 219,096.56 € 5,141,147.77 € 38,349,370.60 €

median cost-saving potential calculated
on our cohort 226,164.22 € 5,306,991.22 € 39,586,452.15 €

3. Discussion

The currently published data for ALK-inhibitor therapy in concert support the hypothesis that the
failure of ALK therapy is most likely caused by distinct variants of ALK fusion genes. It is therefore
essential to develop diagnostic tools that can discriminate between those variants and would be able
to predict the therapy outcome.

This goal can be achieved: We propose the optimization of diagnosis and therapy of lung cancer
subgroups in Europe. This must include the collection of biological research data (ALK fusions,
ROS-/RET-fusions) from a European patient cohort, using a novel technology for 5′ fusion partner
identification. Additionally, patients’ retrospective medical data (effectiveness of treatment related to
distinct ALK variants) have to be collected in the same database. Moreover, it is crucial to start the
characterization of ALK-positive lung cancer by developing computational statistical model/machine
learning approaches in which all biological and medical data are correlated in order to fully understand
the biological interactions of ALK fusions and beyond ROS/RET fusions. Finally, it is possible to
start the development of a multiplex PCR detection assay for the detection of ALK fusion partners in
NSCLC patients based on the databases mentioned above, and to enable automated diagnosis of ALK
fusion partners that predicts personalized treatment or outcomes of treatment.

This goal may appear difficult, as the treatment of ALK patients appears complex, but experiences
in other disciplines of personalized medicine have repeatedly proven this concept. The most prominent
example is the prediction of antiretroviral therapy outcomes in advance of therapy based solely on the
genotypic information [32–37]. In this so-called geno-to-pheno prediction, HIV resistances and the
most likely therapy outcomes can be predicted, even though the number of HIV-genotype variants
and the available drugs exceed the situation in ALK-inhibitor therapy. Consequently, we recommend
initiating public initiatives to improve ALK diagnostics in NSCLC, to optimize the subsequent therapy,
and to focus on the best available treatment options, even if it may not be a newly available drug.

4. Materials and Methods

As shown in previous studies, our cohort of NSCLC patients reflects a typical European cohort
of this clinical entity [38–41]. We analyzed how many patients of our cohort were susceptible for
Crizotinib therapy based on FISH- and IHC-positive ALK-mutated NSCLC, and followed up the
therapy of those patients. These analyses were in accordance with a vote from the local ethical
committee (Ethical Committee of the Private University of Witten/Herdecke, vote no. 86/2014, Witten,
Germany). We therefore made a cohort analysis of our own patients, treated in our hospital between
2012 and 2015. The cohort included primary therapy data from 60 patients with advanced NSCLC and
ALK translocation.

The economic analysis includes a micro-analysis for our hospital and a macro-analysis upscale
(see below). We chose the perspective of health insurance providers, and focused thereby solely
on economic aspects, without taking into account non-monetary effects such as life quality aspects
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(e.g., no side effects by false positive treatments or placebo effects in cases where Crizotinib is unlikely
to be efficient).

We then calculated the costs for Crizotinib therapy based on published data and list prices of
the drug per month. Taking into account the epidemiological data available for NSCLC in Germany
and the population of the European community we extrapolated these calculations in the form of
a min/max cost analysis, and analyzed the putative annual cost savings for NSCLC therapy in Europe.

Our study presumes the hypothesis that it is possible to develop a novel diagnostic assay based on
the PathoFinder technology that is able to determine the ALK fusion variant and predict the therapeutic
outcome of ALK-inhibitor therapy based on a machine-learning database built on experimental and
epidemiological data collected in a multicenter study, and is available at a cost of 80–90 € per sample,
with a single assay development investment of 3–6 million € [42,43].

5. Conclusions

In this study, we proposed a way to reduce therapy costs and medical side effects in NSCLC
therapy by improving molecular diagnostics. We exclusively focused on a single multiplex assay, but
have to acknowledge that other assays, like next-generation sequencing, may result in even greater
economic effects than our putative assay would do. Moreover, one of the reviewers of the manuscript
suggested the idea of extending our approach to further markers, and we agree with this reviewer’s
conclusion that the final goal should be a comprehensive tumor gen2pheno tool that predicts the likely
outcome of a therapy option in a given tumor-mutation profile, thus guiding therapy and avoiding
costs, while delivering the best available therapy option for the individual patient.
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