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Abstract

Background: Detecting protein complexes in protein-protein interaction (PPI) networks plays an important role in
improving our understanding of the dynamic of cellular organisation. However, protein interaction data generated
by high-throughput experiments such as yeast-two-hybrid (Y2H) and tandem affinity-purification/mass-
spectrometry (TAP-MS) are characterised by the presence of a significant number of false positives and false
negatives. In recent years there has been a growing trend to incorporate diverse domain knowledge to support
large-scale analysis of PPI networks.

Methods: This paper presents a new algorithm, by incorporating Gene Ontology (GO) based semantic similarities,
to detect protein complexes from PPI networks generated by TAP-MS. By taking co-complex relations in TAP-MS
data into account, TAP-MS PPI networks are modelled as bipartite graph, where bait proteins consist of one set of
nodes and prey proteins are on the other. Similarities between pairs of bait proteins are computed by considering
both the topological features and GO-driven semantic similarities. Bait proteins are then grouped in to sets of
clusters based on their pair-wise similarities to produce a set of ‘seed’ clusters. An expansion process is applied to
each ‘seed’ cluster to recruit prey proteins which are significantly associated with the same set of bait proteins.
Thus, completely identified protein complexes are then obtained.

Results: The proposed algorithm has been applied to real TAP-MS PPI networks. Fifteen quality measures have
been employed to evaluate the quality of generated protein complexes. Experimental results show that the
proposed algorithm has greatly improved the accuracy of identifying complexes and outperformed several state-
of-the-art clustering algorithms. Moreover, by incorporating semantic similarity, the proposed algorithm is more
robust to noises in the networks.

Background
Protein complexes, in which multiple proteins physically
interact with each other, are essential to organization
and functions of cellular machines [1,2]. As the advance
of experimental and computational technologies, an
immense amount of protein-protein interactions (PPIs)
have been detected [3-8], which can be represented as
in the form of networks. Thus, the accurate identifica-
tion of protein complexes from such large-scale net-
works of PPIs becomes a challenge.

Yeast-two-hybrid (Y2H) and tandem affinity-purification/
mass-spectrometry (TAP-MS) are two types of high-
throughput experimental techniques which have been
widely applied to detect PPIs. Y2H identifies physically
pair-wise PPIs [3,4] while TAP-MS detects co-complex
relations of complexes by purifying proteins (called prey)
that are associated with tagged proteins (called bait) [5,6,8].
A network of PPIs is generally represented as an

undirected simple graph where proteins correspond to
nodes and pair-wise interactions correspond to edges.
Graph-based clustering algorithms are an effective
approach to identify protein complexes. In 2000,
Markov Clustering Algorithm (MCL) [9] was proposed
for identifying complexes from protein interaction
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networks by simulating random walks on the graph.
During the clustering process, an inflation parameter is
applied to enhance the contrast between regions of
dense and sparse connections in the graph. The process
converges towards a partition of the graph, with a set of
sub-graphs of high density. In 2003, Bader and Hogue
[10] represented PPI networks using their proposed
‘Spoke’ model and the ‘Matrix’ model, and applied the
Molecular Complex Detection (MCODE) algorithm to
detecting protein complexes from the two models.
MCODE identifies sets of nodes in which are highly
connected, based on the density of neighbours of nodes
in the network. In 2006, Brohée and Helden [11] carried
out an evaluation on the performance of four clustering
algorithms in detecting protein complexes, including
MCL and MCODE. Evaluation results showed that com-
paring to other algorithms, MCL demonstrated its
robustness in the context of adding noises to the graph.
In 2006, CFinder [12] was proposed to detect overlap-
ping clusters. It explores clusters which are composed of
numbers of k-cliques where two adjacent k-cliques share
k-1 nodes. Later, a random walk based clustering algo-
rithm, Repeated Random Walks (RRW) [13], was pro-
posed to identify overlapping protein complexes in PPI
networks and experimental results demonstrated that
RRW obtained clusters with higher precision than MCL
[12]. A novel core-attachment based algorithm,
COACH, was proposed in 2009 [14]. COACH detects
protein complexes with highly-dense structure and
explores the “core-attachment” organization inside pro-
tein complexes. Experimental results [14] showed that
COACH achieved better performance than several exist-
ing clustering algorithms.
The algorithms introduced above treat PPIs from

TAP-MS data as binary. In recent years, several
researchers take advantage of non-binary nature of
TAP-MS data, the co-complex relations between bait
proteins and prey proteins, to identify protein com-
plexes. In 2005, Scholtens et al. [15] modelled TAP-MS
data as a directed graph where edges link from bait pro-
teins to prey proteins, and then applied Local Modelling
algorithm [15] to this directed network to search for
dense sub-networks in which all pairs of proteins should
be connected. Results showed that predicted complexes
from the Local Modelling algorithm mapped well to
curated protein complexes. Another example of detect-
ing protein complexes by building a non-binary model
for TAP-MS data is a novel algorithm called CODEC
[16] proposed in 2011. CODEC constructs a bipartite
graph to represent TAP-MS data, where one set consist-
ing only of bait proteins while the other set consisting
of prey proteins. Edges only link nodes in the two oppo-
site sets. CODEC identifies dense bipartite sub-graphs.
Experimental results [16] showed the CODEC

outperformed other algorithms with higher precision. In
2012, a new bipartite graph based clustering algorithm
(BGCA) was developed to identify protein complexes
from TAP-MS PPI networks [17]. Experimental results
demonstrated that, the BGCA algorithm achieved signif-
icant improvement in identifying protein complexes
from TAP-MS data. Greater precision and better accu-
racy have been achieved and the identified complexes
were demonstrated to match well with existing curated
protein complexes.
Algorithms introduced above have been developed

based on topological features of PPI networks. However,
due to experimental limitations, there exist false posi-
tives and false negatives in PPIs. Besides physically inter-
acting pair-wise relationships between proteins, semantic
similarity describes another type of relationship between
pairs of proteins by measuring closeness between the
two proteins which is based on estimates of ontology-
based functional similarity [18,19]. The Gene Ontology
(GO) [20] is the main focus of investigation of semantic
similarity in molecular biology [18]. Many measures
[19,21-23] for computing semantic similarities have
been proposed by using annotations from the three GO
hierarchies [20] - Molecular Function (MF), Biological
Process (BP), and Cellular Component (CC). It has been
confirmed that GO-driven similarity among genes is a
relevant indicator of functional interaction in the inves-
tigation of assessment and evaluation of semantic simi-
larity [18]. Results in the study [24] also demonstrated
that there is a significant correlation between the
semantic similarity of pair-wise proteins and their co-
complex membership. It is showed that semantic simi-
larity assists validating the results which are obtained
from biomedical studies, such as gene clustering and
gene expression data analysis [19]. Therefore, in the
paper, it is assumed that incorporating semantic similar-
ity into clustering process can improve the accuracy of
identifying protein complexes.
Cai et. al [17] demonstrated that good performance of

BGCA in detection of protein complexes in TAP-MS
PPI network. BGCA identifies protein complexes relying
on topological similarity between pairs of bait proteins
which is calculated based on the number of commonly
shared prey proteins. This paper proposes a new algo-
rithm, which is extended from BGCA, to detect protein
complexes from TAP-MS data by integrating semantic
similarity. Similarity between pairs of bait proteins is
obtained by combining topology-based similarity and
GO-driven semantic similarity. An agglomerate hier-
archical clustering approach is applied to group bait
proteins in to clusters which demonstrate greater simi-
larity among proteins in the same cluster than in differ-
ent cluster. Thus, a set of ‘seed’ clusters composed of
bait proteins is produced. Starting from these ‘seed’
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clusters, a greedily expansion process is developed to
recruit prey proteins which are significantly associated
with the same set of bait proteins. After expanding from
each seed cluster, a final set of protein complexes is out-
putted. Experimental results demonstrate that, by inte-
grating semantic similarity, not only the accuracy of
detection of proteins complexes has been improved, but
also the robustness of the algorithm. This paper is an
extension from the conference paper [25]. Based on the
paper [25], this paper employs more statistical measures
to evaluate quality of clustering results of the proposed
method. Moreover, the statistical significance of the
clustering results of the proposed algorithm is examined
by investigating the estimates of random expectation of
correct grouping by randomising predicted complexes
sets, and the robustness of the proposed algorithm is
also investigated.
The organization of the paper is shown as below. We

first introduce the methodology of our proposed algo-
rithm followed the presentation and discussion of
experimental results. The propose algorithm is applied
to two real world TAP-MS PPI networks. Several statis-
tical metrics are employed to assess the quality of clus-
tering. Statistical significance of clustering results and
the robustness of the proposed algorithm to the false
negatives and false positives are also evaluated. Finally,
the conclusion and future work is presented.

Methods
Our proposed algorithm is developed from BGCA,
which was proposed to detect protein complexes by
modelling TAP-MS PPI networks as bipartite graph
[17]. The algorithm lies on the assumption that, as
TAP-MS experiment directly detects complex member-
ship by purifying prey proteins which are co-associated
with tagged bait proteins [5,6], a protein complex is
institutively composed of a set of bait proteins along
with a set of prey proteins that are significantly asso-
ciated with the same set of bait proteins. Therefore, the
core idea in the proposed algorithm is firstly to detect
seed clusters composed of bait proteins and then gree-
dily expand from these seed clusters to obtain final clus-
ters. We obtain ‘seed’ clusters by grouping bait proteins
based on their similarities. In this paper, we incorporate
GO-based semantic similarity with the topology-based
similarity. The proposed algorithm has the same process
as BGCA [17], the difference lies in the calculation of
pair-wise similarities of bait proteins, since the proposed
algorithm uses the combined similarities to obtain seed
clusters.
The pair-wise topological similarity among bait pro-

teins is computed based on the number of commonly
shared neighbours [17], which is generalized from the
notion of Jaccard Similarity Coefficient [26].

a) Semantic similarity
The GO has three ontologies [20], MF, BP and CC,

MF refers to information on what a gene product does.
BP is related to a biological objective to which a gene
product contributes. CC refers to the cellular location of
the gene product, including cellular structures and com-
plexes. The reader can refer to [20] for more details. In
the paper, we use BP semantic similarity as the first
instance.
The basic idea to calculate similarity between gene

products is to calculate similarities between all terms
that are used to annotate gene products. Let b1 and b2

be the two baits, and let N(b1) and N(b2) denote the set
of neighbours of b1 and b2, respectively. The semantic
similarity, s_sim(b1,b2), has two numeric values, that is

s sim(b1, b2) =
{

simValue, if both b1 and b2 have annotations
−1, if b1 or b2 doesn′t have annotations (1)

Here, simValue falls between [0,1], representing the
closeness between pairs of proteins based on informa-
tion derived from GO BP annotations. The value of -1
indicates that at least one of the two proteins has no
annotations found. IEA ("Inferred from electronic anno-
tation”) annotations were excluded in the calculation
due to their lack of reliability.
b) Combination of two similarities
The topology-based similarity and the semantic simi-

larity are combined together to generate new pair-wise
similarity measures for bait proteins. A simple way was
adopted to combine the two different similarities as first
trial by calculating the arithmetic average of topology-
based similarities and semantic similarities.

sim (b1, b2) =

⎧⎨
⎩

t sim(b1, b2) + s sim(b1, b2)
2

, If sim (b1, b2)! = −1

t sim (b1, b2) , If s sim (b1, b2) = −1
(2)

Hereby, a network composed of similarities between
pair-wise bait proteins could be obtained accordingly.
In the set of clusters obtained from expansion process,

there exist overlap clusters. A merging process is applied
to obtain the final set of clusters [25]. This paper is an
extension from the conference paper [25], and details of
BGCA algorithm can be referred to the study in [17].

Results
Preparation of data
In the study, two TAP-MS PPI networks are used. One
is the dataset published by Gavin et al. [6] with 1993
bait proteins, 2671 prey proteins and 19157 bait-prey
relationships; the other is the dataset published by Kro-
gan et al. [8], which contains 2233 bait proteins, 5219
prey proteins and 40623 bait-prey relationships. There
were 94 prey proteins which were suspected as non-
specific contaminants [8], so they were excluded from
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the raw dataset used in Krogan et al. For convenience,
the two datasets are named as Gavin_2006 and Kro-
gan_2006 for short in this paper.
Two gold-standard datasets are employed in our

experiments. One is obtained from the Munich database
of Interacting Proteins (MIPS) [27], and the other is the
set of hand-curated complexes derived from the Wodak
lab CYC2008 catalogue [28]. The MIPS data file used is
dated 18 May 2006 [27]. The MIPS category 550 was
removed since it was defined by computerised algo-
rithms only but contains no curated protein complexes
[27]. As a result, the gold-standard data of MIPS con-
tains 220 curated complexes. As for CYC2008 catalogue,
408 protein complexes are included.

Evaluation strategy
In order to avoid biases in the evaluation of perfor-
mance of proposed methods in the paper, the evaluation
strategy is carefully designed and applied. The evalua-
tion process in the paper is decided on the following:

1) A pre-process is applied on the gold-standard
data and the set of predicted clusters. The similar
pre-process was also adopted in several studies
[16,29].

- For benchmark complexes in the gold-standard
data, known complexes that contain proteins, all
of which are not included in the network, are
removed.
- For the set of candidate clusters, the clusters
which have no overlaps with any benchmark
complex are removed.

2) More than one quality measures are employed:
precision/recall/FMeasure [29], sensitivity/Positive
Predictive Value (PPV)/geometric accuracy [11],
cluster-wise homogeneity/complex-wise homogene-
ity/geometric homogeneity [11], BH-Sensitivity/BH-
Specificity/BH-FMeasure [10], and Jaccard FMeasure
[29]. These quality measures calculate the degree of
agreement between generated clusters obtained by
clustering algorithms and well-studied protein com-
plexes in a gold-standard set. The descriptions of
these quality measures are provided in the section of
quality measures.
3) Several typical clustering algorithms are employed
to be compared with the proposed algorithm in this
paper, including MCL [9,30], MCODE [10], CFinder
[12], RRW [13], COACH [14], and CODEC [16]. For
each algorithm, the clustering result to be evaluated
was obtained by the optimal set of parameters.
4) The statistical significance of clustering results
generated by the proposed algorithm is evaluated by
computing quality scores of sets of randomly permu-
tated complexes.

5) The robustness of the proposed algorithm to false
positives and false negatives is evaluated by applying
it to randomly altered networks.

Pre-process of gold-standard datasets
The gold-standard datasets adopted in the study are
MIPS [27] and CYC2008 [28]. As introduced in evalua-
tion strategy, the gold-standard datasets will be pre-pro-
cessed before being used in the evaluation. According to
different PPI networks, proteins in each gold-standard
that are not contained in the corresponding network are
removed, and then the singleton complexes are excluded
as well. Table 1 presents the statistics of number of pro-
teins, number of complexes and average size of com-
plexes in the original gold-standard datasets as well as
in the gold-standard datasets being pre-processed which
are used in the experiments.

Selection of parameters
We select the parameters following a trial-and-error pro-
cedure. Unless indicated otherwise, the results reported in
this paper were derived based on the following parameter
settings: the hierarchical clustering was implemented with
un-weighted average linkage and the cut-off values set to
0.3 and 0.25 for Gavin_2006 and Krogan_2006 networks,
respectively. The overlapping rate is set to be 0.2.
In experiments, inflation of MCL is set as 3.0 in

Gavin_2006 network and 2.0 in Krogan_2006 network
respectively since results obtained accordingly are better
comparing to other settings of inflation. For MCODE,
on Gavin_2006, the depth equal is set to 100, node

Table 1 General statistics of two gold-standard datasets
before and after pre-processing.

Gold-standard dataset CYC2008 MIPS

Original

No. of proteins 1627 1095

No. of complexes (size ≥ 2) 408 220

Ave. size of complexes 4.7 7.1

On Gavin_2006 network

No. of proteins 1389 1041

No. of complexes (size ≥ 2) 360 205

Ave. size of complexes 5.5 8.1

On Krogan_2006 network

No. of proteins 1592 1088

No. of complexes (size ≥ 2) 406 218

Ave. size of complexes 4.8 7.3

*Note the set of statistics under the “Original” header show the statistics of
the original two gold-standard datasets before pre-processed; The set of
statistics under the “On Gavin_2006 network” or “ On Krogan_2006 network”
header show the statistics of the two gold-standard datasets after being pre-
processed on Gavin_2006 network or Krogan_2006 network, respectively.
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score percentage as 0.2, Haircut is TURE, Fluff is FALSE
and the percentage for complex fluffing as 0.2; while on
Krogan_2006, node score percentage is set as 0.1, and
other parameters remain the same as those applied in
Gavin_2006 network. For CFinder, the results generated
from k = 5 are employed since the results are better
compared to other values of k based on quality mea-
sures. RRW has three parameters, restart probability,
early cut-off and overlapping rate. The value of restart
probability, early cut-off and overlapping rate are 0.6,
0.6, 0.2 for Gavin_2006 and 0.5, 0.7 and 0.2 for Kro-
gan_2006, respectively. CODEC has two schemes, which
are CODEC-w0 and CODEC-w1, and we compare our
algorithm to both schemes of CODEC. We only use
final predicted clusters from COACH, without consider-
ing its predicted core clusters.

Experimental results and discussion
In order to gauge the effect after incorporating the
semantic similarity in clustering process, we firstly com-
pare proposed algorithm against the BGCA [17]. Since
we use BP semantic similarity as the first instance,
therefore, for convenience, the proposed algorithm is
referred as BGCA+BP from now on. Then, we evaluate
the performance of the proposed algorithm against sev-
eral existing clustering methods. In the paper [26], it is
presented that BGCA+BP performs better than BGCA
in terms of six quality scores, such as sensitivity, PPV
and geometric accuracy. In this paper, we use 9 more
quality scores to further evaluate and compare the per-
formance of BGCA+BP and BGCA.
A. The effect of incorporating semantic similarity on

detecting protein complexes
Without incorporating semantic similarity, the simila-

rities computed for pair-wise bait proteins are solely
based on their locally topological feature, that is, the
number of shared neighbours. In Tables 2 and 3, the
evaluation results on predicted complexes generated by
the BGCA and BGCA+BP from the Gavin_2006 and
Krogan_2006 networks are presented.
In [26], BGCA+BP demonstrated higher accuracy and

homogeneity value than BGCA, which can also be seen
in the Tables 2 and 3. In terms of other 9 quality mea-
sures, it can be seen that the BGCA+BP also obtained
better values. For example, in Table 2, BGCA+BP
achieves 20% increase in BH-FMeasure on Gavin_2006
network, while the BH-FMeasure value that BGCA+BP
obtained is achieves one and a half time as much as that
of BGCA. The similar observation can be obtained in
Table 3. The fact that BGCA+BP consistently achieves
better scores according to the quality measures than
BGCA indicates that, combination of topological simi-
larity and semantic similarity can enhance the accuracy
of predicting protein complexes.

B. Comparison to other clustering methods
Table 4 presents some statistics, the number and the

average size, of clusters generated by all algorithms on
the two TAP-MS networks. On both networks, the
COACH tends to generate clusters of the largest average
size, while RRW has clusters of the smallest average
size. The CODEC yields the largest number of clusters.

Table 2 Evaluation of performance on Gavin_2006 and
Krogan_2006 networks using MIPS gold-standard.

Network Gavin_2006 Krogan_2006

Quality measures BGCA BGCA +
BP

BGCA BGCA +
BP

Sensitivity 0.357 0.425 0.257 0.438

PPV 0.601 0.626 0.455 0.590

Geometric accuracy 0.463 0.516 0.342 0.509

Complex-wise
Homogeneity

0.324 0.364 0.156 0.323

Cluster-wise Homogeneity 0.692 0.812 0.642 0.828

Geometric Homogeneity 0.473 0.544 0.317 0.517

Precision 0.530 0.614 0.246 0.449

Recall 0.357 0.425 0.257 0.438

PR value 0.435 0.511 0.251 0.444

Cluster-wise Jaccard 0.387 0.458 0.159 0.328

Complex-wise Jaccard 0.267 0.331 0.149 0.330

Jaccard FMeasure 0.316 0.384 0.154 0.329

BH-Specificity 0.698 0.837 0.491 0.824

BH-Sensitivity 0.354 0.425 0.122 0.361

BH-FMeasure 0.470 0.564 0.195 0.502

Better measuring values are in bold.

Table 3 Evaluation of performance on Gavin_2006 and
Krogan_2006 networks using CYC2008 gold-standard.

Network Gavin_2006 Krogan_2006

Quality measures BGCA BGCA +
BP

BGCA BGCA +
BP

Sensitivity 0.461 0.480 0.300 0.419

PPV 0.711 0.709 0.550 0.595

Geometric accuracy 0.573 0.583 0.406 0.499

Complex-wise
Homogeneity

0.307 0.326 0.134 0.221

Cluster-wise Homogeneity 0.819 0.896 0.745 0.846

Geometric Homogeneity 0.502 0.540 0.316 0.432

Precision 0.670 0.714 0.371 0.428

Recall 0.461 0.480 0.300 0.419

PR value 0.556 0.585 0.334 0.423

Cluster-wise Jaccard 0.536 0.583 0.255 0.321

Complex-wise Jaccard 0.361 0.380 0.204 0.293

Jaccard FMeasure 0.432 0.460 0.227 0.306

BH-Specificity 0.867 0.901 0.740 0.840

BH-Sensitivity 0.340 0.352 0.136 0.232

BH-FMeasure 0.489 0.506 0.229 0.363

Better measuring values are in bold.
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• Analysis of experimental results on Gavin_2006
network
Table 5 and Table 6 present quality scores of cluster-

ing results generated by different clustering algorithms
from Gavin_2006 networks, compared with gold-stan-
dards of MIPS and CYC2008.
Based on figures in Table 5, COACH has the highest

sensitivity value. The proposed BGCA+BP algorithm
achieves the best PPV, as well as best geometric accu-
racy. The sensitivity value indicates the average fraction
of proteins inside a known complex, which is correctly
grouped together in the generated clustering result. A
large cluster size can artificially increase the sensitivity
value, since a large cluster may contain proteins which
belong to more than one complex. Small size of cluster
may also increase PPV. The high sensitivity value, but
low PPV value, of COACH indicates that the high sensi-
tivity value results from large sized clusters generated by
COACH. Meanwhile, the high PPV value but the poor
sensitivity value of RRW demonstrates that very few
benchmark complexes are uncovered in the results gen-
erated by RRW.

Apart from COACH and RRW, the scores of sensitivity
and PPV obtained by the rest the algorithms are quite
balanced. The BGCA and MCL have higher sensitivity
than MCODE and CFinder, since more benchmark com-
plexes are uncovered according to the number of
matched complexes. The best geometric accuracy sug-
gests that the BGCA+BP can achieve a much better per-
formance as the value of the accuracy reflects the general
performance of a clustering algorithm based on the esti-
mation of the overall correspondence between the set of
generated clusters and the set of gold-standard com-
plexes. When compared with CYC2008 gold-standard, a
similar observation can be obtained, as shown in Table 6.
Homogeneity is the product of the fraction of mem-

bers in a cluster found in an annotated complex by the
fraction of members in the complex found in a cluster.
High homogeneity indicates a bi-directional correspon-
dence between a cluster and a complex. The maximal
value of homogeneity is 1 when a cluster matches per-
fectly with a complex, which means that the cluster con-
sists of all its members identified in the complex.
As shown in Tables 5, and 6, the BGCA+BP achieves

Table 4 Number and average size of generated clusters from different methods on Gavin_2006 network and
Krogan_2006 network.

MCL MCODE CFinder RRW COACH CODEC-w0 CODEC-w1 BGCA+BP

Gavin_2006

No. of clusters 782 100 65 474 612 1082 1005 542

Ave. size 5.4 12.1 16.4 2.1 78.1 17.3 13.8 5.0

Krogan_2006

No. of clusters 1548 73 73 690 1927 8348 2973 511

Ave. size 5.5 25.2 15.1 2.1 181.8 16.1 16.2 5.3

Table 5 Evaluation results on Gavin_2006 network using MIPS gold-standard.

Quality measures BGCA+BP MCL MCODE CFinder RRW COACH CODEC-w0 CODEC-w1

Sensitivity 0.425 0.413 0.271 0.334 0.107 0.484 0.451 0.450

PPV 0.626 0.492 0.332 0.330 0.500 0.140 0.486 0.556

Geometric accuracy 0.516 0.451 0.300 0.332 0.232 0.261 0.468 0.500

Complex-wise Homogeneity 0.364 0.279 0.138 0.109 0.104 0.061 0.250 0.273

Cluster-wise Homogeneity 0.812 0.656 0.601 0.532 0.927 0.024 0.060 0.074

Geometric Homogeneity 0.544 0.428 0.288 0.241 0.311 0.038 0.122 0.142

Precision 0.614 0.334 0.212 0.251 0.848 0.058 0.296 0.400

Recall 0.425 0.413 0.271 0.334 0.107 0.484 0.451 0.450

PR value 0.511 0.372 0.239 0.289 0.302 0.167 0.365 0.424

Cluster-wise Jaccard 0.458 0.245 0.146 0.185 0.543 0.042 0.140 0.178

Complex-wise Jaccard 0.331 0.242 0.115 0.128 0.097 0.231 0.289 0.295

Jaccard FMeasure 0.384 0.244 0.129 0.152 0.165 0.071 0.188 0.222

BH-Specificity 0.837 0.655 0.404 0.619 0.739 0.141 0.213 0.273

BH-Sensitivity 0.425 0.302 0.094 0.130 0.087 0.338 0.610 0.658

BH-FMeasure 0.564 0.413 0.152 0.215 0.156 0.199 0.316 0.386

Better measuring values are in bold.
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the best performance in terms of the geometric homo-
geneity value, which reflects the general agreement
between identified clusters and benchmark complexes,
as well as the quality of a clustering result as a whole.
The precision value of a predicted cluster calculates

the absolute fraction of proteins within a cluster which
are also found in a benchmark complex. The clustering-
wise precision value represents the average precision
values over all clusters. RRW has the highest precision
score, but again very poor recall value, therefore, the
overall PR value for RRW is low, regardless which gold-
standard datasets are used. On the other hand, COACH
obtains the highest recall value but very low precision.
Again, overall, the BGCA+BP achieves the best PR
value.
Jaccard index measures the impact of overlapped sec-

tions on both predicted clusters and the corresponding
benchmark complex, since it considers the proportion
of overlap size in the union set of a predicted cluster
and a benchmark complex. High Jaccard index suggests
that the set of clustering results is very well matched to
the set of benchmark complexes. The second best clus-
ter-wise Jaccard index, the best complex-wise Jaccard
index and also the best FMeasure obtained by the pro-
posed method, suggest that the set of clustering results
of the proposed method is better matched to the set of
benchmark complexes included in all three gold-stan-
dards than other algorithms.
The BH-Sensitivity is used to measure the percentage

of benchmark complexes recovered by generated clus-
ters whose overlap score satisfies the given threshold.
The BH-Specificity value measures fraction of generated
clusters that match benchmark complexes. On
Gavin_2006 network, observed from Tables 5 and 6,

compared with the two gold-standards separately,
BGCA+BP obtains the highest value in BH-Specificity,
while CODEC-w1 has the best BH-Sensitivity. However,
when compared with MIPS gold-standard, BGCA+BP
has best value in BH-FMeasure; while compared with
CYC2008, CODEC-w1 achieves better BH-FMeasure.
The reason may be due to the incompleteness of each
gold-standard.
By achieving best value in most quality measures, it

can be concluded that BGCA+BP outperforms other
algorithms on Gavin_2006 network.
• Analysis of experimental results on Krogan_2006

network
Tables 7 and 8 present the quality scores for cluster-

ing results produced from Krogan_2006 network.
Similar to results of Gavin_2006 network, the BGCA

+BP achieves best value in most of overall quality mea-
sures, such as geometric accuracy, geometric homogene-
ity, PR value, and Jaccard FMmeasure. Again, as for BH-
FMeasure, BGCA+BP has best value when using MIPS
as gold-standard, whereas CODEC-w1 is the best when
comparing with CYC2008 gold-standard.
Though the BGCA+BP does not have all the best

values, it still achieves most of them, which indicates
that BGCA+BP outperforms other clustering algorithms
in terms of the overall performance measurement.
C. Statistical significance of clustering results
This section investigates the estimates of random

expectation of correct grouping by randomising pre-
dicted complexes sets. A set of predicted complexes
from original networks are randomised by shuffling
nodes between different complexes while keeping the
number of complexes, and the sizes of corresponding
complexes, unchanged. The resulting set of permuted

Table 6 Evaluation results on Gavin_2006 network using CYC2008 gold-standard.

Quality measures BGCA+BP MCL MCODE CFinder RRW COACH CODEC-w0 CODEC-w1

Sensitivity 0.480 0.538 0.338 0.390 0.089 0.596 0.584 0.582

PPV 0.709 0.571 0.342 0.365 0.764 0.120 0.511 0.546

Geometric accuracy 0.583 0.555 0.340 0.377 0.261 0.268 0.546 0.564

Complex-wise Homogeneity 0.326 0.295 0.123 0.087 0.088 0.048 0.234 0.272

Cluster-wise Homogeneity 0.896 0.816 0.748 0.613 0.989 0.030 0.086 0.107

Geometric Homogeneity 0.540 0.490 0.303 0.231 0.295 0.038 0.141 0.171

Precision 0.714 0.419 0.268 0.324 0.891 0.066 0.311 0.426

Recall 0.480 0.538 0.338 0.390 0.089 0.596 0.584 0.582

PR value 0.585 0.475 0.301 0.356 0.281 0.198 0.426 0.498

Cluster-wise Jaccard 0.583 0.335 0.208 0.260 0.633 0.053 0.169 0.230

Complex-wise Jaccard 0.380 0.319 0.146 0.139 0.082 0.272 0.362 0.383

Jaccard FMeasure 0.460 0.326 0.172 0.181 0.145 0.088 0.230 0.287

BH-Specificity 0.901 0.815 0.610 0.804 0.875 0.252 0.305 0.459

BH-Sensitivity 0.352 0.315 0.103 0.115 0.079 0.360 0.578 0.691

BH-FMeasure 0.506 0.454 0.176 0.201 0.144 0.297 0.399 0.552

Better measuring values are in bold.
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clusters is then evaluated by quality measures using
gold-standards. If quality scores of original set of gener-
ated clusters are close to those of the random set, it
indicates that the corresponding clustering algorithm
yields a set of predicted complexes which is not signifi-
cantly better than a randomly generated set of
complexes.
The process of creating permuted clusters is as fol-

lows. The original set of generated clusters was concate-
nated into a list of proteins. Then the Fisher-Yates
shuffle [31,32] was applied to the list of proteins. The
procedure of shuffling was repeated 1,000 times, and
then the list was divided into groups in a way that pre-
serves the sizes of original complexes and the number

of complexes. This grouping was then evaluated by each
quality measure. Since the Fisher-Yates shuffle chooses
any possible permutation of a list with equal probability,
the resulting set of permuted clusters can be used to
obtain an unbiased estimate for the expected value of
any chosen quality score.
The permutation process was repeated 1,000 times,

resulting in 1,000 clustering sets. Each clustering set was
evaluated by those quality scores and the average score
corresponding to each metric was calculated. The
p-value is obtained by calculating the number of times
that a randomised set of clustering results had a higher
value in quality scores than that of the original cluster-
ing set, divided by the total number of permutations,

Table 7 Evaluation results on Krogan_2006 network using MIPS gold-standard.

Quality measures BGCA+BP MCL MCODE CFinder RRW COACH CODEC-w0 CODEC-w1

Sensitivity 0.438 0.183 0.219 0.290 0.028 0.564 0.420 0.404

PPV 0.590 0.565 0.152 0.342 0.558 0.094 0.386 0.362

Geometric accuracy 0.509 0.322 0.182 0.315 0.124 0.231 0.403 0.382

Complex-wise Homogeneity 0.323 0.202 0.049 0.078 0.037 0.019 0.226 0.215

Cluster-wise Homogeneity 0.828 0.587 0.409 0.656 1.000 0.002 0.015 0.032

Geometric Homogeneity 0.517 0.344 0.141 0.226 0.192 0.007 0.059 0.083

Precision 0.449 0.355 0.069 0.237 0.750 0.040 0.180 0.175

Recall 0.438 0.183 0.219 0.290 0.028 0.564 0.420 0.404

PR value 0.444 0.255 0.123 0.262 0.144 0.150 0.275 0.266

Cluster-wise Jaccard 0.328 0.203 0.055 0.206 0.528 0.034 0.105 0.115

Complex-wise Jaccard 0.330 0.125 0.049 0.103 0.026 0.162 0.250 0.241

Jaccard FMeasure 0.329 0.154 0.051 0.137 0.049 0.056 0.148 0.155

BH-Specificity 0.824 0.280 0.154 0.808 0.875 0.024 0.212 0.337

BH-Sensitivity 0.361 0.098 0.018 0.100 0.032 0.190 0.845 0.781

BH-FMeasure 0.502 0.145 0.033 0.179 0.062 0.043 0.338 0.470

Better measuring values are in bold.

Table 8 Evaluation results on Krogan_2006 network using CYC2008 gold-standard.

Quality measures BGCA+BP MCL MCODE CFinder RRW COACH CODEC-w0 CODEC-w1

Sensitivity 0.419 0.269 0.275 0.346 0.036 0.660 0.595 0.562

PPV 0.595 0.653 0.135 0.389 0.739 0.076 0.399 0.422

Geometric accuracy 0.499 0.419 0.193 0.366 0.163 0.224 0.487 0.487

Complex-wise Homogeneity 0.221 0.242 0.036 0.063 0.042 0.015 0.232 0.218

Cluster-wise Homogeneity 0.846 0.706 0.474 0.566 1.000 0.003 0.024 0.048

Geometric Homogeneity 0.432 0.413 0.131 0.189 0.205 0.007 0.075 0.102

Precision 0.428 0.406 0.080 0.352 0.797 0.040 0.206 0.238

Recall 0.419 0.269 0.275 0.346 0.036 0.660 0.595 0.562

PR value 0.423 0.331 0.148 0.349 0.169 0.162 0.350 0.366

Cluster-wise Jaccard 0.321 0.259 0.065 0.304 0.598 0.035 0.138 0.170

Complex-wise Jaccard 0.293 0.171 0.054 0.142 0.029 0.194 0.344 0.323

Jaccard FMeasure 0.306 0.206 0.059 0.194 0.055 0.059 0.197 0.223

BH-Specificity 0.840 0.345 0.226 0.800 0.941 0.047 0.324 0.502

BH-Sensitivity 0.232 0.119 0.017 0.090 0.040 0.196 0.857 0.790

BH-FMeasure 0.363 0.177 0.032 0.162 0.076 0.075 0.470 0.614

Better measuring values are in bold.
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which is 1,000 here. If p-value is less than 0.05, it indi-
cates that the high performance achieved by the pro-
posed algorithm is unlikely to occur by chance. In this
study, we use the Bonferonni correction to counteract
the problem of multiple comparisons [33].
Without loss of generality, we only use one gold-stan-

dard dataset, CYC2008. Table 9 displays the expected
values of BGCA+BP on Gavin_2006 network and Kro-
gan_2006 network using CYC2008 gold-standard,
respectively. The quality scores employed to measure
the effect of randomised clusters include the fraction of
matched complexes, geometric accuracy, geometric
homogeneity, PR values, Jaccard FMeasure and BH-
FMeasure.
It can be observed that the average quality scores in

case of Jaccard FMeasure and BH-FMeasure are close to
zero. Though the values of geometric accuracy, geo-
metric homogeneity, and PR value are higher, they are
still very small, compared with those of the original set.
Very low p-values indicate that the original set of clus-
ters is significantly better than the randomised cluster-
ing sets.
D. Robustness of the proposed algorithm
In order to evaluate the robustness of the proposed

algorithms to false positives and false negatives, various
levels of alteration have been made by adding or delet-
ing percentages of edges with respect to the number of
edges in the original Gavin_2006 network. The strategy
of altering graph in [11] is adopted in the study. Increas-
ing fraction of edges (0%, 5%, 10%, 20%, 40%, 80%,
100%) are randomly added to the original graph. Simi-
larly, increasing fraction of edges (0%, 5%, 10%, 20%,
40%, 80%) are randomly deleted from the original net-
work. Specifically, the proportion of edges which are
added or removed is obtained based on the number of
edges in the original graph. Take the Gavin_2006 net-
work as an example, 5% edges are equal to 964 edges
(5% of 19,277 edges). In the experiment, the Network
Analysis Tools (NeAT) [34] has been applied to alter
the network. Note, in the alteration of graphs applied in
the study, self-loops and duplicated edges are not
allowed.

In order to demonstrate the advantage of incorporat-
ing semantic similarity, in the experiment, the perfor-
mance of BGCA in the context of detecting protein
complexes from randomly altered graphs is also pre-
sented. Geometric accuracy and BH-FMeasure were
used to demonstrate the impact on clustering results of
BGCA by introducing noises into the network. Figure 1
and Figure 2 present the impact on geometric accuracy
and BH-FMeasure of the BGCA and BGCA+BP, when
edges were randomly added.
Observation can be made from Figure 1, as for BGCA

+BP, the curve representing the geometric accuracy is
smooth. The geometric accuracy increases slightly first
since 5% edges were added, and the highest value is
obtained when 40% edges were added. The geometric
accuracy starts to decline when more than 40% edges
were added. However, the change in geometric accuracy
is still trivial even when 100% edges were added com-
pared to that in the original graph. The curve repre-
sented that the BH-FMeasure fluctuates slightly in the
interval when edges were added increasingly from 5% to
20%. The best value is obtained when 5% edges were
added and then the BH-FMeasure drops and rises again
when 20% edges were added. When more than 20%
edges were added, the BH-FMeasure declines greatly but
the curve becomes smooth after 80% and 100% edges
were added. With regard to BGCA, the curve represent-
ing geometric accuracy of the BGCA drops drastically as
5% edges were randomly added to the original graph.
When adding 40% edges, the value of geometric accu-
racy of the BGCA falls down to 0, since there are no
generated clusters which match to any benchmark com-
plexes. Similar observations can be obtained from Figure
2. With semantic similarity, the BGCA+BP demonstrate
much more robustnes than the BGCA in the case of
randomly adding edges to the original graph.
Figure 3 and Figure 4 present the impact on geometric

accuracy and BH-FMeasure when randomly deleting
edges from the original graph. The geometric accuracy
of BGCA+BP is affected slightly until more than 40%
edges were deleted from the original graph. The BH-
FMeasure also drops when removing 40% edges from

Table 9 Expected values of evaluation results of randomised clustering of BGCA+BP on Gavin_2006 and Krogan_2006
networks using CYC2008 gold-standard.

Gavin_2006 Krogan_2006

Quality measures Original Random average p-value Original Random average p-value

Geometric accuracy 0.583 0.095 0.000 0.499 0.095 0.000

Geometric Homogeneity 0.540 0.123 0.000 0.432 0.093 0.000

PR value 0.585 0.072 0.000 0.423 0.064 0.000

Jaccard FMeausre 0.460 0.023 0.000 0.306 0.017 0.000

BH-Fmeasure 0.506 0.001 0.000 0.363 0.001 0.000

*p-value is corrected.
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the original graph. The value of geometric accuracy and
BH-FMeasure of the BGCA+BP only drops when more
than 40% edges are removed. It shows that the BGCA
+BP is also robust to edge deletion. As for BGCA, the
trend of curves representing both geometric accuracy
and BH-FMeasure is similar. The curves keep almost
unchanged after a drop when the fraction of deleted
edges is increased from 0% to 5%, demonstrating the
BGCA is relatively robust in the case of edge deletion,
compared with that of edge addition.
From these observations, it can be concluded that by

incorporating semantic similarity, the proposed algo-
rithm is quite robust to the noises in PPI networks.

Conclusions
In this paper, we propose a new algorithm combining
topological features and semantic similarities between
proteins to discover protein complexes in TAP-MS PPI

networks. The proposed algorithm is extended from a
previously proposed algorithm, i.e. BGCA [17]. It has
been tested on two published TAP-MS PPI networks,
Gavin_2006 network and Krogan_2006 network. The
proposed algorithm inherits the main feature of BGCA
which is that it detects protein complexes by taking
co-complex relations into account from TAP-MS data.
Results indicate that by integrating GO-driven similar-
ity knowledge into clustering process, the proposed
algorithm outperforms BGCA as well as several state-
of-art clustering techniques. Not only a higher accu-
racy has been achieved, the proposed algorithm also
significantly improves the robustness of BGCA to the
noise inherent in protein interaction data generated by
TAP-MS.
In this paper, the strategy of combining topological

similarity and semantic similarity in BGCA is developed
by calculating the average value, in which the weights

Figure 1 Robustness of BGCA and BGCA+BP: impact of edge addition on geometric accuracy.

Figure 2 Robustness of BGCA and BGCA+BP: impact of edge addition on BH-FMeasure.
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assigned to semantic similarity and topological similarity
are the same. The behaviour of the algorithm by using
other weighting schemes deserves further investigation.
Moreover, incorporating other types similarity informa-
tion, such as those derived from CC and MF ontologies
[20] into the algorithm for further improvement will be
considered as well.

Quality measures
This section introduces quality measures that have been
used in the study. These quality measures calculate the
degree of agreement between predicted clusters obtained
by clustering algorithms and well-studied clusters in a
reference set. In application to identify complexes in PPI
networks, the reference set can be built from gold-stan-
dard databases, such as CYC2008 [28] and MIPS [27].
Generally, the value of these quality measures falls into

the interval between 0 and 1. The higher the value, the
better quality of clustering and better performance a
clustering algorithm has.
Let C be the set of predicted clusters and M be the set

of benchmark protein complexes. Let n be the number
of clusters in C, and m be the number of complexes,
then a n × m confusion matrix Z is constructed for
comparison between predicted clusters and gold-stan-
dard complexes. The ith row corresponds to candidate
cluster i while the jth column stands for benchmark
complex j. The entry zij represents size of intersection
between ith row and jth column, which is the number of
proteins which are identified as members in cluster i
and also belongs to complex j as well. zi is the size of ith

cluster while zj represents size of jth complex.
• Sensitivity, Positive Predictive Value (PPV), and

Geometric Accuracy

Figure 3 Robustness of BGCA and BGCA+BP: impact of edge deletion on geometric accuracy.

Figure 4 Robustness of BGCA and BGCA+BP: impact of edge deletion on BH-FMeasure.
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Geometric accuracy, which was proposed by Brohée
and Helden [11], measures degree of correspondence
between the set of predicted clusters and the set of
benchmark complexes. Geometric accuracy contains two
other parameters, sensitivity and PPV.
Sensitivity is defined as the proportion of proteins of

benchmark complex j which are identified in the pre-
dicted cluster i. The general sensitivity is obtained by
the weighted average of maximal sensitivity of each
complex over all complexes

Sensitivity = (
∑m

j=1
zjmaxn

i=1(zij/zj))/
∑m

j=1
zj (3)

PPV represents the maximal fraction of a predicted
cluster i belongs to the same benchmark complex. It
indicates the reliability with which predicted cluster i
predicts that a protein belongs to its best-matching
benchmark complex.

∑m
j=1 zij is the marginal sum of the

predicted cluster i.

PPV = (
∑n

i=1
zimax(zij/

∑m

j=1
zij))/

∑n

i=1

∑m

j=1
zij (4)

Geometry accuracy is defined as the geometric mean
of the product general sensitivity and PPV,

Geometric accuracy =
√

Sensitivity × PPV (5)

Accuracy reflects the trade-off between sensitivity and
PPV. A high accuracy value requires a high performance
for both measures. The higher the accuracy values the
better quality of a clustering result.
• Homogeneity
Homogeneity [35], called separation by Brohée and

Helden [11], provides a measure of degree of bidirec-
tional correspondence between a predicted cluster and a
benchmark complex. It is the product of the fraction of
proteins found in a cluster by the fraction of proteins
annotated in the complex, relative to the marginal sum
of the row or the column.
The cluster-wise homogeneity hMcli is defined to repre-

sent the frequency of distribution of proteins detected as
members in the same cluster i over annotated complexes.
The cluster-wise homogeneity hMcli calculates the sum of
the homogeneity value for a cluster i,

hMcli =
∑m

j=1
hMij (6)

Similarly, Complex-wise homogeneity hMcoj shows the
frequency of the fraction of proteins in a same bench-
mark complex j over all the predicted clusters. The com-
plex-wise homogeneity hMcoj is calculated as the sum of
homogeneity value for a benchmark complex, that is,

hMcoj =
∑n

i=1
hMij (7)

To measure the general cluster-wise homogeneity hMcl

and complex-wise homogeneity hMco, the average values
of hMcli and hMcoj over all predicted clusters and bench-
mark complexes are calculated, respectively.

hMcl =

∑n
i=1 hMcli

n
(8)

hMco =

∑m
j=1 hMcoj

m
(9)

To estimate general homogeneity over a clustering,
the general homogeneity hM is defined as the geometric
mean of the product of general cluster-wise homogene-
ity and complex-wise homogeneity.

Homogeneity =
√

hMcl × hMco (10)

Homogeneity reflects relative ratio of distribution of
overlapping intersections between annotated complexes
and generated clusters. When proteins are allowed to be
assigned to multiple clusters, the value cluster-wise
homogeneity will be lower and thus the general homo-
geneity value will be lower.
• Precision, Recall and PR-value
In a clustering task, the precision is defined as the

fraction of True Positives (TPs) which are correctly
labelled items in the predicted class, and recall is the
fraction of TPs in a reference class [29]. In the context
of detection of protein complexes in PPI networks, pre-
cision of cluster i is the number of TPs divided by the
size of this cluster while recall of complex j is the num-
ber of TPs divided by the size of the benchmark com-
plex [29]. Here, TPs are proteins found in the predicted
cluster and also annotated in the benchmark complex
[29]. The number of TPs between cluster i and complex
j is equal to the size of intersection in the confusion
table defined as above. Thus, precision Prij and recall
Reij of cluster i and complex j are computed as follows:

Prij =
zij

zi
(11)

Reij =
zij

zj
(12)

where zi and zj represents size of predicted cluster i
and size of benchmark complex j, respectively. The
maximal precision value for cluster i over all benchmark
complexes is used as precision of the predicted cluster i.

Prcli = maxm
j Prij (13)

The recall for the benchmark complex j is defined as:

Recoj = maxn
i Reij (14)
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Recall reveals how well a benchmark complex is cov-
ered by the corresponding cluster. Precision here is
obtained by dividing the size of the local cluster, mea-
suring percentage of TPs in the local cluster.
A general precision is obtained by calculating the

weighted average of precision over all predicted
clusters.

precision =

∑n
i=1 zi · Prcli∑n

i=1 zi
(15)

The general recall also uses the weighted average of
recall values over all benchmark complexes,

recall =

∑m
j=1 zj · Recoj∑m

j=1 zj
(16)

PR value is the harmonic mean of precision and recall,
used to reflect the degree of TPs predicted in a cluster-
ing as well as general correspondence between predicted
clusters and benchmark complexes.

PR value =
2 × precision × recall

precision + recall
(17)

• BH-Sensitivity and BH-specificity
A different definition of sensitivity from the one which

was proposed by Brohée and Helden [11] was used by
Bader and Hogue [10]. In order to differentiate the sen-
sitivity used by Broheé and Helden [11], the sensitivity
and specificity introduced in this section are referred as
BH-Sensitivity and BH-Specificity, where BH is the initi-
als of the authors, Bader and Hogue [10]. In the set of
predicted clusters, the numbers of TPs, True Negatives
(TN), FPs and FNs depend on how threshold is selected
relative to sets of gold-standard complexes. An overlap
score w was proposed to measure how significantly a
predicted cluster matches a benchmark complex by
Bader and Hogue in 2003 [10].

w =
(zij)

2

zi × zj
(18)

Where zij represents the number of overlapping pro-
teins between the predicted cluster i and the benchmark
complex j, zi is the size of predicted cluster i and zj is
the size of the benchmark complex j.
The number of TP is defined as the number of pre-

dicted clusters with w over a threshold value and the
number of FP is the total number of predicted clusters
minus TP. The number of FN is defined as the number
of benchmark complexes that are not matched by pre-
dicted clusters, while the number of TN is the number
of benchmark complexes that are matched by predicted

clusters with w over a threshold value. The formula
used to calculate sensitivity and specificity are presented
below:

BH − Sensitivity =
TP

TP + FN
(19)

BH − Specificity =
TP

TP + FP
(20)

In this study, the threshold value of w is set to 0.2.
The f-measure value of BH-sensitivity and BH-specificity
is also employed to measure the overall performance of
a clustering algorithm.

BH − Fmeasure =
2 × BH − Sensitivity × BH − Specificity

BH − Sensitivity + BH − Specificity
(21)

• Jaccard index
Extended from Jaccard similarity measure [26], Jaccard

index calculates the fraction of intersection between a
predicted cluster and a benchmark complex over the
union set of the cluster and benchmark complex [29].
In order to measure how well the group of predicted

clusters map to benchmark complexes, for each cluster
i, the benchmark complex j that maximises overlap
between itself and the cluster i is found, that is,

Jaccli = maxm
j=1

zij∣∣zi ∪ zj
∣∣ (22)

Where
∣∣zi ∪ zj

∣∣ represents the size of the union set of
predicted cluster i and benchmark complex j. Then, a
weight average of cluster-wise Jaccard index is calcu-
lated over all predicted clusters, that is,

Jaccl =

∑n
i=1 zi · Jaccli∑n

i=1 zi
(23)

Similarly, as to measure how well a set of benchmark
complexes correspond to the set of predicted clusters, a
complex-wise Jaccard index is calculated. First, for each
benchmark complex j, a maximum Jaccard index is
obtained by

Jaccoj = maxn
i=1

zij∣∣zi ∪ zj
∣∣ (24)

Then, the complex-wise Jaccard index over the set of
benchmark complexes is calculated,

Jacco =

∑m
j=1 zj · Jaccoj∑m

j=1 zj
(25)

Finally, the general Jaccard index is defined as the har-
monic mean of Jaccl and Jacco, that is:
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Jaccard Fmeasure =
2 × Jaccl × Jacco

Jaccl + Jacco
(26)

Jaccard measure reflects the degree of bi-directional cor-
respondence between the set of predicted clusters and the
group of benchmark complexes. Higher Jaccard measure
value indicates that predicted clusters very well match to
the group of benchmark complexes and vice versa.
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