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Highlights: 

• Improved yields of SARS-CoV-2 spike RBD through modification of DNA constructs 

and purification parameters 

• Two versions of RBD show different sensitivity in serology assays 

• Yields of greater than 50 mg/l obtained under optimal conditions 

• Magnetic bead purification technology improves throughput of protein production 
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Abstract 

 

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly 

used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in 

the population. Different versions of the RBD protein have been developed and utilized in 

assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield 

of these high-sensitivity forms of RBD and support the increased demand for this antigen in 

serology assays, we investigated several protein expression variables including DNA elements 

such as promoters and signal peptides, cell culture expression parameters, and purification 

processes. Through this investigation, we developed a simplified and robust purification strategy 

that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated 

that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA.  These 

improved reagents and processes produce high-quality proteins which are functional in serology 

assays and can be used to investigate seropositivity to SARS-CoV-2 infection. 

 

 

Abbreviations 

 

AnSEC – analytical size exclusion chromatography, CV – column volume, ELISA – enzyme-

linked immunosorbent assay, IMAC – immobilized metal ion affinity chromatography,   MWCO 

– molecular weight cut-off, RBD – receptor binding domain, SBP – streptavidin-binding peptide, 

SDS-PAGE – sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SEC – size exclusion 

chromatography, TFF – tangential flow filtration 
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Introduction 

 Serology assays are critical tools in the response to the COVID-19 pandemic [1]. Such 

assays can measure the presence and extent of an immune response and help to identify the 

number of asymptomatic SARS-CoV-2 infections in the population.  Until an effective vaccine is 

developed, these are critical tools in identifying and controlling the spread of the infection. A 

number of serology assays have been published to date, with many employing subdomains of the 

SARS-CoV-2 S protein (hereafter referred to as spike) in ELISA-based assays. The specificity of 

the spike protein [1,2] makes it a clear target for therapeutic interventions such as vaccines or 

monoclonal antibodies, and also for use in serology studies to assess the prevalence of immune 

responses to the virus and therapeutics. In addition to soluble spike trimer, receptor binding 

domain (RBD) is also frequently utilized in these assays [3,4].  RBD, which interacts with the 

extracellular ACE2 receptor and permits entry of SARS-CoV-2 into cells, is considerably 

smaller and more readily generated in recombinant form than the full-length spike. While 

modified production methods have improved the production of soluble full-length spike protein 

[5], RBD production optimization has lagged.  Recently, during development of assays to 

support an NIH-led serosurvey, it was shown that certain forms of RBD resulted in higher 

sensitivity ELISA results [6], presumably due to higher antibody affinity. To explore this further, 

and to optimize production of various RBD reagents, we investigated multiple protein constructs 

for protein production yield and their impact on the sensitivity of serology assays. This work 

allowed us to improve the production yield of the most sensitive form of RBD by modifying 

DNA sequence of the expression vectors, cell culture temperature and harvest time, and 

purification methodology. The final proteins produced were highly pure and functioned as 
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sensitive and specific antigens in ELISAs.  Our data also shows that improvements in serology 

assay sensitivity are caused the addition of a C-terminal streptavidin-binding protein (SBP) tag 

[7], which likely helps orient the protein on ELISA plates for better antibody detection. Taken 

together, these improvements allowed the production of sufficient RBD antigen for more than 

6,000 ELISA plates per liter of culture. 

 

Materials and methods 

DNA 

Original DNA for the expression of Sinai RBD [3] was generously provided by Dr. 

Florian Krammer (Icahn School of Medicine, Mt. Sinai) through BEI Resources, and is referred 

to here as construct X22. Original DNA for the expression of Ragon RBD [4] was generously 

provided by Dr. Aaron Schmidt (Ragon Institute of MGH, MIT, and Harvard), and is referred to 

here as construct X24. Modified DNA for both forms of RBD protein were generated by 

synthesis of Gateway Entry clones with gene optimization for mammalian expression (ATUM, 

Inc.). Entry clones were subcloned using Multisite Gateway recombination (ThermoFisher) into 

pDest-303 (Addgene #159678) with an optimized CMV51 promoter [8]. Final expression clones 

were validated by restriction analysis. The similarities and differences in these constructs are 

outlined in Table 1 and shown schematically in Fig. 1.  Transfection-quality DNA for all 

constructs was produced in-house using the Qiagen Plasmid Plus Maxi Kit per the 

manufacturer’s protocols or was generated at large-scale by Aldevron (Fargo, ND). 
 

 

Figure 1. Comparison of RBD expression constructs. Four different gene designs were utilized 
in this work. All constructs contain the CoV-2 spike RBD domain, either containing amino acids 
319-541 (Sinai, orange) or 319-529 (Ragon, green). All proteins contain a signal peptide for 
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secretion of the RBD from mammalian cells—these leaders are from the CoV-2 spike protein (S, 
yellow) or human tissue plasminogen activator (TPA, cyan). Carboxyterminal tags are present on 
all constructs consisting of a 6 or 8 polyhistidine tag (with or without an HRV-3C protease 
cleavage site, red) and a streptavidin-binding protein tag (SBP, blue).    
 
 

Table 1.  Receptor-binding domain (RBD) constructs used in this work. Listed are the construct 
names/reference numbers, the amino acid region of SARS-CoV-2 spike utilized in the construct, 
the signal peptide (S = SARS-CoV-2 spike, TPA = human tissue plasminogen activator), the C-
terminal tag attached to the RBD region (His6/His8 = polyhistidine tags, 3C = HRV3C protease 
cleavage site, SBP = streptavidin-binding peptide), the promoter used to drive transcription of 
the gene of interest (CAG = chicken beta-actin promoter with human CMV enhancer, HTLV = 
HTLV1 5’ UTR, CMV51 = enhanced cytomegalovirus immediate early promoter/enhancer), and 
the backbone vector utilized. 
 

Mammalian cell culture 

Manufacturer’s protocols were followed for the transfection and culturing of Expi293F 

cells (Thermo Fisher Scientific, Waltham MA). Briefly, 1.7 liters of cell culture at 2.9 x 106 

cells/ml were transfected with preformed Expifectamine:DNA complexes at 1 µg/ml of final 

culture volume. Expression cultures were incubated at 37°C and 8% CO2 in 5-liter Optimum 

Growth Flasks (Thomson Instrument Company, Oceanside, CA) shaking at 105 RPM on an Infors 

HT Multitron Standard orbital shaker with a 2” orbit. Expression enhancers were added 18-20 

hours post-transfection per manufacturer’s instructions, and incubation was continued at 37°C and 

8% CO2 until harvest time of either 72, 96, or 120 hr post-transfection. For temperature shift 

experiments, the incubation temperature was lowered to 32°C immediately after enhancer 

addition.  

 

Tangential flow filtration (TFF) 

Harvested culture supernatants were clarified by centrifugation (4000 x g, 20 min, 4°C) 

followed by filtration (catalog# 12993, Pall Corporation, Port Washington, NY). When used in 

0BConstruct 1BSpike region 2BSig peptide 3BC-tag 4BPromoter 5BVector 

6BX22 (Sinai) 319-541 S (1-14) His6 CAG pCAGGS 

7BM67 (FNL-S) 319-541 S (1-14) His6 CMV51 pDest-303 

8BX24 (Ragon) 319-529 9BTPA (1-22) 10B3C-His8-SBP 11BCMV-HTLV 12BpVRC 

13BM68 (FNL-R) 319-529 14BTPA (1-22) 15B3C-His8-SBP 16BCMV51 17BpDest-303 

18BM69 (FNL-R) 319-529 19BTPA (1-22) 20B3C-His8 21BCMV51 22BpDest-303 
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column chromatography, clarified supernatants were concentrated and buffer exchanged by TFF. 

Specifically, a MasterFlex peristaltic pump (Vernon Hills, IL) fed the clarified supernatant to a 10 

kDa MWCO cassette (catalog# SK1P003W4, MilliporeSigma, Burlington, MA). The clarified 

supernatant was concentrated to 10% of the initial volume, and then buffer exchanged with 5 

volumes of 1x PBS, pH 7.4 (Buffer A, diluted from 10X PBS, catalog #70011069 Thermo Fisher 

Scientific, Waltham, MA). Following buffer exchange, the TFF cassette was rinsed with 200-250 

ml Buffer A, to collect any protein remaining in the cassette. Clarified supernatants for use in batch 

purification were not buffer exchanged. 

 

Standard protein purification 

Chromatography was conducted at room temperature (~22°C) using NGC medium-

pressure chromatography systems from BioRad Laboratories Inc. (Hercules, CA) with exceptions 

noted below. The standard purification protocol employed immobilized metal affinity 

chromatography (IMAC) and size exclusion chromatography (SEC). Specifically, TFF-treated 

culture supernatant was adjusted to 25 mM imidazole and applied to a 10 ml Ni Sepharose High 

Performance nickel-charged column (GE Healthcare, Chicago, IL) previously equilibrated in 

Buffer A + 25 mM imidazole. The flow rate for all steps of the IMAC was 5 ml/min. The column 

was washed in Buffer A + 25 mM imidazole for 4 column volumes (CV) with the final 3 CV 

collected separately as the column wash. The protein was eluted from the column by applying a 

20 CV linear gradient of 25 mM – 500 mM imidazole in Buffer A followed by a 3 CV step elution 

of Buffer A + 500 mM imidazole.  Fractions (5 ml) were collected for all elution steps. Elution 

fractions were analyzed by SDS-PAGE/Coomassie-staining and appropriate fractions were 

pooled. Typical pool volume for a purification from one liter of culture supernatant was ~80 ml.  

The sample was concentrated using Amicon Ultra Spin Concentrators with a 10 kDa 

molecular weight cut off membrane (Millipore, MA, USA), discarding the permeate.  Once 

retentate volume has reached 5 ml, the protein concentration was determined by measuring the 

A280 using a Nanodrop One spectrophotometer (Thermo Fisher Scientific, MA, USA). This protein 

was applied to a 16/600 Superdex 75 preparative size exclusion column (GE Healthcare, Chicago, 

IL) previously equilibrated in Buffer A.  The flow rate was 1 ml/min, and the protein was eluted 

with 1 CV of Buffer A.  1 mL fractions were collected starting at 0.2 CV of elution.  Elution 

fractions were then analyzed by SDS-PAGE/Coomassie-staining and appropriate monomeric 
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fractions were pooled.  Typical pool volume from one liter of starting material was ~15 ml.  The 

protein concentration was determined by measuring the A280 using a Nanodrop One 

spectrophotometer, and final pool was filtered through a 0.22 µm syringe filter with low protein 

binding capacity.  Final protein was snap frozen in liquid nitrogen in 0.5 ml aliquots, and stored at 

-80°C.  

For comparing Ragon protein with and without the SBP fusion tag, a 20 mg sample of the 

X24 protein was removed after the initial IMAC chromatography step and incubated with 2 mg 

rhinovirus 3C protease overnight at 25°C, while dialyzing to 1x PBS, pH 7.4. The next day, this 

sample was subjected to subtractive IMAC washing with 1x PBS, pH 7.4 containing 25 mM 

imidazole. Cleaved X24 eluted in the flowthrough fractions and was pooled and subjected to SEC 

under the same conditions as the full-length X24 protein above.   

For SDS-PAGE analysis of purified proteins, 20 ug of each purified sample was brought 

to a final volume of 20 ul in water. 4 ul of PNGaseF buffer was then added, along with 1 ul 

PNGaseF (ThermoFisher), for a final volume of 25 ul. Samples were incubated at 50°C for 5 min 

and 5 ul of each were electrophoresed using SDS-PAGE/Coomassie-staining and compared with 

proteins which were untreated.  

 

Magnetic Bead protein purification 

For the batch purification from filtered (see above) culture supernatants, 0.5 ml of Ni-

charged MagBeads (GeneScript, Piscataway, NJ), previously equilibrated in Buffer A, were placed 

in the bottom of each of two 50 ml conical tubes and filtered culture medium was added to the 

tubes (40 ml per tube). Tubes were incubated at room temperature on an orbital mixer for 1 hr. 

After incubation, a rare-earth magnet was used to capture the beads to the side of the conical tubes, 

and the medium was removed and saved as “flow through”. Beads were then combined into one 

50 ml conical tube using 5 ml Buffer A, and then 10 ml of Buffer A was added.  This first wash 

was incubated on the orbital mixer at room temperature for 5 min. Beads were collected, the wash 

removed, and a second 15 ml wash step was performed.  Beads were then transferred to a 5 ml 

snap-cap MacroTube (MTC Bio) for elution steps using 3 ml Buffer A. The buffer was then 

decanted.  Protein was eluted from the washed beads by addition of 2 ml Buffer A + 500 mM 

imidazole. Each elution was incubated on the orbital mixer for 30 minutes at room temperature, 

and then collected in a 15 ml conical tube.  This process was repeated for a total of 3 elutions.  
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Samples of each elution fraction were analyzed by SDS-PAGE/Coomassie-staining and 

appropriate fractions were pooled. Typically, all 3 elutions were pooled for a 6 ml total elution 

volume.  The protein concentration was determined by measuring the A280 using a Nanodrop One 

spectrophotometer, and final protein was snap frozen in liquid nitrogen, and stored at -80°C. 

 

Enzyme-linked immunosorbent assay (ELISA) 

In order to assess antigen sensitivity, purified RBD proteins (including cleaved Ragon X24 

lacking the SBP tag) were used as antigens in an ELISA with positive control SARS-CoV-2 

monoclonal antibody to the RBD domain. The ELISA was carried out as previously reported [6] 

using 200 ng per well of the various RBDs and serial 5-fold dilutions of a 2.5 ug/ml stock of SARS-

CoV RBD monoclonal antibody mAb109 (construct kindly provided by the NIAID Vaccine 

Research Center). 

 

Results and Discussion 

To produce SARS-CoV-2 RBD for the development of serology assays, we initially 

tested two constructs previously published in the literature [3,4].  Initial findings showed that the 

construct from the Ragon Institute, although containing less spike protein sequence, resulted in 

more than a 2-fold higher sensitivity in ELISA assays than the Mt. Sinai version of the protein 

[6]. However, the Ragon protein production yield was considerably lower than that of the Mt. 

Sinai protein, even though the Ragon protein contained an additional tag sequence which should 

have produced, by mass, more protein.  This suggested to us that there were suboptimal features 

of the expression system, which could be optimized for the Ragon protein.  We also were 

interested in determining why the sensitivity of the Ragon construct was higher in the ELISA 

assays, and whether this was a result of the different portion of spike RBD in these proteins or 

the added tag sequences.  Therefore, we generated novel DNA expression constructs to optimize 

the purification process and to improve the production yield and quality of these vital protein 

reagents.  
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DNA construct improvements 

Comparison of the expression vectors used for production of the two RBD constructs 

showed that there were few similarities in the composition of the two DNAs, making direct 

comparison difficult.  For this reason, we decided to reclone both proteins with the same C-

terminal tags originally used, but in identical backbone vectors with the same promoter.  To this 

end, we acquired optimized DNA constructs from ATUM, designed to maximize expression in 

HEK293 cells, and transferred those genes to our highly optimized mammalian expression vector 

pDest-303, with a strong CMV51 promoter which provides high-level protein production in 

HEK293 cells. This was done for both the Ragon protein (M68) and the Sinai protein (M67). In 

addition, to further explore possible roles for tagging, we engineered an additional version of the 

Ragon protein which removed the SBP tag (M69).  These 5 constructs are highlighted in Fig. 1, 

and details about their construction are noted in Table 1. 

 

Optimization of protein expression and purification 

Previously, we had optimized production of SARS-CoV-2 soluble spike protein using the 

Expi293 expression system with reduced temperature to enhance protein secretion [5]. A similar 

strategy was employed with RBD proteins, using a 32°C expression for 96 hours to maximize 

production while maintaining high levels of cell viability. We investigated whether longer 

incubation might also enhance protein yield, but harvest at 120 hours post-transfection did not 

improve production, and in some cases, may have actually reduced final yields (data not shown). 

Published protocols for purification of RBD domains often utilize a batch process, which 

generally is less efficient than column chromatography. For this reason, we developed a 

modified approach to that used for soluble spike production, including an initial tangential flow 

filtration step to buffer exchange and concentrate the initial supernatant, followed by a column 

IMAC process with a gradient elution.  Protein was subsequently concentrated and applied to a 

size exclusion column for final polishing. In general, all constructs performed similarly in this 

process regardless of expression level, and all protein was readily captured by the IMAC resin.  

A typical purification is shown in Fig. 2A (IMAC) and Fig. 2B (SEC) for the M68 protein. 
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Figure 2. Representative chromatography fraction analyses and purified proteins.  M – protein 
standards, molecular weights of select standards noted in kDa. A. Coomassie-stained SDS-PAGE 
analysis of fractions from IMAC chromatography of the Ragon M68 protein, S – culture 
supernatant, L – TFF retentate/column load, F – column flow through, W – column wash. 
Fractions pooled are underlined in red. B.  SDS-PAGE/Coomassie staining analysis of fractions 
from SEC chromatography of the Ragon M68 protein, P – IMAC pool, L – concentrated 
pool/column load, numbers represent fraction numbers (every other fraction loaded). Fractions 
pooled for the final protein sample are underlined in red.  C. SDS-PAGE/Coomassie staining 
analysis of final purified proteins. Alternating lanes are without or with the addition of PNGase F 
to remove N-linked glycans.   
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Final proteins from one complete set of purifications are shown in Fig. 2C, and a 

summary of purification yields from multiple independent productions of each protein are 

highlighted in Table 2.  From this data, it is clear that yields from our optimized vector system 

are higher than either original construct.  In the case of the Sinai protein, the yield improvement 

averaged 1.4x, while the Ragon protein levels were increased nearly 4x by these vector 

modifications.  This data is consistent with our expectations based on the promoters used in the 

original vectors and our experience with pDest-303. Notably, the yields of the non-SBP 

containing M69 protein was similar to that of the M67 Sinai construct—all of these proteins are 

nearly identical in size and amino acid sequence and would be expected, under optimal 

conditions, to produce similar levels of protein.  If the SBP-containing M68 is corrected for the 

larger mass of the fusion protein, the 63.6 mg/l yield is effectively the same molar productivity 

as the other constructs, again suggesting that these RBD proteins are being produced at similar 

levels regardless of construct details. Fig. 2C also highlights the glycosylation observed on the 

purified RBD proteins, as clearly noted by the smeared appearance of the purified proteins.  

After treatment with PNGase F to remove N-linked glycans known to be present in spike at 

Asn331 and Asn343, the proteins migrate at a more appropriate molecular weight on the SDS-

PAGE gel and with a more defined appearance.   
 

Table 2.  Protein yields of various RBD constructs using the standard TFF-IMAC-SEC process.  
Numbers represent yields from independent experiments. RBDs represents the same RBD amino 
acid sequence as the Sinai construct, while RBDr represents the same RBD amino acid sequence 
as the Ragon construct. 
 
 

23BCondition 24BProtein Yield (mg/l) 25BMean (mg/l) 

26BX22 (Sinai) 29.6, 30.6, 40.9 33.7 ± 6.2 

27BM67 (RBDs-His6) 45.1, 50.1 47.6 ± 3.5 

28BX24 (Ragon) 8.1, 8.3, 8.6, 11.9, 12.2, 12.6, 18.9 29B11.5 ± 3.8 

30BM68 (RBDr-3C-His8-SBP) 58.5, 58.7, 73.6 31B63.6 ± 8.7 

32BM69 (RBDr-3C-His8) 45.0, 47.7, 55.7 33B49.5 ± 5.6 
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Improved purification yield using IMAC magnetic beads 

Our observations with full-length soluble spike protein [5] suggested that an alternative 

batch purification method utilizing magnetic bead technology could improve yields and 

significantly reduce purification time and cost.  Thus, we used magnetic IMAC beads to capture 

RBD in batch mode from filtered lysates. A typical purification for M68 is shown in Fig. 3A 

where the majority of the protein was bound to the MagBeads and was eluted in the first two 

imidazole-containing fractions. The final proteins purified with this approach were similar in 

terms of quantity and final purity (Table 3 and Fig. 3B) to proteins purified by the 

TFF/IMAC/SEC column process.  This batch process has several distinct advantages over the 

more complex protocol including the elimination of the labor-intensive TFF process, which for 

large-scale transient cultures can take many hours, and reduced time and cost for column 

chromatography. The IMAC beads are also readily scaled across large volumes, making this a 

more consistent approach when culture conditions are varied. It is interesting to note that the 

original Sinai construct (X22) gives nearly double the protein yield using the MagBead process 

than expected from the standard purification. Since protein quality appears similar, this may 

suggest that a significant portion of the Sinai protein is being lost in the standard purification 

during the concentration or SEC steps which are not present in the MagBead production.  Yields 

of the Ragon protein appear to be generally similar in the two processes. 
 
 

Table 3.  Protein yields of various RBD constructs using the MagBead process.  Numbers 
represent yields from independent experiments. RBDs represents the same RBD amino acid 
sequence as the Sinai construct, while RBDr represents the same RBD amino acid sequence as 
the Ragon construct. n/a: not applicable as only one purification was performed. 
 
 

34BCondition 35BProtein Yield (mg/l) 36BMean (mg/l) 

37BX22 (Sinai) 62.1, 72.5 67.3 ± 7.4 

38BM67 (RBDs-His6) 79.8 n/a 

39BX24 (Ragon) 15.6, 19.2, 21.8 40B18.9 ± 3.1 

41BM68 (RBDr-3C-His8-SBP) 78.3 42Bn/a 

43BM69 (RBDr-3C-His8) 58.8 44Bn/a 
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Figure 3. Representative magnetic bead chromatography analysis and purified proteins.  M – 
protein standards, molecular weights of select standards noted in kDa. A. Representative SDS-
PAGE/Coomassie staining analysis of IMAC magnetic bead chromatography of the Ragon X24 
protein. S – culture supernatant, L – filtered culture supernatant/bead load, F – bead “flow 
through”, W – bead washes, E – bead elutions.  B. SDS-PAGE/Coomassie staining analysis of 
MagBead purified protein pools.  
 
 
 
Performance of proteins in serology assays 

We have previously developed and optimized a serology assay using an ELISA format 

[6], which showed that the Ragon version of RBD was more sensitive than the Sinai version.  To 

identify what components of our newly produced RBD proteins might lead to this higher ELISA 

sensitivity, we compared all of the proteins in the serology assay.  Fig. 4 confirms that the Ragon 

proteins (X24, open squares; M68, filled squares) were more sensitive than the Sinai (X22) 

protein (open triangles)—in this case a 5-fold increase in antibody concentrations which give 

equivalent signals. It appears that the C-terminal SBP tag is entirely responsible for this higher 

sensitivity, as the cleaved Ragon X24 protein (open circles) and the Ragon M69 protein lacking 

the SBP tag (filled circles) both display similar low sensitivity as the Sinai RBD. The particular 
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amino acid boundaries of the RBD domain do not seem to play a role in the difference in 

sensitivity based on our results. We propose that the SBP tag interacts with the ELISA plate to 

uniquely position the RBD domain to afford greater accessibility of antibodies to the RBD. It 

would be interesting to see if tags other than SBP might provide the same enhancement, or if 

there is a specific feature of this tag which uniquely results in greater sensitivity.  In any case, we 

demonstrate here that the presence of the SBP tag on these constructs significantly improves 

sensitivity of the assay, making it the optimal choice for use in SARS-CoV-2 serology efforts.   

 

 
 
Figure 4. ELISA sensitivity of purified RBDs. The five RBD proteins, as well as a 3C protease-
treated version of X24, were used to coat ELISA plates which were then treated with positive 
control anti-RBD monoclonal antibodies at the indicated dilutions. All measurements were 
performed in triplicate and means are plotted with standard deviations noted with error bars. 
Measurements are based on absorbance at 450 nm corrected by subtraction of absorbance at 650 
nm. Samples tested were Sinai X22 (open triangles), Sinai M67 (filled triangles), Ragon X24 
(open squares), Ragon X24 cleaved with 3C protease (open circles), Ragon M68 (filled squares), 
and Ragon M69 (filled circles). 

 

We also compared the performance of X24 protein purified using the standard 

purification procedure (Fig. 5, filled squares and solid line) and the MagBead procedure (Fig. 5, 
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open squares and dashed line) and show that both proteins perform equally in the ELISA.  This 

demonstrates that the lower cost and more rapid MagBead purification process can be used to 

generate high-quality proteins for serology assays. 

 

 
 
Figure 5. Comparison of ELISA sensitivity of RBD purified by two different methods. The Ragon 
X24 protein purified by the standard process (open squares, solid line) or the MagBead process 
(filled squares, dashed line) were used to coat ELISA plates which were then treated with 
positive control anti-RBD monoclonal antibodies at the indicated dilutions. All measurements 
were performed in triplicate and means are plotted with standard deviations noted with error 
bars. Measurements are based on absorbance at 450 nm corrected by subtraction of absorbance at 
650 nm.  
 

Conclusions 

In summary, we presented multiple improvements to the production of SARS-CoV-2 

RBD that increase the ability of laboratories to generate this high-quality vital reagent for 

serology assays and other applications.  In particular, we confirmed that the SBP tag present on 

the Ragon RBD construct makes it more attractive as a serology assay substrate due to the higher 

level of sensitivity. Additional work needs to be done to clarify the specific role of SBP in the 

process. Deployment of this reagent for serology assays to determine the prevalence of SARS-

CoV-2 infection are currently underway. 
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