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Based on epidemiological and experimental evidence, the origins of childhood obesity and
early onset metabolic syndrome can be extended back to developmental processes
during intrauterine life. It is necessary to actively investigate antecedent conditions that
affect fetal growth by developing reliable measures to identify variations in fetal fat
deposition and body composition. Recently, the resolution of ultrasonography has
remarkably improved, which enables better tissue characterization and quantification of
fetal fat accumulation. In addition, fetal fractional limb volume has been introduced as a
novel measure to quantify fetal soft tissue volume, including fat mass and lean mass.
Detecting extreme variations in fetal fat deposition may provide further insights into the
origins of altered fetal body composition in pathophysiological conditions (i.e., fetal growth
restriction or fetal macrosomia), which are predisposed to the metabolic syndrome in later
life. Further studies are warranted to determine the maternal or placental factors that affect
fetal fat deposition and body composition. Elucidating these factors may help develop
clinical interventions for altered fetal growth and body composition, which could potentially
lead to primary prevention of the future risk of metabolic dysfunction.

Keywords: DOHaD, fetal ultrasound, fetal body composition, fetal subcutaneous fat, fractional limb volume,
fetal growth restriction, macrosomia, predisposition
INTRODUCTION

Fetal growth is an important predictor of perinatal outcomes. Previous studies have also shown that
birth weight is associated with future risk of obesity and metabolic dysfunction in the offspring.
Barker et al. reported that low birthweight infants are predisposed to cardiovascular disease in
adulthood (1). Maternal undernutrition during pregnancy leads to increased risks of cardiovascular
disease in the offspring in later life (2). Meanwhile, the infants of mothers with gestational diabetes
have increased adiposity (3). Large-for-gestational age (LGA) neonates born to mothers with
gestational diabetes are predisposed to early onset metabolic syndrome (4).

These experimental and epidemiological evidence have shown that the origins of early onset
metabolic syndrome can be extended back to developmental processes during intrauterine life
(Developmental Origins of Health and Disease) (5–7). Therefore, it is necessary to actively
investigate the antecedent conditions that affect fetal growth by developing reliable measures to
identify variations in fetal growth and body composition.
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BODY WEIGHT AND BODY COMPOSITION

Total body weight and height has been traditionally used as the
gold standard for the measurement of body size and nutritional
status. Recently, the concept of body composition has been
introduced, which is composed of fat mass, lean mass, and
bone mineral content.

Neonatal Body Composition
Previous studies on infant body size have mainly relied on height-
andweight-basedmeasures (i.e. weight for length, bodymass index,
or ponderal index). However, these parameters are indirect
measures of fat mass or lean mass, and only moderately correlate
with percent body fat (8). Newborns with decreased percentage
body fat are reported to be at risk of hypoglycemia and short-term
morbidity (9). Small-for-gestational age (SGA) newborns, who are
supposed to be predisposed to thrifty phenotype, have lower body
fat percentage compared to appropriate-for-gestational age infants
(10). Higher neonatal body fat percentage is also associated with
increased adiposity in childhood (11). These reports suggest that
neonatal body composition and body fat percentage could be a
more specific marker of future risk of metabolic syndrome as
compared with birth weight (11, 12).

The body fat percentage of neonates is higher in humans than
in other mammals. It is important for human neonates to
prioritize adipose tissue accumulation because adipose tissue is
an important buffer against limited nutrient supply soon after
birth, and could be utilized as one of the brain’s energy resources
(13). Indeed, the infant brain requires approximately half of the
total energy needs, and ketone bodies derived from adipose tissue
can provide a quarter of this requirement (14). Consequently,
although neonatal fat mass constitutes only 14% of birth weight,
it accounts for a larger variation (46%) in birth weight (15, 16). In
contrast, the ponderal index explains only 22% of the variation in
birth weight and correlates poorly with body fat percentage (16).

Dual-energy X-ray absorptiometry and air displacement
plethysmography have recently been used as gold standards for
measuring body composition and body fat percentage in
infants (17).

Ultrasound-BasedMeasures of Fetal Weight
Fetal ultrasonography is commonly used to evaluate fetal growth
in clinical practice, and most studies use conventional biometry
(estimated fetal weight). Estimated fetal weight has been reported
to be a useful predictor of fetal macrosomia (18), or fetal growth
restriction with decreased percent body fat (19). However, the
estimated fetal weight can fluctuate by approximately 15%
compared to the actual weight and has poor accuracy, especially
for fetuses with growth restriction or macrosomic infants (20). A
possible explanation is that the estimated fetal weight is an indirect
measure of fat mass or lean mass, and has only a modest association
with newborn adiposity (21). However, few studies have
incorporated fetal fat mass or lean mass measures into formulas
that estimate fetal weight. There have recently been remarkable
improvements in the resolution of fetal ultrasonography, which
enables better tissue characterization and quantification of fetal fat
mass and lean mass. Several studies have been conducted to assess
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fetal body composition (22) and its correlation with newborn
adiposity (Table 1).

Ultrasound-Based Measures of Fetal
Body Composition
Histologically, fetal fat is observed in early gestation (29). However,
measures of fetal fat mass or lean mass by ultrasonography are
mostly obtained after 20 weeks of gestation because enlargement
and accumulation of adipocytes accelerate in the second half of
pregnancy (30). Since 70-90% of total body fat in human infants is
subcutaneous and not visceral (31), subcutaneous fat mass is
measured for evaluating fetal adiposity. Fetal fat mass can be
reliably and reproducibly measured using ultrasonography at the
mid-upper arm, mid-thigh, and abdomen (32).

Fetal Fat Mass Measures in the Upper-Arm and Thigh
In 1985, Jeanty et al. reported the measurement of subcutaneous
fat thickness in the arm and thigh (33). This method yields
substantial measurement error because the subcutaneous fat
thickness in the limb is not continuous around the limb. In
1997, Bernstein et al. measured the fat area on the arm and thigh,
instead of the fat thickness at term gestation. The fat area on the
arm and thigh were quantified by subtracting the lean mass area
from the total cross-sectional area at the midpoint of the
humerus or femur. They reported a significant correlation
between the fat area of the limb and newborn fat mass (28).

Fetal Fat Mass Measures in the Abdomen
In previous studies, abdominal subcutaneous fat thickness was
measured as the hyperechoic region anterior to the margins of
the ribs. The widest point was selected in the anterior third of the
abdominal circumference (34). In 1997, Petrikovsky et al.
reported that anterior abdominal wall thickness is useful for
ruling out fetal macrosomia (35). Subsequently, in 1999, Gardeil
et al. measured anterior abdominal wall thickness as a predictor
of fetal growth restriction (34). An increasing amount of
evidence has been gathered over the last 20 years in the
assessment of fetal body composition and fat mass (22).

Fetal Fat Mass Measures in Other Parts
In addition to the three major sites (upper-arm, thigh and
abdomen), fetal fat is deposited in other areas such as the
cheek, ribs, and buttocks (22, 36, 37). Abramowicz et al. has
reported that fetal cheek-to-cheek diameter is useful in the
prediction of birth weight and mode of delivery (36, 38, 39).
Matsumoto et al. reported the fetal nutrition score, derived from
fetal subcutaneous tissue present at face, ribs and buttocks. The
fetal nutrition score significantly correlated with neonatal
nutrition score derived from face, ribs, thigh and buttocks (37).
However, the accuracy of quantitative measurement of fat mass
in these areas has not been validated.

Fetal Fractional Limb Volume
3D ultrasonography refers specifically to the volume rendering of
ultrasound data, and is now widely used in the clinical practice
including prenatal diagnosis. Fetal fractional limb volume
measured by three-dimensional ultrasonography was
July 2021 | Volume 12 | Article 708767

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ikenoue et al. Fetal Growth and Body Composition
introduced by Lee et al., defined as the cylindrical limb
subvolume based on the central 50% of the total humeral or
femoral length (40). It is a reproducible measure for quantifying
fetal soft tissue volume, including fat mass and lean mass (41,
42). Usually, before starting fractional limb volume measures,
sonographers are required to measure 20-30 training data sets.
The learning curve for technically satisfactory measurements of
fractional limb volume is quickly achieved without difficulty
(43). Recently, automated fractional limb volume measures has
also been investigated (44). Fractional limb volume is useful to
improve birth weight estimation (43) and accounts for a greater
proportion of variation in neonatal body fat percentage than
conventional fetal measures such as estimated fetal weight (27).
The growth trajectory of fetal soft tissue volume (especially fat
mass) accelerates early in the third trimester (45, 46), which
coincides with the accelerated growth of fractional limb volume
around 30 weeks of gestation (44, 47, 48). We recently reported
greater fetal fractional arm volume among mothers with
gestational diabetes in late gestation (49).

Maternal-Fetal Factors That Affect Fetal
Body Composition
Maternal pregravid body mass index (BMI) and diabetes are well
known determinants of fetal growth, in particular fetal adiposity
Frontiers in Endocrinology | www.frontiersin.org 3
(50, 51). Infants born to women with higher BMI have increased
percentage body fat as compared to infants born to women with
normal BMI (52, 53). Overweight or obese women with normal
glucose tolerance levels still have infants with increased adiposity
(50). Maternal gestational weight gain and presence of
gestational diabetes have been associated with increased fetal
abdominal subcutaneous fat thickness (54). Moreover, several
biomarkers (maternal systemic interleukin-6, cord blood leptin
and insulin-like growth factor) potentially affect fetal body
composition (55, 56).

Fetal Liver Blood Flow Volume and Infant
Body Composition
Fetal liver blood flow volume has recently emerged as one of the
determinants of fetal growth and subsequent infant body
composition (57, 58). The fetal liver is the primary site where
nutrient interconversion and de novo synthesis occur (59).
Hence, variation in the relative distribution of umbilical
venous blood flow shunting either through the ductus venosus
or through the fetal liver has been proposed as a mechanism of
fetal adaptation to intrauterine conditions (23, 60, 61).

Several studies have been conducted investigating the
association between fetal liver blood flow volume and maternal
pregravid BMI (62), gestational weight gain (63), serum glucose
TABLE 1 | Fetal fat mass measures predicting newborn adiposity.

Author,
publication
year

N Newborn adiposity
measures

Gestational age at fetal
ultrasonography

Fetal biometry Correlation
coefficient

p value Covariates

Parameter Device

Ikenoue et al.
(23)

109 %BF DXA 20, 30 weeks Arm percent fat
area (30 weeks)

0.45 p<0.001 GA, Parity, BMI, GWG, SES,
Ethnicity, Obstetrical complications

Thigh percent fat
area (30 weeks)

0.26 p<0.05

FAST (30 weeks) 0.21 p<0.05
O’Connor
et al. (24)

62 Fat mass ADP 28, 33, 38 weeks FAST (38 weeks) − p<0.001 smoking
Thigh fat thickness
(38weeks)

− p=0.004

Thigh fat thickness
(28weeks)

− p=0.023

Buhling et al.
(25)

172 Skinfold
thickness

Anthropometry* 37− weeks FAST 0.58 p<0.001 BMI, placental site, amniotic fluid
volumeThigh fat thickness 0.64 p<0.001

Knight et al.
(26)

106 %BF ADP 36−40 weeks Arm fat area − p<0.001 −

Lee et al. (27) 87 %BF ADP 38 weeks (mean) Fractional thigh
volume

0.68 p<0.001 Age, parity, GA, sex, ethnicity,
Obstetrical complications

Fractional arm
volume

0.62 −

Estimated fetal
weight

0.55 −

Abdominal
circumference

0.50 −

Moyer-Mileur
et al. (21)

47 %BF ADP 35 week Estimated fetal
weight

0.33 p<0.05 Parity, BMI, GWG, SES

Abdominal
circumference

0.37 p<0.05

Bernstein
et al. (28)

36 %BF Anthropometry* 19−40 weeks Thigh fat area 0.63 p<0.001 Age, Parity, BMI, GA, GWG, sex
Arm fat area 0.45 p<0.05
July 2
%BF, percent body fat; DXA, Dual-energy X-ray absorptiometry; ADP, air displacement plethysmography; FAST, fetal abdominal subcutaneous tissue; GA, gestational age; BMI, body
mass index; GWG, gestational weight gain, SES, socioeconomical status.
*Sum of subcutaneous skinfold thickness.
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level (64–66), and fetal growth restriction (67). More recent
report showed the correlation between fetal liver blood flow
volume and placental corticotrophin releasing hormone, which is
a paracrine determinant of the placental vasculature (68).
Considering these previous reports, assessing fetal liver blood
flow volume may help better understand the mechanisms
influencing fetal growth and body composition.
FUTURE PERSPECTIVES

Further studies are warranted to determine the association
between ultrasound-based measures of fetal body composition
and metabolic dysfunction in later life. It is also important to
investigate the factors (maternal demographic background,
metabolic status including dyslipidemia and dysglycemia, and
placental transporters of the nutrients) that affect fetal body
composition and fat deposition (69).

Fetal fat mass and fractional limb volume could also be
surrogate markers of fetal nutritional status, to distinguish
constitutionally small/large fetus from malnourished/
overnourished fetus. Physiological diversity and heterogeneity
in fetal growth velocity patterns (especially in the third trimester
of gestation) has been reported (70). Additionally. the growth
trajectory of fetal soft tissue volume (especially fat mass)
accelerates early in the third trimester (45, 46). Based on these,
sequential measures of fetal fat mass and fractional limb volume
in the third trimester (e.g. every 2-4 weeks) could be clinically
useful to distinguish constitutionally small/large fetus from
malnourished/overnourished fetus. These can help better
understand the “thrifty” or “drifty” phenotype of the fetus,
both of which are predisposed to the metabolic syndrome in
Frontiers in Endocrinology | www.frontiersin.org 4
later life. Further studies should be conducted to evaluate how
these findings translate into clinical interventions for altered fetal
growth and body composition. This could potentially lead to the
primary prevention of future risk of metabolic dysfunction.
CONCLUSION

An ultrasound-based measure of fetal fat mass has been
established that provides new insights into the evaluation of
fetal growth and body composition, and its relationship with
newborn adiposity. The ability to detect extreme variations in
fetal fat deposition may help understand alterations in fetal body
composition in pathophysiological conditions, such as fetal
growth restriction or fetal macrosomia. Further studies are
warranted to elucidate the maternal or placental factors that affect
fetal fat deposition and newborn body composition. Elucidating
these factors could help develop clinical intervention strategies for
altered fetal growthandbodycomposition,whichpotentially lead to
primary prevention of the metabolic dysfunction in later life.
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