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Abstract

Tumor stratification plays an important role in cancer diagnosis and individualized treatment. Recent developments in high-throughput
sequencing technologies have produced huge amounts of multi-omics data, making it possible to stratify cancer types using multiple
molecular datasets. We introduce a Network Embedding method for tumor Stratification by integrating Multi-omics data. Network
Embedding method for tumor Stratification by integrating Multi-omics pregroup the samples, integrate the gene features and somatic
mutation corresponding to cancer types within each group to construct patient features, and then integrate all groups to obtain
comprehensive patient information. The gene features contain network topology information, because it is extracted by integrating
deoxyribonucleic acid methylation, messenger ribonucleic acid expression data, and protein–protein interactions through network
embedding method. On the one hand, a supervised learning method Light Gradient Boosting Machine is used to classify cancer types
based on patient features. When compared with other 3 methods, Network Embedding method for tumor Stratification by integrating
Multi-omics has the highest AUC in most cancer types. The average AUC for stratifying cancer types is 0.91, indicating that the patient
features extracted by Network Embedding method for tumor Stratification by integrating Multi-omics are effective for tumor stratification.
On the other hand, an unsupervised clustering algorithm Density-Based Spatial Clustering of Applications with Noise is utilized to divide
single cancer subtypes. The vast majority of the subtypes identified by Network Embedding method for tumor Stratification by integrating
Multi-omics are significantly associated with patient survival.
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Introduction
Cancer is generally due to a variety of factors under the occur-
rence of somatic variation, which can lead to the cell growth of
abnormal regulation and the formation of abnormal lesions
(Zhong et al. 2021). There are differences in cellular morphology
and tissue structure between neoplastic and normal tissues.
Benign neoplasms are often present relatively low atypia and
same with the normal tissues from which they originate, while
malignant neoplasms are present relatively high atypia (Liu et al.
2021). In recent years, the development of next-generation se-
quencing technologies and the development of several multicen-
ter cancer exome/genome projects, The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(Chang et al. 2013; Jennings and Hudson 2016), provide a large
amount of omics data, such as gene expression data, copy num-
ber variation, burst, and deoxyribonucleic acid (DNA) methyla-
tion data. Thus, the rapid accumulation of multi-omics tumor
data has brought new opportunities and challenges to study sys-
tems biology from multilevel (Ruan et al. 2019).

The stratification of tumors into clinical and biological sub-
types benefits precision oncology. For example, an entropy-based
consensus clustering (ECC) method (Liu et al. 2017) for patient

stratification fuses multiple base partitions into a consensus
model using an entropy-based utility function. Importantly, nu-
merous data-driven approaches for classifying cancers based on
diverse clinical data have been proposed, such as multiple gene
classifiers for breast cancer prognosis based on gene expression
profiles (Reis-Filho and Pusztai 2011), neural network-based sur-
vival prediction for different breast cancer subtypes by combining
with clinical information including tumor size and axillary lymph
node status (Lundin et al. 1999), and skin cancer classification
based on imaging data using deep neural network algorithms
(Esteva et al. 2017).

Integrating multiplatform molecular data, such as gene ex-
pression data, miRNA expression data, and DNA methylation
data, can effectively identify cancer subtypes (Liang et al. 2021),
which has been proven to be more powerful than a single data
type (Wang et al. 2014). Multiple strategies have posited for the in-
tegration of multiple sets of data. One strategy is to analyze each
data type individually before integrating multiple sets of data
(Shen et al. 2009; Mo et al. 2013), but this strategy cannot capture
relationships between same-origin data. Scluster (Ge et al. 2017)
and joint and individual variation explained (Lock et al. 2013) can
capture the association information both between and within
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multiple data simultaneously, but they are sensitive to feature
selection. To effectively extract shared and complementary infor-
mation concealed in a variety of biological data types, more sys-
tematic and integrated methodologies are required (Zhao and
Yan 2020). However, biomolecular networks contain many differ-
ent layers and different organizational forms in biological sys-
tems, which have been widely used in cancer research (Leiserson
et al. 2015; Horn et al. 2018; Liu et al. 2020; Zhang and Wang 2022).
Therefore, network-based strategy is an effective method to ana-
lyze and integrate multi-omics data (Ma’ayan 2011; Zhao et al.
2015; Zhu et al. 2015; Lee et al. 2016).

The cancer somatic mutation spectrum can be integrated into
biomolecular networks (Cheng et al. 2014). Cancer evolution may be
influenced by somatic mutations in cancer driver genes that cause
alterations in other genes. Hofree et al. posited a network-based
stratification (NBS) method, which applies network propagation to
discover cancer subtypes by gathering patients with comparable
network mutations (Hofree et al. 2013). The hypothesis is that if the
mutated genes of 2 tumors are located in similar network regions,
they may be very similar. Chuang Liu et al. proposed a network
embedding-based stratification (NES) approach for identifying
clinically relevant patient categories from the somatic mutation
spectrum of a large number of patients (Liu et al. 2021). Therefore,
we can analyze each patient based on their somatic mutation
spectrum and the similarities among patients to stratify tumors.

In this work, we introduce a network embedding method for
tumor Stratification by integrating Multi-omics data, called
NESM. NESM pregroup the samples, integrate the gene features
and somatic mutation corresponding to cancer types within each
group to construct patient features, and then integrate all groups
to obtain comprehensive patient information. The gene features
contain network topology information, because it is extracted by
integrating DNA methylation, messenger ribonucleic acid
(mRNA) expression data and protein–protein interactions (PPIs)
through network embedding method. First, we cluster the sam-
ples with DNA methylation and mRNA expression data and cal-
culate the Pearson correlation between genes in each cluster.
Then, the gene pairs with strong correlation are preserved in PPI.
Next, patient features are constructed by integrating correspond-
ing gene features and somatic mutation profiles of cancer types.
Finally, a supervised learning method Light Gradient Boosting
Machine (lightGBM) is used to classify cancer types based on pa-
tient features, while an unsupervised clustering algorithm
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is utilized to divide single cancer subtypes.

Materials and methods
Datasets
The DNA methylation data, mRNA expression data, somatic mu-
tation data, and patient clinical data employed in the study are
all downloaded from the TCGA database (Wang et al. 2016). We
consider 14 cancer types with a total of 5,290 samples (details
in Table 1). We collect 5 proven human protein–protein interac-
tomes: (1) by combining 2 publicly available high-quality
yeast-two-hybrid (Y2H) datasets, binary PPIs were investigated by
high-throughput Y2H systems (Rolland et al. 2014; Luck et al.
2020); (2) BioPlex V2.016 data on protein complexes discovered by
strong affinity purification mass spectrometry techniques
(Huttlin et al. 2015); (3) Low-throughput or high-throughput ex-
perimental tests based on literature from KinomeNetworkX
(Cheng et al. 2014), Human Protein Resource Database (Peri et al.
2004), DbPTM 3.0(Lu et al. 2013), PhosphoNetworks (Hu et al.

2014), and Phospho.ELM (Dinkel et al. 2011); (iv) low-throughput
experiments from Signa-Link2.0 are used to create a signaling
network (Fazekas et al. 2013); and (v) IntAct (Orchard et al. 2014),
InnateDB (Breuer et al. 2013), and low-throughput tests based on
literature or protein 3-dimensional structures from BioGRID
(Chatr-Aryamontri et al. 2015). All genes correspond to Entrez ID
and duplicate PPI pairs are removed.

The overview of NESM is illustrated in Fig. 1. It consists of 3
parts: (1) Samples are clustered using DNA methylation and
mRNA expression data. And the Pearson correlation between
genes is calculated in each cluster. Then, the gene pairs with
strong correlation are preserved in PPI. Next, the network embed-
ding is performed using the struc2vec model. (2) The gene feature
generates in step (1) are combined with the somatic mutation
spectrum of patients to construct patient features. (3) Patients
constructed in step (2) are divided using machine learning meth-
ods and validated by survival curves.

Network embedding
The interactions between genes are reflected in the PPI network.
To better mine the features of genes in the PPI network, we adopt
the struc2vec model (Ribeiro et al. 2017) for the vectorization pro-
cess of PPI network nodes. The Struc2vec model encodes struc-
tural similarity by constructing a multilayer graph and generates
structural context for nodes. Compared with most algorithms, it
can find distant but structurally similar gene pairs, which is
more conducive to constructing similar genetic features of
patients. The struc2vec model’s primary steps are as follows:

Compute structural similarity
The structural similarity f ðx; yÞbetween each pair of nodes x and y
can be denoted as:

fkðx; yÞ ¼ fk�1ðx; yÞ þ gðsðRkðxÞÞ; sðRkðyÞÞÞ;

gðsðRkðxÞÞ; sðRkðyÞÞÞ ¼
maxðsðRkðxÞÞ; sðRkðyÞÞÞ
minðsðRkðxÞÞ; sðRkðyÞÞÞ

� 1;
(1)

where RkðxÞ represents the set of vertices with kðk � 0Þ distance
from the vertex x,sðRkðxÞÞ represents the order sequence of vertex
set RkðxÞ, and gðsðRkðxÞÞ; sðRkðyÞÞÞ > 0is a function measuring the
distance between order sequence RkðxÞand RkðyÞ and f�1 ¼ 0.

Construct a hierarchical weighted graph
The edge weights of 2 nodes in the same layer are defined as:

Table 1. Fourteen cancer types and corresponding sample
numbers.

Cancer types Patient
number

BLCA Bladder urothelial carcinoma 406
BRCA Breast invasive carcinoma 750
CESC Cervical squamous cell carcinoma 302
COAD Colon adenocarcinoma 278
HNSC Head and neck squamous cell carcinoma 504
KIRC Kidney renal clear cell carcinoma 263
LIHC Liver hepatocellular carcinoma 369
LUAD Lung adenocarcinoma 453
LUSC Lung squamous cell carcinoma 366
READ Rectum adenocarcinoma 91
SKCM Stomach adenocarcinoma 468
STAD Stomach adenocarcinoma 369
THCA Thyroid carcinoma 498
UCEC Uterine corpus endometrial carcinoma 173
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wkðx; yÞ ¼ e�fkðx;yÞ; k ¼ 0; 1; . . . k�; (2)

where k�denotes the original network’s diameter.
The same nodes belonging to different levels are connected by

directed edges. For a node in the layer k, it will be linked to a node
corresponding in the layer ðk� 1Þand layer ðkþ 1Þ. The edge
weight is defined as:

wðxk; xkþ1Þ ¼ logðCkðxÞ þ eÞ;
wðxk; xk�1Þ ¼ 1;

(3)

where CkðxÞ is the number of edges at the k layer whose edge
weight is greater than the average edge weight of the edge con-
nected to x.

Generate node sequence
We use the biased random walk to carry out random walk in the
weighted multilayer graph. It is assumed that the walk takes
place in the current layer with the probability of q and jumps to
other layers with the probability of ð1� qÞ. If it is determined to
walk in the current layer, let it be in the layer k, then the probabil-
ity from node to node is defined as:

pkðx; yÞ ¼
e�fkðx;yÞ

ZkðxÞ
; (4)

where ZkðxÞ ¼
P

y6¼xe�fkðx;yÞis the normalized factor x in the kth
layer. Through the random walk, each sampled node is more in-
clined to choose the node with high similarity to the current node

Fig. 1. The overview of NESM.(a) Samples are divided into groups using DNA methylation and mRNA expression data. Pearson correlation is calculated
among genes in the group. The gene pairs with strong correlation are then preserved in PPI. Next, the network embedding is performed using the
struc2vec model. (b) The gene feature generates in step (a) are combined with the somatic mutation spectrum of the patient to construct the patient
features. (c) The patients constructed in step (b) are partitioned using machine learning methods and verified by survival curves.
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structure. If switching to other layers, the probability of selecting
ðk� 1Þand ðkþ 1Þis defined as:

pkðxk; xk�1Þ ¼
wðxk; xk�1Þ

wðxk; xk�1Þ þwðxk; xkþ1Þ
pkðxk; xkþ1Þ ¼ 1� pkðxk; xk�1Þ

(5)

Each random walk sequence in this study has a length of 80
steps. In addition, for each node, create 20 random walk sequen-
ces (Fig. 1a). The Skip-Gram model (Mikolov et al. 2013) is applied
to train node sequences while creating them. A 128-dimensional
feature is contained in each gene.

Constructing patient features
To better describe patients, we use mutated genes to construct
patient features. We find that the frequency of genes mutations
is different in different cancers. As illustrated in Fig. 1b, some
genes are mutated in all cancers, while others are mutated only
in certain cancers. Therefore, we define a weight to balance the
effects of different genetic mutations. The weight is defined as:

wðnÞ ¼ viðnÞ
uðnÞ ; (6)

where uðnÞis the total number of gene nmutations in the 14 can-
cers, and viðnÞ is the total number of gene nmutations in cancer
vi. We create a new 128-dimensional feature by fusing mutant
genes from the same sample in the same cluster. Finally, the
identical samples are spliced across all clusters to create a 1,280-
dimensional vector that represents patient features.

Supervised classification and unsupervised
clustering models
The constructed patient features are classified using the
lightGBM (Ke et al. 2017) classification method, which is a super-
vised approach based on Gradient Boosting Decision Tree (Chen
and Guestrin 2016). When classifying cancer types, tumors with
the same cancer are taken as positive samples and tumors with
other cancers are taken as negative samples. For dichotomies, we
use the AUC (Area Under Curve) value as the evaluation index of
classification performance. AUC is the area under the Receiver
Operating Characteristic (ROC) curve, which is an evaluation in-
dex to evaluate the merits of a dichotomous model.

We use DBSCAN clustering to cluster different subtypes of
same cancer, which is an unsupervised density clustering
method (Ester et al. 1996). Given the neighborhood radius d, the
threshold of the number of data objects in the neighborhood
MinPts, for the cluster M (temporary), the domain of pðp 2 NÞcan
be calculated using the formula:

NdðpÞ ¼ fq 2 Mjdðp; qÞ � dg; (7)

where the distance between the node p and qis denoted by dðp; qÞ.
If NdðpÞ � MinPts,p is the central point.

Results
Pan-cancer classification
In this work, we randomly choose 14 cancer types, but we are not
limited to 14, from the TCGA database to collect the correspond-
ing clinical information, mRNA expression data, DNA methyla-
tion data, and gene mutation data. We preprocess data for each
cancer type by obtaining common samples containing all 3 data,

normalizing the mRNA expression data and averaging the meth-
ylation sites on the same gene. Then, a total of 5,290 samples
with gene mutation, DNA methylation, and mRNA expression
data in 14 cancer types are obtained (details in Table 1). We gen-
erate features by integrating the list of mutated genes and the ge-
netic features obtained through network embedding. Here, each
patient is represented by a feature of 1,280 dimensions. To view
the distribution status of 14 cancer patients, we visualize patients
with 14 cancer types using the t-distributed stochastic neighbor
embedding algorithm (Van der Maaten and Hinton 2008) and rep-
resented by different colors. We find that most patients of the
same type tended to cluster together (Fig. 2). This is due to the
fact that different cancer types have different mutation frequen-
cies (Fig. 1b), and patients with the same cancer type are more
likely to cluster together, while patients with different cancer
types are separated.

We use the lightGBM classification algorithm to predict the
patient subpopulations and patient features as input of the algo-
rithm to test the feasibility of NESM. When identifying cancer
types, the corresponding cancer patients are positive samples,
and other cancer patients are negative samples. In the case of co-
lon adenocarcinoma (COAD), patients in COAD cancer are con-
sidered as positive samples, while patients from other cancers
are negative samples. By using 5-fold cross validation, the posi-
tive and negative samples are separated into training and testing
sets. The 5-fold cross validations perform 100 times and the aver-
age of the results is the final AUC value. Moreover, we compare
with 3 latest methods: NES, NBS, and ECC methods. As shown in
Fig. 3, our method has obvious advantages in bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA), and COAD
cancer types. It is slightly lower than the NBS method in cervical
squamous cell carcinoma (CESC) and lung adenocarcinoma
(LUAD) cancer types and slightly lower than the NES method in
uterine corpus endometrial carcinoma (UCEC) cancer. On the
whole, our method is better than the other 3 methods.
Furthermore, we show that using a single omics data for classifi-
cation is less effective than using multi-omics fusion (Fig. 4).

Stratification of specific cancer subgroups
Another aim in this work is to classify patients with the same
cancer type into the corresponding subtypes. We assemble clinical
information on patients with 14 cancer types from the TCGA data-
base and obtain staging information to assess the stratification of

Fig. 2. Visualization of patients using t-SNE.
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tumor mutations. The tumor stage refers to the primary tumor
and the extent of intraindividual spread. In general, the more ex-
tensive the spread, the worse the prognosis. The tumor-node-
metastasis (TNM) staging system is the most widely utilized
around the world. After T, N, and M are determined in TNM stag-
ing, corresponding general staging can be obtained, namely stage
I, II, III, and IV. The stage I COAD tumor is taken as an example,
and the stage I COAD tumor is labeled as a positive sample.
Nonstage I COAD tumor markers are negative samples. We find
that the average AUC of most tumor stages is higher than 0.75,
while the average AUC of kidney renal clear cell carcinoma (KIRC)
tumor stages is 0.66. Figure 5 shows our comparison with the NES
method in COAD, BRCA, head and neck squamous cell carcinoma
(HNSC), and lung squamous cell carcinoma (LUSC) data. Under
COAD data, COAD outperforms NES in all cases. Under BRCA data,
NESM is higher than NES at stages I, II, and III. Under HNSC data,
NESM is higher than NES at stages I, II, and IV. Under LUSC data,
NESM is higher than NES at stages I, III, and IV. In summary, our
method has some advantages. (Supplementary Fig. 1 illustrates
the staging results of 14 tumors.)

To test the algorithm’s robustness, we evaluate the parame-

ters involved in the algorithm. In our method, 2 main parameters

affect the algorithm: initial clustering and weight screening. We
find that the time cost of the algorithm increases with the in-
crease of parameter value. Therefore, we take a as 3, 4, and 5 and
bas 0.4, 0.5, and 0.6, respectively, for discussion. When parameter
ais 3, 4, and 5, the corresponding AUCs are 0.89, 0.90 and 0.91, re-
spectively. When parameter bis 0.4, 0.5, and 0.6, the correspond-
ing AUCs are 0.90, 0.91, and 0.90, respectively. The AUC values
under different parameters are given in Fig. 6, and the small fluc-
tuation range evidences that NESM is robust.

Based on the above studies, we believe that patients with simi-
lar clinical information may be more inclined to cluster together.
This means that we can obtain the optimal cluster of patients
through an unsupervised learning algorithm, that is, patients are
subdivided. We use the DBSCAN clustering algorithm to cluster
the same cancer patients. The number of clusters matches the
number of subtypes reported in the literature when it comes to
identifying medical tumor subtypes. Taking CESC as an example,
it is divided into 2 subtypes according to clinical and endocrine
features (divided into—type I and type II) or histopathological
features (divided into endometrioid, serous or clear cell adeno-
carcinoma). We generate 2 groups of patients with endometrial

carcinoma (CESC) in the data. We also evaluate the clustering

Fig. 3. The AUC values of our NESM method are compared with those of ECC, NBS, and NES methods for 14 cancer types.

Fig. 4. The AUC values are compared under the NESM framework using mRNA expression, methylation, and multi-omics data.
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Fig. 5. AUC of patients with NESM and NES tumor stages is compared in COAD, BRCA, HNSC, and LUSC cancer types.

Fig. 6. The line chart shows the effect of NESM on the classification of 14 cancers under different parameters.
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results by calculating the Silhouette Coefficient and Calinski–
Harabasz Index (Supplementary Table 2). For the vast majority of
cancer types, patients are closely distributed in the same popula-
tion. Furthermore, we assess patient survival. As can be seen
from the Kaplan–Meier survival diagram in Fig. 7, survival rates
of the identified subtypes significantly differ from time and prob-
ability. For example, the survival times of the 2 CESC subtypes
have noteworthy differences (P ¼ 7� 10�3). We provide COAD,
CESC, and BRCA clustering results in Fig. 7 and carry out survival
analysis for each subtype. The lower P-values indicate that the
subtypes identified by NESM are reliable. In addition, we provide
clustering and survival analyses (P < 0:05) for other cancers in
Supplementary Figs. 2 and 3. Across 14 cancer types, the majority
of cancer subtypes identified by NESM are significantly associ-
ated with patient survival.

Discussion
Cancer is a multifaceted illness caused by both hereditary and

nongenetic components. With the development of technology,

multi-omics data has recently been widely used for various can-

cer types. In this work, NESM constructs patient features by inte-

grating corresponding gene features and somatic mutation

profiles of cancer types. Since network topology information is

extracted by integrating DNA methylation, mRNA expression

data and PPIs through network embedding method, it is con-

tained though the gene features. We apply supervised classifica-

tion algorithms to classify pan-cancer and individual cancer

stages. The experimental results show that the patient features

extracted by the NESM method are effective for tumor stratifica-

tion. When cancer subtypes are subdivided, the vast majority of

Fig. 7. The results of tumor mutation stratification in COAD, CESC, and BRCA cancers. At the left, patient clusters are presented, with dense patches
indicating that comparable individuals should cluster into the same subtype. Survival analysis of patients with different subtypes is shown on the
right, and P-values are calculated based on the log-rank test.
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subtypes identified by the NESM method are significantly associ-
ated with patient survival. NESM extracts features mainly from
network topology, which is not considered by most methods.

It allows better classification and subdivision of cancers into
subtypes than other methods, but it still has some limitations.
For example, the choice or construction of a PPI network may
have an impact on the NESM model. In addition, the rate of so-
matic mutation varies greatly among different tumor types.
Some tumor types [such as stomach adenocarcinoma (STAD),
UCEC, and others] have a high mutation rate, while others have a
low mutation rate [such as rectum adenocarcinoma (READ) and
BRCA]. In the current NESM framework, we only integrate normal
tumor samples that match somatic mutation profiles, DNA
methylation, and mRNA expression data. Integration of other
types of omics data, including RNA sequencing, individual pa-
tient proteomics, and whole-genome sequencing, may further
improve the NESM model. Second, the framework of the method
is to cluster patients based on patient features extract from spe-
cific data sets. This framework can be used to address the tumor
stratification problem using a variety of additional algorithms.
For example, we can use a graph convolution neural network to
improve the prediction accuracy and use other clustering algo-
rithms, including hierarchical clustering and Gaussian mixture
model clustering. In future work, it will provide some clues for
precision oncology and clinical applications.

Data availability
The code of NESM is available at https://github.com/FengLi12/
NESM. Mutation data for PPI and BLCA, BRCA, CESC, COAD,
HNSC, KIRC, liver hepatocellular carcinoma, LUAD, LUSC, READ,
stomach adenocarcinoma, STAD, thyroid carcinoma, and UCEC
are obtained from the literature: doi:10.1093/bioinformatics/
btaa1099. DNA methylation and mRNA data are obtained from
https://xenabrowser.net/datapages/.
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