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Abstract

Kidney fibrosis is the hallmark of chronic kidney disease progression, however, currently no 

antifibrotic therapies exist. This is largely because the origin, functional heterogeneity and 

regulation of scar-forming cells during human kidney fibrosis remains poorly understood. Here, 

using single cell RNA-seq, we profiled the transcriptomes of proximal tubule and non-proximal 

tubule cells in healthy and fibrotic human kidneys to map the entire human kidney in an unbiased 

approach. This enabled mapping of all matrix-producing cells at high resolution, revealing 

distinct subpopulations of pericytes and fibroblasts as the major cellular sources of scar forming 

myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single 

cell RNA-seq and ATAC-seq experiments in mice, and spatial transcriptomics in human kidney 

fibrosis to functionally interrogate these findings, shedding new light on the origin, heterogeneity 

and differentiation of human kidney myofibroblasts and their fibroblast and pericyte precursors at 

unprecedented resolution. Finally, we used this strategy to facilitate target discovery, identifying 

Nkd2 as a myofibroblast-specific target in human kidney fibrosis.

Chronic kidney disease (CKD) affects more than 10% of the world population. The final 

common pathway of kidney injury is fibrosis and its extent is inextricably linked to clinical 

outcomes.1,2 No approved therapies exist and the cellular origin, functional heterogeneity 

and regulation of scar-producing cells in the human kidney continues to be debated.1,2 

Using single cell (sc)RNASeq, we profiled ~135,000 human and mouse kidney cells 
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during homeostasis and fibrosis, allowing the dissection of heterogeneity of extracellular 

matrix (ECM)-producing cells at high resolution. We identified multiple subpopulations of 

mesenchymal cells as major contributors to human kidney fibrosis, whereas injured tubular 

epithelia, endothelium and monocytes only exhibited minor ECM expression. Genetic 

fate-tracing and time-course scRNA-seq and ATAC-seq experiments in mice, and spatial 

transcriptomics in human kidney fibrosis, validated these findings, shedding new light on the 

origin and regulation of human kidney myofibroblasts. This approach also identified novel 

candidate therapeutic targets, such as the myofibroblast specific naked cuticle homolog 2 

(Nkd2).

Single cell atlas of human chronic kidney disease

To understand which resident human renal cell types secrete ECM during homeostasis and 

CKD, we generated a single cell map of kidneys with a focus on the tubulointerstitium. 

Over 80% of renal cortical cells are proximal tubule epithelial cells (PT) and thus dominated 

previous single cell maps, masking other populations.3 We therefore sorted for viable, non 

PT (CD10-) and CD10+ PT to map the entire kidney (Extended Data Fig. 1a-b). While 

CD10 is also expressed by other cell types, this strategy allows an enrichment/depletion 

of PT. Both CD10+ and CD10- fractions from 13 patients with CKD due to hypertensive 

nephrosclerosis (n=7; estimated Glomerular Filtration Rate, eGFR>60 and n=6; eGFR<60) 

were subjected to scRNAseq (Extended Data Fig. 1a-i and Table 1). We profiled 53,672 

CD10- cells from 11 patients, (n=7 eGFR>60; n=4 eGFR<60, Table 1). To integrate the data 

across patients, we employed an unsupervised graph-based clustering method and identified 

50 different CD10- cell clusters represented in both eGFR groups (Fig. 1a-d). Our strategy 

allowed us to appreciate the heterogeneity of the renal interstitium including identification of 

rare cell types such as Schwann cells (Figs. 1a-d, Extended Data Figs. 1j-u, 2a-d).

Next, 33,690 CD10+ PT cells were profiled (5 patients with eGFR>60 and 3 eGFR<60) 

and arranged into 7 clusters (Fig. 1e, Extended Data Fig. 2e-j). Cell-cycle analysis indicated 

increased cycling in CKD likely reflecting epithelial repair (Extended Data Fig. 2k-l). 

KEGG pathways and Gene Ontology (GO) terms in CD10+ cells suggested increased fatty 

acid metabolism and dysregulated metabolism in CKD (Fig. 1f, Extended Data Fig. 2m-n). 

Dysregulated fatty acid metabolism has been shown to cause tubular dedifferentiation and 

fibrosis.4

Origin of extracellular matrix in human chronic kidney disease

To identify cell types contributing to ECM production in kidney fibrosis, we established a 

single cell ECM expression score that included collagens, glycoproteins and proteoglycans5 

and confirmed an increased score in published CKD data6 (Extended Data Fig. 2o-u). ECM 

scores demonstrated a clear shift towards high ECM expressing cells in CKD (Fig. 1g). 

Mesenchymal cells exhibited the highest ECM expression and this increased further in 

CKD (Fig 1h-i, Extended Data Fig. 2q-u). All fibroblasts and myofibroblasts, expanded in 

CKD (Fig. 1j). While historically Acta2 was used as a myofibroblast marker, we defined 

myofibroblasts as cells that express most ECM genes. To assess putative myofibroblast 

differentiation processes we generated a Uniform Manifold Approximation and Projection 
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(UMAP) embedding of (myo)fibroblasts and pericytes (Extended Data Fig 3a-c). This 

embedding agreed with our unsupervised graph clustering (Fig. 1b), highlighting the 

heterogeneity of the renal mesenchyme. Myofibroblasts were identified as periostin (Postn) 

expressing cells (Extended Data Fig. 3b). Diffusion mapping of high ECM expressing 

mesenchymal cells suggested that myofibroblasts arise from pericytes and fibroblasts (Fig. 

1k, Extended Data Fig. 3d).

Minor upregulation of ECM genes occurred in epithelial cells (Fig. 1h), suggestive of 

a minor contribution of the long debated epithelial mesenchymal transition (EMT).1,7,8 

Injured PT showed the highest expression of ECM genes among CD10- epithelium with 

various expressed genes and GO terms suggesting de-differentiation (Extended Data Fig. 

3e-j). In CD10+ PT ECM expression increased slightly in CKD (Extended data Fig. 3k-n). 

Injured cells were defined by expression of Sox9, CD24 and CD133 for PT and Vcam1 and 

Ackr1 for endothelium.9–11

Thus, the vast majority of ECM in human kidney fibrosis originates from mesenchymal 

cells, with a minor contribution from de-differentiated PT.

Distinct pericyte and fibroblast subpopulations are the major source of 

myofibroblasts in human kidney fibrosis

Our CD10- scRNA-seq data identified the majority of Col1a1 expressing cells as PDGFRb+ 

(Extended data Fig. 3o). Unsupervised clustering of 37,380 PDGFRb+ cells sorted from 

human kidneys (n=4; eGFR>60 and n=4; eGFR<60; Extended Data Table 1) identified 

mesenchymal populations and some epithelial, endothelial and immune cells, which were 

annotated by correlation with the CD10- populations (Fig. 2a-b, Extended Data Fig. 4a-e). 

ECM gene expression again dominated in pericyte, fibroblast and myofibroblast clusters 

(Extended Data Fig. 4f-i). Some macrophage/monocyte, endothelial and injured epithelial 

populations also expressed collagen1a1 and PDGFRb, but at much lower levels (Fig. 2a-b, 

Extended Data Fig. 4f-i). Doublet-likelihood scores were low for endothelial and injured 

epithelial cells, however, slightly increased in macrophages (Extended Data Fig. 4j). We 

verified Col1a1 mRNA expression in these cells by in situ hybridisation (ISH, Extended 

Data Fig. 4k-m). These data partially explain the controversy regarding the contributions 

of non-mesenchymal lineages to fibrosis,1,12 since we indeed observed minor ECM gene 

expression in these cells, whilst the majority of ECM is mesenchymal cell-derived.

Pseudotime trajectory and diffusion map analysis of major ECM expressing cells from the 

Pdgfrb+ populations indicated three major sources of myofibroblasts in human kidneys: 

1) Notch3+/RGS5+/Pdgfra- pericytes, 2) Meg3+/Pdgfra+ fibroblasts and 3) Colec11+/

Cxcl12+ fibroblasts (Fig. 2c, Extended Data Fig. 5a). Diffusion mapping places non­

CKD cells within low ECM-expressing pericyte and fibroblast populations, indicating a 

differentiation trajectory from low-ECM, non-CKD pericytes and fibroblasts to high-ECM 

CKD myofibroblasts (Figure 2c, Extended Data Figure 5a-i). We verified this directionality 

and also the main lineages of the diffusion map, consisting of Notch3+ pericytes (lineage 

1) and Meg3+ fibroblasts (lineage 2) using ISH in human kidneys (Fig 2d, Extended Data 

Fig. 5j-m). We observed a potential intermediate stage of Notch3/Meg3/Postn co-expressing 
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cells possibly representing differentiating cells in the center of the diffusion map (Fig 2d, 

Extended Data Fig. 5k-m).

Distinct spatial tissue locations could be identified for myofibroblast 1 (Postn+), which 

increased in fibrosis and for myofibroblast 3 (Ccl19+/Ccl21+) which were enriched around 

glomeruli (Extended Data Fig. 5n-r).

The gene expression program of pericyte-to-myofibroblast differentiation (Lineage 1) 

demonstrated cell cycle changes, consistent with differentiation and expansion (Fig. 2e). 

Ordering their pathway enrichment along pseudotime yielded early canonical Wnt and 

activator protein-1 (AP1), intermediate ATF2, Pdgfra and late integrin, ECM receptor 

interaction and TGFb signaling among other pathways (Fig. 2e bottom, Extended Data Fig. 

6a).

Cell cycle cessation also characterized fibroblast-to-myofibroblast differentiation, followed 

by increased proliferation (lineages 2 and 3, Extended Data Fig. 6b-c) with early AP1, 

and inflammatory pathways, followed by integrin and ECM interaction pathways (Extended 

Data Fig. 6d-g).

Late TGFb signaling was prevalent in the analysis of lineage 1 and 3 (Fig. 2e, Extended 

Data Fig. 6a,g). Comparing ligand and receptor expression within this pathway suggested a 

mechanism whereby myofibroblasts promote differentiation of fibroblasts and pericytes by 

TGFb signaling (Extended Data Fig. 6h-k).

Many of the above pathways are known regulators of fibrosis, including integrins13 and AP1 

signaling.14 To further understand transcriptional regulation of mesenchymal populations, 

we performed transcription factor DNA sequence motif enrichment analysis in promoters 

and distal regions of marker genes. This highlighted a potential key regulatory role of 

AP-1 (Jun/Fos) in fibroblast to myofibroblast differentiation (Extended Data Fig. 6l). To 

functionally validate this, we generated a human Pdgfrb+ kidney cell line (Extended Data 

Fig. 6m). Inhibition of AP1 significantly decreased proliferation and osteoglycin (Ogn) 

expression, whilst Postn expression was increased, suggesting myofibroblast differentiation 

(Extended Data Fig. 6n). In the human Pdgfrb data, Ogn marked fibroblast 1/3 while Postn 
marked myofibroblasts 1 (Extended Data Fig. 6o). Consistent with this, AP1 expression 

negatively correlated with average collagen expression while expression of putative AP1 

target genes positively correlated with average collagen expression (Extended Data Figure 

6p), possibly indicating a repressor role of AP1. However, the role of AP1 is likely 

multifunctional and it may have additional roles that could also promote fibrosis.

We next studied which cells signal towards the key ECM expressing cells (Extended Data 

Fig. 6q). Lowest signaling came from healthy PT, while injured PT were among the 

top signaling partners, suggesting tubule-interstitial signaling as a hallmark of fibrosis15 

(Extended Data Fig. 6q). This interaction involves Notch, TGFb, Wnt and PDGFa signaling 

(Extended Data Fig. 6r).
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Dual-positive PDGFRa+/PDGFRb+ mesenchymal cells represent the majority 

of ECM-expressing cells in kidney fibrosis

In genetic fate tracing kidney fibrosis experiments of PdgfrbCreER-tdTomato mice ISH 

and immunostaining confirmed that virtually all myofibroblasts are Pdgfrb lineage derived 

(Fig. 3a-c; Extended Data Fig. 7a-c). A Smart-Seq2 time-course study in Pdgfrb-eGFP mice 

demonstrated that smooth muscle cell and pericyte abundance decreased following UUO, 

whereas mesangial cells and Col1a1+/Pdgfra+ matrix producing cells increased (Fig. 3d-f, 

Extended Data Fig. 7d-e). Similar to the human kidney, the major ECM-expressing cell 

population exhibited Pdgfra/Pdgfrb and Postn expression (Fig. 3g, Extended Data Fig. 7e-g). 

Other cells showed significantly lower ECM expression than the Pdgfra/Pdgfrb population 

(Extended Data Fig. 7f-g).

Immunostaining and ISH in mice confirmed double positivity for Pdgfra+ and tdTomato 

in Col1a1- expressing cells confirming Pdgfra/Pdgfrb expressing cells as the major ECM 

source (Extended Data Fig. 7h-i). This was confirmed via multiplex ISH in a cohort of 62 

patients (Extended Data Fig. 7j-k). Diffusion map embedding of matrix producing cells and 

pericytes also agreed with our human Pdgfrb data, and suggested that pericytes (Pdgfrb+, 

Pdgfra-, Notch3+) are one origin of the major ECM-producing cells (Pdgfrb+, Pdgfra+, 

Col1a1+, Postn+) (Extended Data Fig. 7l-p).

Combined, our data demonstrate that Pdgfra+/Pdgfrb+ dual-positive mesenchymal cells, 

including all fibroblast and myofibroblast populations but not non-activated Pdgfra-/Pdgfrb+ 

pericytes (i.e. low ECM expressing pericytes), represent the majority of ECM expressing 

cells.

Pdgfra+/Pdgfrb+ cells consist of different fibroblast cell states

We next generated scRNA-Seq data from 7,245 Pdgfra+/Pdgfrb+ cells in mouse kidney 

fibrosis experiments (Fig. 3h). These cells expanded ~140-fold after injury and UMAP 

embedding revealed four major, distinct populations corresponding to mesenchyme, 

epithelial, endothelial and immune cells (Fig. 3i-k, Extended Data Fig. 7q-r), all of which 

have been described as origins of kidney fibrosis.1,12,16 We did not detect undifferentiated 

pericytes in this data, since pericytes are Pdgfra- in humans and mice (Fig. 2c, Extended 

Data 7e). Non-mesenchymal cells expressed markedly lower ECM and collagen levels than 

mesenchymal cells (Fig. 3k, Extended Data Fig. 7r-s, 8a), supporting our human data that 

non-mesenchymal cells contribute little to scarring (Fig. 1,2). Doublet scores were low in 

these clusters (Extended Data Fig. 8b).

Unsupervised clustering revealed two key classes within mesenchymal cells in this dataset: 

(1) fibroblast 1 marked by Scara5 and Meg3 expression and (2) myofibroblasts consisting of 

various myofibroblast subpopulations (Fig. 3j-k, Extended Data Fig. 8a). In our human 

data, myofibroblasts 1 correspond to terminally differentiated myofibroblasts with the 

highest ECM expression preceded in differentiation pseudotime by myofibroblast 2 (Ogn+), 

while fibroblasts 1 appeared as a “progenitor” non-activated fibroblast population (Fig. 2c). 

Fibroblast 1 cells differed from myofibroblasts in the Pdgfra+/Pdgfrb+ data by three major 
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features: (1) Col15a1, a murine myofibroblast-specific collagen (Extended Data Fig. 7e), 

was expressed at lower levels in fibroblasts 1 as compared to myofibroblasts (Extended Data 

Fig. 8c); (2) although Meg3 was expressed in some other cells (Extended Data Fig. 8e), it 

was confined to fibroblasts 1 within the mesenchyme (Fig. 3k) as validated by ISH in human 

(Extended Data 8 d-f); (3) Fibroblast 1 are Scara5+ but Frzb- (Extended Data Fig. 8g), again 

demonstrating that they are distinct from myofibroblasts.

Having established fibroblasts 1 as a distinct population, we generated UMAP and 

diffusion map embeddings and performed pseudotime analyses of all Pdgfra+/Pdgfrb+ 

mesenchymal cells to gain insight into their lineage relationships (Fig. 3l-n). This 

analysis suggested fibroblast 1 (Meg3+, Scara5+) and myofibroblast 2 (Col14a1+, Ogn+) 

as early states, myofibroblast 3a as an intermediate state, and myofibroblast 1a (Nrp3+, 

Nkd2+), 1b (Grem2+) and 3b (Frzb+) as terminal states (Fig. 3l-n). Thus, fibroblasts 1 

and myofibroblasts 2 are the major source of myofibroblasts in mouse kidney fibrosis. 

Myofibroblasts 2 (Ogn+/Col14a1+) might exist in healthy mouse kidneys or may arise as 

an intermediate state via pericyte to myofibroblast differentiation (Fig. 2c, human data). 

Angiotensin receptor 1 (Agtr1a) expression in these cells points towards a pericyte origin 

(Fig. 3o).

Supervised classification of the mouse Pdgfra+/Pdgfrb+ single cell data based on our human 

Pdgfrb+ cells confirmed the distinctness of fibroblasts 1 and myofibroblasts in both species 

(Extended Data Fig. 9a-b).

Our data suggest a model in which Pdgfrb+/Pdgfra+/Postn+ high-ECM expressing 

myofibroblasts (here termed myofibroblast 1) arise from Pdgfrb+/Pdgfra-/Notch3+ pericytes, 

Pdgfrb+/Pdgfra+/Scara5+ fibroblasts (fibroblasts 1) and Pdgfrb+/Pdgfra+/Cxcl12+ fibroblasts 

(fibroblasts 2) (Extended Data Fig. 9c). Pericytes differentiate potentially through an 

intermediate ECM-expressing Pdgfrb+/Pdgfra+/Ogn+/Col14a1+ (myofibroblasts 2) state into 

myofibroblasts 1 (Extended Data Fig. 9c)

Distinct fibroblast and myofibroblast cell states are distinguished by 

specific transcription factor regulatory programs

Next we asked whether the above fibroblast and myofibroblast cell states represent distinct 

cell types with distinct gene regulatory profiles.17 We generated bulk ATAC-Seq18 data from 

Pdgfra+/Pdgfrb+ mouse kidneys after UUO and deconvoluted the open chromatin region 

(OCR) signatures based on OCR proximity to marker genes identified in the scRNA-Seq 

clusters (Fig. 3q). Fibroblasts 1 and myofibroblasts 2 were distinct from each other and 

from other myofibroblasts. Myofibroblasts 1a were distinct from myofibroblasts 1b and 

featured enrichment of ATF factors. Myofibroblasts 2 and 3b showed enrichment of the 

orphan receptor Nrf4a1, previously reported as a regulator of TGFb signaling and fibrosis.19 

Fibroblasts 1 showed enrichment of AP-1 (Jun/Fos) motifs (Fig. 3q), in line with the human 

data (Extended Data Fig. 6l). RNA expression of these ATAC-Seq selected factors (Extended 

Data Fig. 9d-g) confirmed the sequence motif enrichment (Fig. 3q), highlighting divergent 

transcriptional regulation in these populations.
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Congruent with our ATAC-Seq data, signaling pathway analysis based on our scRNA-Seq 

data indicated that fibroblasts 1 and myofibroblasts are distinct populations with different 

regulatory programs (Extended Data Fig. 9h).

Nkd2 is required for collagen expression in human kidney Pdgfrb+ cells and 

is a potential therapeutic target in kidney fibrosis

We analysed our data to identify potential therapeutic targets for kidney fibrosis. Nkd2 is 

specifically expressed in mouse Pdgfra+/Pdgfrb+ terminally differentiated myofibroblasts 

(Fig. 4a, Extended Data Fig. 9i) and Nkd2/Pdgfra dual positive cells constituted >40% of all 

Col1a1+ cells (Fig. 4b). In human PdgfrRb+ cells, Nkd2 marks high ECM myofibroblasts, its 

expression correlates positively with Postn and ECM and negatively with genes associated 

with pericytes and fibroblasts (Fig. 4c and Extended data Fig. 10a-b). Nkd2+ myofibroblasts 

exhibited increased TGFb, Wnt and TNFa pathway activity compared to Nkd2- cells 

(Extended Data Fig. 10c). Multiplex ISH in 36 patients confirmed that a subpopulation 

of Pdgfra+/Pdgfrb+ cells expresses Nkd2 and expands in fibrosis (Fig. 4d-e).

Nkd2 is a Wnt pathway and TNFa modulator.20,21 To study the role of Nkd2 in kidney 

fibrosis, we used our human Pdgfrb+ data to predict a gene regulatory network focused on 

genes correlated with Nkd2, using the GRNboost2 framework22 (Extended Data Fig. 10d-f). 

This analysis suggests regulation of Nkd2 by Etv1 and Nkd2 affecting paracrine signaling 

through Lamp5 (Extended data Fig. 10f-g).

Lentiviral overexpression of Nkd2 in our human Pdgfrb cell line induced expression of 

ECM molecules in response to TGFb while knockout of Nkd2 markedly reduced col1a1, 
fibronectin and ACTA2 expression in the presence or absence of TGFb (Fig. 4f-g, Extended 

Data Fig. 10h-j). RNA-seq from cells overexpressing Nkd2 demonstrated upregulated 

ECM regulators and glycoproteins, whereas Nkd2 knockout cells exhibited loss of ECM 

regulators, glycoproteins and collagens (Fig. 4h). Pathway and GO analysis placed Nkd2 
in ECM expression programs and suggested interplay with AP1 and integrin signaling 

(Extended Data Fig. 10k-l). We further observed strong changes in the expression of Wnt 

receptors and ligands following Nkd2 knockout (Extended Data Fig. 10m).

To validate Nkd2 as a therapeutic target, we generated induced pluripotent stem cell (iPSC) 

derived kidney organoids containing all major compartments of human kidney (Extended 

Data Fig. 10n-p). IL1b can induce fibrosis in iPSC derived kidney organoids23 and siRNA 

mediated knockdown of Nkd2 inhibited IL1b-induced Col1a1 expression (Fig. 4i-l). Thus, 

Nkd2 marks myofibroblasts in kidney fibrosis, is required for collagen expression, and 

represents a potential therapeutic target. However, since these organoids do not contain 

immune cells additional in vivo data will be required to fully verify this finding.

Discussion

Myofibroblasts represent the major source of ECM during kidney fibrosis, but their cellular 

origin was controversial.1,7 Single cell RNA sequencing allows the dissection of cellular 
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heterogeneity of complex tissues and disease processes, generating novel insights into 

disease mechanisms at unprecedented resolution.11,24,25

Genetic fate tracing data in mice and histology analyses of human tissue have suggested 

epithelial, endothelial, hematopoietic cells and resident mesenchymal cells to contribute to 

fibrosis.1 Here we provide a comprehensive cell atlas of human and mouse kidney fibrosis 

demonstrating that the majority of scar tissue originates from Pdgfra+/Pdgfrb+ dual-positive 

fibroblasts and myofibroblasts. In both man and mice these myofibroblasts predominantly 

derive from pericytes and fibroblasts. Our scRNAseq strategy pointed to novel disease 

mechanisms and potential therapeutic targets, such as myofibroblast-expressed Nkd2. While 

Nkd2 has been reported as a Wnt inhibitor our data indicates that it may act also as an 

activator as some aspects of Wnt signaling.

Our work highlights the intricate cell differentiation mechanisms involved in fibrosis and 

provides a resource for future clinical research in kidney disease.

Methods

Ethics

The local ethics committee of the University Hospital RWTH Aachen approved all human 

tissue protocols (EK-016/17). Kidney tissue was collected from the Urology Department 

of the Hospital Eschweiler from patients undergoing (partial) nephrectomy due to kidney 

cancer. All patients provided informed consent and the study was performed in accordance 

with the Declaration of Helsinki.

Human tissue Processing

The tissue was snap-frozen on dry-ice or placed in prechilled in University of Wisconsin 

solution (#BTLBUW, Bridge to Life Ltd., Columbia, U.S.). Tissues were sliced into 

approximately 0.5-1mm3 pieces and transferred to a C-tube (Miltenyi Biotec) and processed 

on a gentle-MACS (Miltenyi Biotec) using the program spleen 4. The tissue was digested 

for 30 min at 37°C with agitation at 300 RPM in a digestion solution containing 25μg/ml 

Liberase TL (Roche) and 50μg/ml DNase (Sigma) in RPMI (Gibco). Following incubation, 

samples were processed again on a gentle-MACS (Miltenyi Biotec) using the same program. 

The resulting suspension was passed through a 70μm cells strainer (Falcon), washed with 45 

ml cold PBS and centrifuged for 5 minutes at 500 g at 4°C. Live, single cells were enriched 

by FACS-sorting and gating on DAPI negative cells with further enrichment of epithelial 

cells by CD10 staining or PDGFRß staining for fibroblasts.

Mice

PDGFRßCreERt2 (i.e. B6-Cg-Gt(Pdgfrß-cre/ERT2)6096Rha/J, JAX Stock #029684) and 

Rosa26tdTomato (i.e. B6-Cg-Gt(ROSA)26Sorttm(CAG-tdTomato)Hze/J JAX Stock #007909) 

were purchased from Jackson Laboratories (Bar Harbor, ME, USA). Pdgfrb-BAC-eGFP 

reporter mice were developed by N. Heintz (The Rockefeller University) for the GENSAT 

project. UUO was performed as previously described using male and female mice.26 Animal 

experiment protocols were approved by the LANUV-NRW, Germany and by the UK Home 
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Office Regulations. For Smart-Seq2, PDGFRbeGFP male mice were used born within 10 

days of each other, and between 9 and 11 weeks old at the time of surgery. For inducible fate 

tracing PDGFRbCreER;tdTomato mice (8 weeks of age) received tamoxifen (10mg p.o.) 

3 times via gavage followed by a washout period of 21 days and then subjected to UUO 

surgery or sham (as above) and sacrificed at 10 days after surgery. Mice were housed two 

to five animals per cage with a 12-h light–dark cycle (lights on from 0700 to 1900 h) at 

sustained temperature (20 °C±0.5°C) and humidity (~50%±10%) with ad libitum access to 

food and water.

Single cell isolation in mouse

Euthanized mice were perfused via the left heart with 20 ml NaCl 0.9% to remove blood 

residues from the vasculature.To isolate single kidney cells, a combination of enzymatic and 

mechanical disruption was used as described above for human single cell isolation. Overall 

the viability was over 80% using this method.

FACS

Cells were labeled with the following antibodies: anti-CD10 human (clone HI10a, 

biolegend, 1:100), anti-PDGFRb mouse (clone PR7212, R&D, 1:100), anti-PDGFRalpha 

mouse (clone APA5, biolegend, 1:100)), anti-CD45 mouse (clone 30_F11). Isolated cells 

were resuspended in 1% PBS-FBS on ice at a final concentration of 1x107 cells/ml. 

Cells were pre-incubated with Fc-Block (TruStainFx human, TruStainFx mouse Clone 

91, biolegend) and then incubated with the above antibodies for 30 minutes on ice 

protected from light diluted 1:100 in 2% FBS/PBS. For human anti-PDGFRb staining 

goat anti-mouse Dyelight 405 (poly24091, biolegend, 1:100) was used as a secondary 

antibody. All compensation was performed at the time of acquisition using single color 

staining and negative staining and fluorescence minus one controls. The cells were sorted 

in the semi-purity mode targeting an efficiency of >80% with the SONY SH800 sorter 

(Sony Biotechnology; 100 um nozzle sorting chip Sony). For plate based sorting for 

SMART-Seq, cell sorting was performed on a FACS Aria II machine (Becton Dickinson, 

Basel, Switzerland) using BD FACSDiva software. FACS data analysis was performed using 

FlowJo.

Single cell assays incl. Smart-Seq2 and 10X Genomics 3’ sc-RNA-Seq (V2 and V3)

For Smart-Seq2 single cells were processed by SciLifeLab – Eukaryotic Single cell 

Genomic Facility (Karolinska Institute). Before shipping single cells were sorted into wells 

of a 384-well plate containing pre-prepared lysis buffer. The single cell solution of cells and 

primary human kidney cells were run in parallel on a Chromium Single Cell Chip kit and 

libraries were performed using Chromium Single Cell 3’ library kit V2 and i7 Multiplex 

kit (PN-120236, PN-120237, PN-120262, 10x Genomics) according to the manufacturer’s 

protocol.

Human kidney fibrosis evaluation—PAS stained sections of the kidneys were analyzed 

and scored in a blinded fashion. The extent of interstitial fibrosis and tubular atrophy were 

assessed as two separate parameters as % of affected cortical area. For collagen I and 

III immunohistochemistry [Collagen I (Southern Biotech) Cat No. 1310-01; Collagen III 
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(Southern Biotech) Cat No. 1330-01], sections of formalin-fixed and paraffin-embedded 

renal tissues were processed for indirect immunoperoxidase staining as previously 

described26. Using a whole slide scanner (NanoZoomer HT, Hamamatsu Photonics, 

Hamamatsu, Japan), fully digitalized images of immunohistochemically stained slides 

were further processed and analyzed using the viewing software NDP.view (Hamamatsu 

Photonics, Hamamatsu, Japan) and ImageJ (National Institutes of Health, Bethesda, MD). 

The percentage of positively stained area was analysed in the kidney cortex in blinded 

fashion.

Antibodies and immunofluorescence stainings

Kidney tissues were fixed in 4% formalin for 2 hours at RT and frozen in OCT after 

dehydration in 30% sucrose overnight. Using 5-10 μm cryosections, slides were blocked 

in 5% donkey serum followed by 1-hour incubation of the primary antibody, washing 3 

times for 5 minutes in PBS and subsequent incubation of the secondary antibodies for 45 

minutes. Following DAPI (4′,6′-′diamidino-2-phenylindole) staining (Roche, 1:10.000) the 

slides were mounted with ProLong Gold (Invitrogen, #P10144). The following antibodies 

were used: anti-mouse PDGFRa (AF1062, 1:100, R&D), anti-CD10 human (clone HI10a, 

1:100, biolegend), anti-HNF4a (clone C11F12, 1:100, Cell Signalling), anti-Pan-Cytokeratin 

TypeI/II (Invitrogen, Ref. MA1-82041), anti-Dach1 (Sigma, HPA012672, 1:100), anti­

Col1a1 (Abcam, ab34710, 1:100), anti-ERG (abcam, ab92513, 1:100), anti-CXCL12/SDF-1 

(R&D, MAB350, 1:100), AF488 donkey anti goat (1:200, Jackson Immuno Research), 

AF647 donkey anti-rabbit (1:200, Jackson Immuno Research)

Confocal imaging

Images were acquired using a Nikon A1R confocal microscope using 40X and 60X 

objectives (Nikon). Raw imaging data was processed using Nikon Software, ImageJ, Adobe 

Photoshop and Adobe Illustrator.

Human kidney tissue microarray

Paraffin-embedded, formalin-fixed kidney specimens from 98 non-tumorous human kidney 

samples of the Eschweiler/Aachen biobank were selected based on a previously performed 

PAS staining. Areas were randomly selected per sample and one 2-mm core was taken 

from each kidney sample using the TMArrayer™ (Pathology Devices, Beecher Instruments, 

Westminster, USA). Each core was arrayed into a recipient block in a 2mm-spaced grid 

covering approximately 2.5 square cm, and 5-micron thick sections were cut and processed 

using standard histological techniques.

RNA in-situ hybridization

In situ hybridization was performed using formalin-fixed paraffin embedded tissue samples 

and the RNAScope Multiplex Detection KIT V2 (RNAScope, #323100) following the 

manufacturer’s protocol with minor modifications. The antigen retrieval was performed 

for 22 min at 96°C instead of 15 min at 99°C in a water bath. 3-5 drops of pretreatment 

1 solution were incubated at RT for 10 minutes after performing antigen retrieval. The 

washing steps were performed 5 minutes three times. The following probes were used 
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for the RNAscope assay: Hs-PDGFRß #548991-C1, Hs-PDGFRa #604481-C3, Hs-Col1a1 

#401891, Hs-COL1A1 #401891-C2, Hs-MEG3 #400821, Hs-NKD2 #581951-C2 (targeting 

236-1694 of NM_033120.3), Hs-Postn #409181-C2 and 409181-C3, Hs-Pecam1 #487381­

C2, Hs-Ccl19 #474361-C3, Hs-Ccl21 #474371-C2, Hs-Notch3 #558991-C2, Mm-Col1a1 

#319371, Mm-PDGFRa #480661-C2, Mm-PDGFRb #411381-C3.

Image Quantification - ISH image analysis

Systematic random sampling was applied to subsample at least 3 representative tubulo­

interstitial areas per image. Next, every fluorescent dot (transcript) was manually annotated 

using the cell counting tool from Fiji (Max Planck Institute of Molecular Cell Biology and 

Genetics, Dresden, Germany). Single nuclei were then isolated using an in-house made 

tool (https://gitlab.com/mklaus/segment_cells_register_marker) based on watershed (limits: 

0.1-0.4) to identify neighbouring nuclei, edge detection for incomplete objects and object 

size selection (limits: 12-180 μm2). The total number of individual dots was then retried for 

every isolated nucleus. Dots located outside of nuclei were not included in this analysisFor 

Meg3 and NKD2 analysis of PDGFRa/b cells images were analyzed using QuPath after 

segmenting the nuclei and counting cells based on >1 pos. spot per imaging channel. For 

Col1a1-IF quantification or NKD2-ISH quantification images were split in RGB channels 

and the integrated fluorescent density was determined per image using ImageJ.

Quantitative RT-PCR

Cell pellets were harvested and washed with PBS followed by RNA extraction according 

to the manufacturer's instructions using the RNeasy Mini Kit (qiagen). 200 ng total RNA 

was reverse transcribed with High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) and qRT-PCR was carried out further as previously described26 Data were 

analyzed using the 2-CT method. The primers used are listed in Extended Data Table 3.

Generation of a human PDGFRb+ cell-line

PDGFRb+ cells were isolated from healthy human kidney cortex of a nephrectomy specimen 

(71 years old male patient) by generating a single cell suspension (as above). For the 

isolation the cells were stained in two steps using a specific PDGFRb antibody (R&D # 

MAB1263 antibody, dilution 1:100) followed by Anti-Mouse IgG1-MicroBeads solution 

(Miltenyi, #130-047-102). Following MACS cells were cultured in DMEM media (Thermo 

Fisher # 31885) for 14 days and immortalized using SV40LT and HTERT. Retroviral 

particles were produced by transient transfection of HEK293T cells using TransIT-LT 

(Mirus). Two types of amphotropic particles were generated by co-transfection of plasmids 

pBABE-puro-SV40-LT (Addgene #13970) or xlox-dNGFR-TERT (Addgene #69805) in 

combination with a packaging plasmid pUMVC (Addgene #8449) and a pseudotyping 

plasmid pMD2.G (Addgene #12259). Retroviral particles were 100x concentrated using 

Retro-X concentrator (Clontech) 48hrs post-transfection. Cell transduction was performed 

by incubating the target cells with serial dilutions of the retroviral supernatants (1:1 mix of 

concentrated particles containing SV40-LT or rather hTERT) for 48hrs. Subsequently the 

infected PDGFRb+ cells were selected with 2 μg/ml puromycin at 72 h after transfection for 

7 d.
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Culturing human induced pluripotent stem cell (iPSC) derived kidney organoids

Human iPSC-15 clone 0001 was received from the Stem Cell Facility of the Radboud 

University Center, Nijmegen, The Netherlands. Human iPSCs were grown on Geltrex­

coated plates using E8 medium (Life Technologies). Upon 70-80% confluency, iPSCs 

were detached using 0.5 mM EDTA and cell aggregates were reseeded by splitting 1:3. 

Human iPSC were differentiated using a modified protocol based on Takasato et al. (Nature, 

2015) and seeded at a density of 18,000 cells per cm2 on geltrex-coated plates (Greiner). 

Differentiation towards intermediate mesoderm was initiated using CHIR99021 (6 μM, 

Tocris) in E6 medium (Life Technologies) for 3 and 5 days, followed by FGF 9 (200 ng/ml, 

RD systems) and heparin (1 μg/ml, Sigma Aldrich) supplementation in E6 up to day 7. 

After 7 days of differentiation, cell aggregates (300,000 cells per organoid, mixture of 3 

and 5 day CHIR-differentiated cells) were cultured on Costar Transwell inserts to stimulate 

self-organizing nephrogenesis using E6 differentiation medium. On day 7+18 the kidney 

organoids were used for siRNA knockdown experiments as described below.

siRNA knockdown of NKD2 in human iPSC-derived kidney organoids

NKD2 siRNA knockdown was carried out according to the manufacturer protocol 

(DharmaFECT transfection reagent and NKD2-specific smartpool siRNA, both Horizon 

Discovery). The transfection master mix and scrambled controls were prepared in Essential 

6 medium (Gibco) and added to the organoids. After an initial incubation of 24 h, the 

transfection master mixes were refreshed and IL-1β (Sigma-Aldrich) was added at a 

concentration of 100 ng/ml to induce fibrosis. The IL-1β exposure together with refreshing 

the transfection master mix was repeated every 24h for two upcoming days. 96h post 

transfection initiation, the organoids were harvested and processed for paraffin sectioning. 

Fluorescence in-situ hybridisation (FISH) and immunofluorescence staining was performed 

as described above.

TGFb- treatment experiments

TGFb (100-21-10UG, Peprotech) at a concentration of 10 ng/ml in PBS was added to 

75% confluent PDGFRb cells for 24 hours after 24 hours serum starvation with 0.5% FCS 

containing medium. For inhibitor experiments with T-5224 the inhibitor (or vehicle) was 

added to the culture wells 1 hour before adding TGFb. All experiments were performed in 

triplicates.

AP-1 inhibitor treatment

T-5224 (c-Fos/AP-1inhibitor, Cayman Chemicals, #22904) was dissolved in DMSO and 

stored at - 80°C. DMSO was always added in the same proportions to control wells.

Cell proliferation (WST-1 assay)

WST-1 assay with PDGFRb-cells was performed in 96-wells as recommended by the 

manufacturer (Roche Applied Science). In brief, 1 × 10^4 PDGFRb cells were seeded into 

each well of 96-well plates and the cells were treated with T-5224 or vehicle (DMSO) with 

the indicated concentrations in triplicates. Cells were incubated with WST-1 reagent for 2h 

Kuppe et al. Page 13

Nature. Author manuscript; available in PMC 2021 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



before harvesting at the indicated time points. Both 450 nm and 650 nm (as a reference) 

absorbance were measured.

sgRNA:CRISPR-Cas9 vector construction, virus production and transduction

The NKD2-specific guide RNA (forward 5′-CACCGACTCCAGTGCGATGTCTCGG 

-3′; reverse 5′-AAACCCGAGACATCGCACTGGAGTC -3′) were cloned into pL­

CRISPR.EFS.GFP (Addgene #57818) using BsmBI restriction digestion. Lentiviral particles 

were produced by transient co transfection of HEK293T cells with lentiviral transfer 

plasmid, packaging plasmid psPAX2 (Addgene #12260) and VSVG packaging plasmid 

pMD2.G (Addgene #12259) using TransIT-LT (Mirus). Viral supernatants were collected 

48-72 hours after transfection, clarified by centrifugation, supplemented with 10% FCS and 

Polybrene (Sigma-Aldrich, final concentration of 8μg/ml) and 0.45μm filtered (Millipore; 

SLHP033RS). Cell transduction was performed by incubating the PDGFRß cells with viral 

supernatants for 48hrs. eGFP expressing cells were single cell sorted into 96-well plates. 

Expanded colonies were assessed for mutations with mismatch detection assay: gDNA 

spanning the CRISPR target site was PCR amplified and analyzed by T7EI digest (T7 

Endonuclease, NEB M0302S). To determine specific mutation events on both alleles within 

the clones grown, the PCR product was subcloned into the pCR™ 4Blunt-TOPO vector 

(Thermo Scientific K287520). Minimum 6 colonies per CRISPR-clone were grown and sent 

for sanger sequencing (Clone C2: 30 colonies have been sequenced).

Western blot

Cell lysates were prepared by RIPA buffer with protease inhibitor cocktail (Roche). The 

protein concentrations of the lysates were quantified using BCA assay (#23225, Pierce, 

ThermoScientific). The protein lysates were heated for 5 min at 95°C in 4x SDS sample 

loading buffer (BioRad) and loaded into 10% SDS-Page gels. Afterwards samples were 

transferred onto PVDF membranes and the blots were probed with primary antibody 

in 5% Blotto (Thermo Fisher): (1:3000 rabbit anti-human NKD2 polyclonal antibody, 

Invitrogen PA5-61979) for 2 hours, followed by incubation with secondary antibody for 

1 hour after washing (1:5000 horseradish-peroxidase -HRP-conjugated anti rabbit, Vector 

Laboratories) and developed using Pierce™ ECL Western Blotting Substrate A and B. 

Mouse monoclonal anti-GAPDH antibody (NovusBiologicals NB300-320; 1:1000) followed 

by HRP conjugated anti-mouse secondary antibody (Vector laboratories) was used as a 

loading control.

Lentiviral overexpression of Nkd2

The human cDNA of NKD2 was PCR amplified using the primer sequences 

5’-atggggaaactgcagtcgaag-3’ and 5’ ctaggacgggtggaagtggt-3’. Restriction sites and 

N-terminal 1xHA-Tag have been introduced into the PCR product using the 

primer 5’-cactcgaggccaccatgtacccatacgatgttccagattacgctgggaaactgcagtcgaag -3’ and 5’­

acggaattcctaggacgggtggaagtg-3’. Subsequently, the PCR product was digested with XhoI 

and EcoRI and cloned into pMIG (pMIG was a gift from William Hahn (Addgene 

plasmid # 9044; http://n2t.net/addgene:9044 ; RRID:Addgene_9044). Retroviral particles 

were produced by transient transfection in combination with packaging plasmid pUMVC 

(pUMVC was a gift from Bob Weinberg (Addgene plasmid # 8449)) and pseudotyping 
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plasmid pMD2.G (pMD2.G was a gift from Didier Trono (Addgene plasmid # 12259 ; 

http://n2t.net/addgene:12259 ; RRID:Addgene_12259)) using TransIT-LT (Mirus). Viral 

supernatants were collected 48-72 hours after transfection, clarified by centrifugation, 

supplemented with 10% FCS and Polybrene (Sigma-Aldrich, final concentration of 

8μg/ml) and 0.45μm filtered (Millipore; SLHP033RS). Cell transduction was performed 

by incubating the PDGFß cells with viral supernatants for 48hrs. eGFP expressing cells were 

single cell sorted.

Bulk RNA sequencing

RNA was extracted according to the manufactureŕs instructions using the RNeasy Mini 

Kit (QIAGEN). For rRNA-depleted RNA-seq using 1 and 10 ng of diluted total RNA, 

sequencing libraries were prepared with KAPA RNA HyperPrep Kit with RiboErase (Kapa 

Biosystems) according to the manufacturer’s protocol.

ATAC-seq preparation

PDGFRa/b+ cells were FACS sorted from freshly isolated UUO kidneys as described above, 

washed twice with cold PBS and centrifuged at 500g for 5 minutes. Cell pellets were lysed 

in 50μl ice-cold lysis buffer (10mM Tris-HCl, pH7.5; 10mM NaCl, 3mM MgCl2, 0.08% 

NP40 substitute [74385, Sigma], 0.01% Digitonin [G9441, Promega]), and immediately 

centrifuged at 500g for 9 minutes. Pellets were resuspended in 50μl of a transposase reaction 

mix as previously described27. Transposed DNA was amplified by PCR using NEBNext 

2x Master mix (M0541S; New England Biolabs) with custom Nextera PCR primers. The 

first PCR was performed with 50μl volume and 6 cycles using NEBNext 2x Master mix 

and 1.25μM custom primers; the second RT-PCR was performed with 15μl volume for 20 

cycles using 5μl (10%) of the pre-amplified mixture plus 0.125μM primers to determine the 

number of additional cycles needed as described previously27. The amplified DNA library 

was purified using MinElute PCR Purification kit (28004, Qiagen) and eluted in 20μl of 10 

mM Tris-HCl (pH 8) for subsequent sequencing.

Smart-Seq2 Data Processing

The initial single-cell transcriptomic data was processed at the Eukaryotic Single-Cell 

Genomics Facility at the Science for Life Laboratory in Stockholm, Sweden. Obtained 

reads were mapped to the mm10 build of the mouse genome (concatenated with transcripts 

for eGFP and the ERCC spike-in set) to yield a count for each endogenous gene, spike-in, 

and eGFP transcript per cell. Ribosomal RNA genes, ribosomal proteins and ribosomal 

pseudo-genes were filtered out. We noticed that cells that did not feature any alignments 

assigned to either eGFP or PDGFRb clustered into a single cluster after unsupervised cell 

clustering (see below). Therefore, we opted to remove those cells, and performed all analysis 

and clustering without considering those cells (17 cells).

10x single cell RNA-Seq Data Processing

Fastq files were processed using Alevin28 and Salmon (Alevin parameters -l ISR, Salmon 

version 0.13.1)29, using Gencode v29 human transcriptome and Gencode vM20 mouse 

transcriptome as reference transcriptomes30. Alevin’s expected Cells parameter was set 
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according to thrice the number of cells estimated according to the knee-method applied 

to the read counts per cell barcodes distribution. Therefore, UMI count matrix produced 

by Alevin produced a large number of putative cells which we could filter later (see next 

paragraph).

10x scRNA-Seq Cell Filtering

We moved ribosomal RNA genes (0-1% on average of detected RNA content per cell) and 

mitochondrially-encoded genes (0-80% on average of detected RNA content per cell) from 

the main gene expression matrix. Mitochondrially-encoded genes were removed to avoid 

introducing unwanted variation between cells that might be solely dependent on changes 

in mitochondrial content31. log10(total UMI counts per cell) distribution from the count 

matrix produced by Alevin (see above) typically showed a bimodal distribution, therefore 

log10(total UMI counts per cell) were clustered into two clusters using mclust R package 

v5.4.3 setting modelNames to “E” 32. Cells that belong to the cluster with the higher 

counts were kept. Then cells were filtered based on mitochondrial RNA content and bias 

toward highly expressed genes as follows: (1) cells were clustered into two clusters using 

a bivariate Gaussian mixture with two components learned on log10(total UMI counts per 

cell) and percent of mitochondrial UMI per cell. Clustering was performed using the R 

package Mclust setting modelNames to “EII”. Cells falling into the cluster with higher 

mitochondrial content cells were excluded. This filtering step was followed only for libraries 

which showed a clear bimodal distribution of mitochondrial content (only three 10x libraries 

in this study) (2) The total number of UMIs per cell should correlate with the total number 

of unique detected genes. Cells that do not follow this relationship (outliers) were filtered 

by clustering nuclei using a bivariate Gaussian mixture model on log10(total UMI counts) 

and log10 total unique detected genes using the mclust R package setting modelNames to 

“VEV”,”VEE”. (3) Cells whose percent of total counts in the top 500 genes represented 

more than 5 times absolute median deviation for all cells were removed. (4) Finally, 

to exclude cells comprised mainly of ribosomal proteins and pseudo-genes, we removed 

cells whose percent of ribosomal protein and pseudo-gene expression represented more 

than 5 absolute median deviations of all other cells. Mitochondrial-based filtering was not 

performed for CD10+ libraries since libraries from proximal tubule epithelial cells are 

expected to result in a high number of mitochondrial reads. Note that not all filtering steps 

were performed for all libraries as this depends on each library’s quality and UMI-cell-gene 

distribution. The script for quality control, cell filtering is available here: https://github.com/

mahmoudibrahim/KidneyMap/blob/master/templates/process_scRNA.r

Human 10x Single Cell Data Integration Strategy

Upon initial analysis of our data, we noted several points: (1) Cell types are not guaranteed 

to be equally represented across patients and across conditions (healthy or CKD). This is 

because the cell types captured in any single 10x Chromium run are determined by random 

sampling of cells. (2) Both healthy and CKD patient samples consist of cells in healthy and 

disease states, since this categorization is based on clinical parameters and not on molecular 

data or a controlled in vitro experiment. We would expect mainly a change in proportion of 

healthy and disease cell states between healthy and diseased patient samples. (3) Samples 

from different patients were processed and prepared on different days as dictated by the 
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surgery schedule at the Eschweiler hospital. Therefore, potential technical (batch) effects 

could not be controlled on the experimental side. (4) The ability to discover highly resolved 

cell clusters in under-represented cell types might be affected by class imbalance since 

certain cell types may be significantly more abundant than others, and the size of the dataset 

(number of cells) which affects clustering results using unsupervised modularity-based 

graph clustering algorithms33.

Our experimental strategy involved obtaining separate libraries from CD10+ and CD10- cell 

fractions (see Main Text), which was designed to mitigate class imbalance on the level of 

cell type capturing frequency by the 10x Chromium protocol. To further mitigate the points 

discussed above we aimed to (1) cluster the data on a local level while keeping global 

information on the relation between cell types intact and (2) to correct for potential technical 

(batch) differences between samples while retaining important differences, such as different 

cell types or different states of cell types due to disease. To do so, we followed a strategy 

comprised of the following steps:

Step One: After quality control and cell filtering (see above), cells in each 10x library were 

clustered separately and each cell cluster was assigned to one of 6 major cell types: CD10+ 

epithelial, CD10- epithelial, Immune, Endothelial, Mesenchymal and Neuronal cells.

Step Two: For each one of the 6 major cell types, cells from all 10x libraries were 

integrated together. Variability between cells due to technical reasons was corrected and 

cells were clustered using unsupervised graph clustering. This process resulted in 6 separate 

endothelial, CD10+ epithelial, CD10- epithelial, mesenchymal, immune and neuronal maps. 

Each map composed of cells from multiple 10x libraries.

Step Three: We integrated 3 single cell maps for: (1) CD10+ cells (proximal tubule / 

Figure 1), (2) CD10- cells (proximal tubule-depleted / Figure 1) and (3) PDGFRb+ cells 

(mesenchymal / Figure 2), by combining single cell expression (UMI counts) and clustering 

information from all main cell type individual maps of each data set from Step Two. All 

plots in the manuscript are thereafter reproducible from those 3 integrated maps.

This approach accomplished local clustering and technical variability removal, and allowed 

for high resolution discovery of cell states regardless of highly variable cell cluster sizes. 

The smallest cluster consisted of 24 cells, while the largest cluster consisted of 5355 cells. 

Relative to “a high-level clustering followed by sub-clustering” approach, our approach 

produces highly resolved clusters in a data-driven unbiased manner, while avoiding the 

question of which clusters to subcluster altogether. We note that Zeisel et al. followed a 

somewhat similar data integration approach34.

Details, Step One

Cell clustering: After cell filtering and quality control (see above), we used marker genes 

compiled from Lake et al.35, Clark et al.36 and BioGPS37 (for neuronal genes) as a priori 
defined highly variable gene list. Two lists were constructed for human and mouse based 

on gene symbol conversion according to the biomaRt database38,39. We followed a graph 

clustering approach to determine cell clusters, similar to that of Seurat40 and inspired 
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initially by Xu et al. 2015, Bioinformatics and Macosko et al. Cell 2015, among others 

The clustering approach consisted of dimensionality reduction of the normalized expression 

matrix (restricted to the highly variable gene list) using Singular Value Decomposition as a 

first step. The left singular vectors are Eigengenes that describe gene expression programs 

across single cells 41. The top n left singular vectors were selected based on the knee of 

the singular values curve, and used to construct a k-nearest neighbor graph, where average 

k per cell was defined as the square root of the number of cells. The function nn2 from 

the R package RANN was first used to define the k-nearest neighbors (https://CRAN.R­

project.org/package=RANN) and the final graph was constructed based on the top n nearest 

neighbors by similarity where n=k*number_of_cells. Cells were clustered on the graph 

using the Infomap graph clustering method 42 as implemented in the iGraph R package 

(https://igraph.org). Infomap is a state-of-the-art graph community detection method which 

we selected for this step as we noticed it tends to produce higher resolved clusters than other 

graph clustering methods. At this step, we also calculated a single cell doublet score for all 

cells using the doublet score function in the Scran R package which implements the doublet 

score method from Dahlin et al. 201843. This score is aggregated per cluster and reported for 

each integrated map (see Extended Data Figures 4i nad 8e), but not used to exclude cells.

Assigning cell clusters to 5 major types: We obtained a ranking for each gene in each 

cluster according to whether it is unique to a cluster and also highly expressed in this 

cluster using the function sortGenes in the genesorteR R package 44, setting binarizeMethod 

to “naive”. We intersected the top 50 genes in each cluster with the a priori highly 

variable gene list (see above) and used this intersection to determine which major cell type 

(epithelial, endothelial, immune, neuronal, mesenchymal) the cell cluster belongs to.

Scripts and meta-data: The a priori putative variable gene list 

is provided here: https://github.com/mahmoudibrahim/KidneyMap/blob/master/assets/

public/all_markers_Human_MMI_Apr2020.txt and https://github.com/mahmoudibrahim/

KidneyMap/blob/master/assets/public/all_markers_Moue_MMI_Apr2020.txt. The script for 

quality control, cell filtering, clustering and cell type assignment is provided here: https://

github.com/mahmoudibrahim/KidneyMap/blob/master/templates/process_scRNA.r

Details, Step Two

Combining Data: We combined all cells belonging to each major cell type from all samples 

and patients (all 10x libraries) as well as their clustering information obtained via graph 

clustering in Step One. Then for each major cell type the following steps were followed:

Data Integration and Iterative Clustering: We have previously observed that marker 

genes or differentially expressed genes identified after cell clustering can often differ 

from those used as a feature set input to the clustering procedure44. It is also generally 

established that clustering results will vary depending on the input feature set. Therefore 

we followed an iterative clustering approach that cyclicly refines the variable gene set 

that is input to the clustering procedure, the technical effect mitigation parameters and 

the cell cluster assignments. In detail, the algorithm consists of the following steps: (a) 

given the clustering obtained from Step One we define highly variable features based 
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on gene specificity ranking per cluster using the sortGenes function in the genesorteR R 

package setting binarizeMethod to “naive” (see above). We use the combined set of the top 

500 genes in each cluster as highly variable genes. (b) remove technical effects using the 

mutual nearest neighbor (MNN) method 45 as implemented in the fastMNN function of the 

batchelor R package4531, setting the number of dimensions to 30 and auto.order to TRUE. 

This method removes technical differences while retaining differences due to cell types and 

returns reduced dimensions directly. (c) Cluster the cells based on the reduced dimensions 

returned by fastMNN. The clustering approach is similar to that followed for clustering in 

Step One except that we use the Louvain algorithm, a widely used algorithm for community 

detection on Graphs and for single cell clustering 46. To control the resolution at which the 

clustering occurs, we define the average number of k nearest neighbors used to construct 

the graph as r. squareroot(n) and vary r between 1 and 0.01. We select the r that returns 

the most informative clustering as determined using the getClassAUC function from the 

genesorteR R package 44. This function defines clustering quality by an internal evaluation 

procedure, and expresses clustering quality as a function of the specificity of the marker 

genes in each cell cluster. The number of nearest neighbors that produces the clustering with 

highest average class AUC is selected. (d) Raw gene expression counts (UMI counts) are 

normalized using the deconvolution strategy for scaling normalization 47 as implemented in 

the computeSumFactors function in the Scran R package 31, setting the clusters argument 

to the cluster labels obtained from (c). We repeat steps a-d until there is no longer any 

appreciable increase in agreement in cell cluster assignments between consecutive iteration, 

quantified by the slope of change of the adjusted rand index48. We noticed that this 

algorithm results in a progressive increase in the rand index (between cluster assignments in 

the i-th iteration and those in the i-1-iteration) and increase in class AUC value measured 

by genesorteR’s getClassAUC function. Typically no more than 3 iterations are needed. An 

approach to refine the variable gene list and cell clustering was proposed in Zeisel et al.34 

and in Yang et al.49.

Custer Quality Control: We then determine low quality cell clusters as those with no 

differentially expressed genes at a p-value cutoff of 0.05, as determined by the getPValues 

function from genesorteR R package44, or those whose differentially expressed genes are 

dominated by ribosomal proteins or genes typically known as house-keeping genes (such 

as B2M, GAPDH). ,We also controlled for potential doublet clusters based on marker gene 

expression. For example, if a cell cluster expresses both Epcam (epithelial marker) and 

Ptprc (CD45, immune marker) at high levels simultaneously, we assume it may represent 

an epithelial cell / immune cell doublet. This is a similar approach to the one deployed in a 

previous study (Karaiskos et al., Science, 2017). We repeated the clustering procedure again 

after this cell removal.

Scripts and meta-data: Scripts for data integration and clustering is provided here: https://

github.com/mahmoudibrahim/KidneyMap/blob/master/templates/clusterCells.r

Details, Step Three

Integrated Maps: Integrated maps were generated by combining the clustering results 

(Step Two), patient or mouse meta-data and cell expression (UMI count) information as 
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detailed below. For the whole kidney CD10+/- data, we generated two maps accordingly. 

The CD10- map contained all epithelial, immune, endothelial, mesenchymal and neuronal 

cells, while the CD10+ combined all epithelial CD10+ sorted cells. PDGFRb+ data was 

analyzed separately from CD10+/- data. We generated one integrated map comprising all 

cells from all PDGFRb+ libraries.

Cluster Merging and Filtering: We first removed genes that were detected in less than 

0.1% of all cells (ie. at least in 1 out of every 1000 cells) given the full integrated map, 

and used the remaining genes to produce gene specificity ranking per cell cluster using 

the sortGenes function from the genesorteR R package setting binarizeMethod to “naive”. 

Clusters which shared more than 80 out of the top 100 specific genes were merged. We 

have experimented with different ways to merge similar clusters, and this was our choice 

as a conservative method that tended to maintain different cell states and merge only 

very highly similar clusters. Despite our efforts to remove low quality droplets during 

cell filtering and low quality clusters in Step Two, we still noticed the possibility of 

observing low quality clusters given the entire integrated map. Therefore, having merged 

the cell clusters, we checked cell clusters for differential expression using the getPValues 

function in the genesorteR R package setting numPerm to 20 and removed cell clusters 

with no differentially expressed genes. Those were consistently low quality cells with lower 

transcript capture rate overall. For the PDGFRb+ data, we also removed cell clusters where 

PDGFRb was detected in less than 1 median absolute deviation of its expression in all 

cell clusters (calculated cutoff was: 4% of cells in the cluster); those were immune and 

epithelial cell clusters. After removing those cell clusters, we reformed an expression matrix 

containing all possible genes and performed gene filtering again (see above). We normalized 

gene expression over the full integrated map using the computeSumFactor function from the 

Scran R package 31 using the clustering information from Step Two.

Scripts and meta-data: Scripts for combining data into full integrated maps 

and producing all subsequent plots in the manuscript are available here: https://

github.com/mahmoudibrahim/KidneyMap/tree/master/make_intergrated_maps. Details for 

various analyses are described below.

Overall, this approach was biologically informed, and allowed us to correct for potential 

technical effects during cell clustering such that almost all cell clusters contained cells 

from more than one patient/library, while preserving interesting differences between patients 

such as diseased cell states (for example injured Proximal tubule cells), differences in 

(myo)fibroblast states and differences in ECM expression.

Mouse 10x Single Cell Data Integration Strategy

Mouse 10x data were analyzed and integrated in the same way as 

described for human data. The script used to produce the integrated map 

is available here: https://raw.githubusercontent.com/mahmoudibrahim/KidneyMap/master/

make_intergrated_maps/mouse_PDGFRABpositive.r
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Mouse Smart-Seq2 Single Cell Data Integration Strategy

Since single cell plate sorting was performed such that cells from all three timepoints were 

equally represented in all plates, no further batch effect mitigation was performed during 

the analysis. Variable genes were determined using the Scran R package decomposeVar 

function, after running the trendVar function on the ERCC transcripts31. Genes with an FDR 

value < 0.01 and biological variance component > 1 were kept as highly variable genes. 

Using those variable genes we followed the same clustering approach as described for the 

10x Chromium data, but we ran only 2 clustering iteration and did not vary the number 

of nearest neighbours. Script used for analysis of mouse Smart-Seq2 data is available 

here: https://github.com/mahmoudibrahim/KidneyMap/blob/master/make_intergrated_maps/

mouse_PDGFRBpositive.r.

Cluster Annotation

A gene ranking per cluster was produced using the sortGenes function in the genesorteR R 

package44 setting binarizeMethod to “adaptiveMedian” (Smart-Seq2 Data) or to “naive” 

(10x Data). We then annotated our highly resolved cell clusters manually based on 

prior knowledge and information from literature. We refer to this annotation as “Level 3 

Annotation” in supplementary files. There were 50 such clusters in CD10- data, 7 clusters 

in CD10+ data, 26 clusters in PDGFRb+ human data, 10 clusters in mouse Smart-Seq2 

data and 10 clusters in mouse PDGFRa+/b+ data. At that highly-resolved level (level 3), 

a cell cluster can either represent a bona fide cell type or a different cell state. Thus, 

we also grouped those highly-resolved cell clusters into canonical cell types based on our 

annotation. This resulted in 29 cell types in CD10- map, 1 cell type in CD10+ map, 16 

cell types in PDGFRb+ map, 5 cell types in mouse PDGFRa+/b+ map and 6 cell types in 

Smart-Seq2 mouse PDGFRb+ map. We refer to this cell grouping as “Level 2 Annotation” 

in Supplementary Files. We then further annotated the cell clusters as either epithelial, 

endothelial, mesenchymal, immune or neuronal for plot and figure annotation in order to 

enable easier data interpretation.

UMAPs and Diffusion Maps

Integrated full-map UMAP50 projections (Figure 1, 2, 3, 4, 5) were generated via the UMAP 

Python package (https://github.com/lmcinnes/umap) on the reduced corrected dimensions 

returned from fastMNN setting min_dist to 0.6 and the number of neighbours to square 

root the number of cells. Local UMAP projections (Figure 1, Figure 4 and Extended 

Data Fig. 5) were produced setting min_dist to 1, as those parameters tend to produce 

more geometrically accurate embeddings (see https://umap-learn.readthedocs.io/en/latest/). 

Diffusion Maps were produced using the Destiny R package (https://github.com/theislab/

destiny) also using the reduced dimensions returned from fastMNN as input and setting the 

number of neighbours to square root the number of cells.

We tested various randomization seeds for UMAP and Diffusion Map and various Diffusion 

Map distance metrics (as recommended in the Destiny R package manual) and confirmed 

that no qualitative difference occurs in the resulting single cell projections.
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Lineage Trees/Trajectories and Pseudotime

The Slingshot R package51 was used for lineage tree inference and pseudotime cell ordering 

inference based on the UMAP/Diffusion Map projection. The cell clustering (Step Two 

from integration strategy, see above) was used as input cell clusters. Start and end clusters 

were chosen based on reasonable expectation given our prior knowledge as discussed and 

recommended in Street et al.51 (for example, myofibroblast is the end cluster in a pericyte/

fibroblast/myofibroblast map).

Gene Dynamics along Pseudotime

Genes whose expression varied with cell ordering were defined as those whose normalized 

expression correlated with cell ordering as quantified by the spearman correlation coefficient 

at a Bonferroni-Hochberg corrected p-value cutoff of 0.001. Gene clusters and expression 

heatmaps (for example, Fig. 2f-top) were produced by ordering cells along the pseudotime 

predicted by SlingShot and using the genesorteR function plotMarkerHeat. This function 

clusters genes using the k-means algorithm, and we set the plot and clustering to average 

every 10 cells along pseudotime. Pathway enrichment and cell cycle analyses were 

calculated by grouping every 2000 cells along pseudotime.

Pathway Enrichment and Gene Ontology Analysis

For the single-cell data, we used KEGG pathway and PID pathway data downloaded in 

November 2019 from MSigDB 352,53 as “.gmt” files. Pathway enrichment analysis was 

performed using the clusterProfiler R package54 using the top 100 genes for each cell 

cluster/group as defined by the sortGenes function from the genesorteR package. The 

enricher function was used setting minGSSize to 10 and maxGSize to 200. The top 5 terms 

by q-value for each cell cluster/group were plotted as heatmaps of -log10(q-value). Gene 

Ontology Biological Process55 analysis was performed on the top 200 genes via the same 

method. The enricher function was used setting minGSSize to 100 and maxGSize to 500. 

To compare pathway activity between NKD2+ and NKD2- mesenchymal cells, we used 

PROGENy to estimate the activity of 14 pathways in a single-cell basis 56,57, using the top 

500 most responsive genes from the model as it is recommended from a benchmark study 57.

Cell Cycle Analysis

Cell cycle analysis was done following the method used in Macosko et al.58 and explained 

in the tutorial by Po-Yuan Tung (https://jdblischak.github.io/singleCellSeq/analysis/cell­

cycle.html, date: 06-07-2015), using normalized gene expression as input and setting the 

gene correlation value to 0.1. We used cell cycle gene sets provided in from Yang et 

al.59. To quantify enrichment/depletion of single cell cycle assignments (Figure 1g), we 

plot the log2 fold-change of those frequencies relative to the average frequency obtained 

by randomizing the true frequency matrix 1000 times while keeping row and column 

sums constant. Randomization was performed using the R package Vegan (https://CRAN.R­

project.org/package=vegan). Positive numbers indicate enrichment relative to what would be 

expected by chance, negative numbers indicate depletion.
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ECM and Collagen Score

The expression of core matrisome genes provided in Naba et al.5 were summarized based on 

normalized gene expression data using the same method used for cell cycle analysis. Also 

see Extended Data Figure S4.

Gene Expression Heatmaps

Scaled gene expression heatmaps such as those in Figure 2d were produced using the 

plotMarkerHeat and plotTopMarkerHeat functions in the genesorteR R package44. The 

fraction of expressed cells heatmaps such as Figure 3d were produced using plotBinaryHeat 

function from the genesorteR R package. Heatmaps showing log2-fold-changes and 

enrichments of features such as Figure 5j,k were produced using ComplexHeatmap R 

package (v. 2.4.2)60.

ATAC-Seq Analysis

Illumina Tn5 adapter sequences were trimmed from ATAC-Seq reads using bbduk 

command from BBmap suite (version 38.32, settings: trimq=18, k=20, mink=5, 

hdist=2, hdist2=0)61. STAR (version2.7.0e) was used to map ATAC-Seq reads 

to the mm10 genome assembly retaining only uniquely mapped pairs (settings: 

alignEndsType EndToEnd, alignIntronMax 1, alignMatesGapMax 2000, alignEndsProtrude 

100 ConcordantPair, outFilterMultimapNmax 1, outFilterScoreMinOverLread 0.9, 

outFilterMatchNminOverLread 0.9) 62. Picard’s MarkDuplicates command (version 

2.18.27) was used to remove sequence duplicates (settings: remove_duplicates=TRUE, 

http://broadinstitute.github.io/picard/). Non-concordant read pairs were then removed from 

the BAM file using Samtools (version 1.3.1)63. bedtools (version 2.17.0) was used to convert 

BAM files to BED files and to extend each read to 15bp upstream and 22bp downstream 

from the read 5’-end in a stranded manner 64, in order to account for steric hindrance of 

Tn5-DNA contacts 65. JAMM (version 1.0.7rev5) was used to identify open regions from 

the final BED files keeping the two replicates separate, retaining peaks that were at least 

50bp in width in the all list for further analysis (parameters: -r peak, -f 38,38, -e auto, -b 

100)66. ATAC-Seq signal bigwig files were produced using JAMM SignalGenerator pipeline 

(settings: -f 38,38 -n depth).

To deconvolute ATAC-Seq signal from bulk ATAC-Seq data according to scRNA-Seq 

clustering, we followed the following strategy. To deconvolute the ATAC-Seq signal three 

main steps in the data analysis were taken: 1) each open chromatin peak (where TFs are 

expected to bind DNA) was first assigned to a specific gene. 2) these genes were ranked 

per scRNA-Seq cluster (Fib, MF1/2 etc) depending on their expression in the single-cell 

RNA-Seq dataset. 3) The top 2000 ATAC peaks were used to identify enriched transcription 

factor motif sequences.

In more detail, each open chromatin ATAC-Seq peak was assigned to a gene according to its 

closest annotated transcription start site using the bedtools closest function, setting 100kb as 

the maximum possible assignment distance. ATAC-Seq peak ranking per scRNA-Seq cluster 

was obtained by ranking the peaks according to the ranking of their assigned gene in the 

single cell RNA-Seq cluster. The top 2000 ATAC-Seq peaks for each scRNA-Seq cluster 
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were selected and XXmotif 67 was used for de novo motif finding for each scRNA-Seq 

cluster open chromatin regions separately (settings: -- revcomp --merge-motif-threshold 

MEDIUM). We kept only motifs whose occurrence was more than 5%, as defined by 

XXmotif, for further analysis. Motif occurrence from all motifs from all 4 scRNA-Seq 

clusters were quantified using FIMO 68 with default parameters (MEME version 5.0.1) in 

the peaks assigned to the top 200 genes in each single cell RNA-Seq cluster. This produced 

a frequency matrix of motif occurrence in scRNA-Seq clusters. To quantify enrichment/

depletion of motif occurrence in scRNA-Seq clusters we plot the log2 fold-change of 

those frequencies relative to the average frequency obtained by randomizing the true 

frequency matrix 1000 times while keeping row and column sums constant. Randomization 

was performed using the R package Vegan (https://CRAN.R-project.org/package=vegan). 

Positive numbers indicate enrichment relative to what would be expected by chance, 

negative numbers indicate depletion (see Main Figure 4k). We selected Irf8, Nrf,Creb5/Atf3, 

Elf/Ets and Klf for further investigation. We plotted the signal from all peaks that contained 

those motifs using DeepTools version 3.3.1 69, using the bigwig file generated by JAMM as 

input (see above, Figure S11). We visualized the same bigwig file and motif occurrence in 

the Integrative Genomics Viewer 70 (version 2.4.10, Figure S11).

Other Visualization / Analysis

Heatmaps that do not quantify gene expression were produced using the heatmap2 function 

in the gplots R package (https://CRAN.R-project.org/package=gplots). Violin plots were 

produced using the vioplot R package (https://CRAN.R-project.org/package=vioplot).

Quantification and Statistical Analysis used outside of the single cell sequencing data

Data are presented as mean±SEM if not specified otherwise in the legends. Comparison of 

two groups was performed using unpaired t-test. For multiple group comparison one-way 

ANOVA with Bonferroni’s multiple comparison test was applied or two-way ANOVA with 

Sidak’s multiple comparisons test. Statistical analyses were performed using GraphPad 

Prism 8 (GraphPad Software Inc., San Diego, CA). A p-value of less than 0.05 was 

considered significant.

Gene Regulatory Network Analysis

Gene expression was l1-scaled per gene and the pearson correlation coefficient was 

calculated between Nkd2 and all other genes along pericyte, fibroblast and myofibroblast 

single cells. The top 100 correlating and top 100 anti-correlating genes were selected for 

pathway enrichment analysis. Further the expression of those 200 genes along single cells 

was used as input to GRNboost2+ python package to predict putative regulatory links 

between genes. The output network was filtered by removing connections with strength <= 

10. The resulting network was plotted as an undirected network (since regulators are not 

known beforehand) using ggraph package (https://cran.r-proiect.org/web/packages/ggraph/

index.html) and clustered into 4 modules using the Louvain algorithm as implemented in the 

igraph package.
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Transcription Factor Predictions from Single Cell Data

To obtain transcription factor scores in distal and proximal regions, we used the top 

200 marker genes for fibroblast, pericyte and myofibroblast cell clusters as input gene 

lists to RCisTarget71. We followed the RCisTarget Vignette to perform the analysis 

with default parameters (available https://bioconductor.org/packages/release/bioc/vignettes/

RcisTarget/inst/doc/RcisTarget.html).

To quantify AP1 expression, we used all Jun and Fos genes as a geneset and applied 

the same method to obtain an AP1 score as we did for ECM score. To quantify AP1 

activity (defined as the expression of putative target genes72,73, we defined AP1 target genes 

according to the Dorothea regulon database57,74 and applied the same method as ECM score 

to obtain a single cell AP1 activity score.

Mouse Supervised Cell Classification

We classified single cells in the mouse PDGFRa+b+ dataset using the human PDGFRb+ 

dataset as a reference using the CHETAH algorithm with default parameters75. Human gene 

symbols were converted to mouse gene symbols using the biomaRt database39.

CellphoneDB Analysis

CellPhoneDB (v.2.1.1) was used to estimate cell-cell interactions among the cell types found 

in the human CD10- fraction using the version 2.0.0 of the database76, and the normalized 

gene expression as input, with default parameters (10% of cells expressing the ligand/

receptor). Interactions with p-value < 0.05 were considered significant. We consider only 

ligand-receptor interactions based on the annotation from the database, for which only and 

at least one partner of the interacting pair was a receptor, thus discarding receptor-receptor 

and other interactions without a clear receptor. Ligand-receptor interactions from pathways 

involved in kidney fibrosis were selected using the membership from KEGG database 

for Hedgehog, Notch, TGFb and WNT signaling, and REACTOME database for EGFR 

signaling from MSigDB 352,53, and manual curation for PDGF signaling.

Bulk RNA-Seq Data Analysis

Gene expression was quantified on the transcript level using Salmon v1.1.0, with the 

--validatMappings and --gcBias parameters switched on, to the human Gencode v29 

transcriptome. Transcript level counts were aggregated to gene level counts using the import 

in tximport R package, setting countsFromAbundance to “lengthScaledTPM”77. Limma R 

package (v.3.44.1) was used to test for differential gene expression between Nkd2-perturbed 

human kidney PDGFRb+ as compared to their control using the empirical Bayes method 

after voom transformation78. We found that two out of the three clones of CRISPR-Cas9 

NKD2 Knock-Out group together in the principal component analysis and exhibited a 

shallow phenotype, while the third clone grouped independently and presented a more 

severe phenotype. Thus, we grouped the two first clone knock-outs, to have two independent 

Knock-Out conditions for the statistical contrasts. Differentially expressed genes were 

ranked by the moderated t-statistic from the statistical test for pathway and gene ontology 

analysis. P-values were adjusted for multiple testing using Benjamini & Hochberg method. 

Genes and pathways with FDR < 0.05 were considered significant.
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For pathway and gene ontology analysis, we also used clusterProfiler R package with KEGG 

and PID pathways using genes with adjusted p-value less than 0.01 in the Nkd2-perturbed 

cells as compared to the control and absolute log fold-change higher than 1 for knockout 

comparison (higher than 0 for over-expression comparison) with a maximum of 200 genes, 

ranked by the adjusted p-value. We used GSEA-preranked to test for an enrichment of ECM 

genes in the phenotypes using fgsea R package (v.1.14.0)79, with MatrisomeDB gene set 

collection5.

Statistics and reproducibility

Data are presented as mean±SEM if not specified otherwise in the legends. Unless 

otherwise stated, statistical significance was assessed by a two-tailed Student’s t-test or 

one ANOVA with Bonferroni’s multiple comparison with P value < 0.05 being considered 

statistically significant. Statistical analyses were performed using GraphPad Prism 8 

(GraphPad Software Inc., San Diego, CA) or as decribed in the Methods above. Results 

are presented in dot plots, with dots representing individual values, violin plots (horizontal 

line indicates the median, the box indicates the span of the 25% to the 75% percentiles, 

whiskers extend to maximum 1.5x this interquartile range) and Tukey box-whisker-plots 

(horizontal line indicates the median, the box indicates the span of the 25% to the 75% 

percentiles, whiskers extend to max. and min. values). The number of samples for each 

group was chosen on the basis of the expected levels of variation and consistency. The 

depicted RNAscope, immunofluorescence micrographs and western blot micrographs are 

representative. All studies were performed at least twice, and all repeats were successful.
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Extended Data

Extended Data Fig. 1. Kidneys cell atlas and CD10 sorting strategy
a. A schematic of human nephrectomy kidneys. Kidney samples were sampled from the 

tumor-free kidney cortex distant from the tumor region. b. A schematic of the whole kidney 

sorting strategy. Single cell 10x Genomics RNA-Seq libraries were prepared from CD10 

negative, living (DAPI-) and CD10 positive, living (DAPI-) cells separately. CD10 negative 

cells are enriched for mesenchymal cells. c. Immunofluorescence staining of CD10, LTA, 
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CD45 and WT1. CD10 expression labels proximal tubule epithelial cells. d. Representative 

flow cytometric plots from the sorting and gating strategy described in c enriching for CD10- 

cells. e. Relationship between serum creatinine and age in patients included in the scRNA­

seq experiments of Fig. 1. f. Relationship between serum creatinine and degree of interstitial 

fibrosis scored by a blinded nephropathologist for the same patients in e. g. Relationship 

between serum creatinine and tubular atrophy as scored by a blinded nephropathologist for 

the same patients in e and f. h. Representative images of PAS stained (left) and Collagen 

3 immunostained kidneys of patients with eGFR>60 ml/min/1.73 m2 body surface area. i. 
Same as h but patient with eGFR<60 ml/min/1.73 m2 body surface area. j. Each patient 

visualized in the UMAP of Fig. 1b. k. The main 5 cell types found in the CD10- fraction, 

illustrated on the same UMAP embedding from Figure 1b. l-r. Expression of select marker 

genes visualized on the same UMAP embedding. s. Each cell state/type visualized in the 

UMAP of Fig.1b. t. Doublet Score (see Methods) for human CD10+ cells. u. Doublet Score 

(see Methods) for human CD10- cells. Scale bars: in c1-c3 50 μm, in c4-c6 30 μm, in h-i 75 

μm.
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Extended Data Fig. 2. Expression of cell type markers and ECM score
a. Scaled gene expression of marker genes in mesenchymal cell clusters of the CD10- 

data depicted in Fig. 1b-e. Each 100 cells are averaged in one column. b. Same as a. but 

endothelial clusters c. Same as a. but immune clusters. d. Same as a. but epithelial clusters. 

e. The 7 cell clusters found in the CD10+ fraction cells visualized on the UMAP embedding 

from Fig. 1e. f. UMAP embedding of e. with colors representing the cell types/states. g. 

Scaled ECM score on UMAP from e. h. 8 patients visualized on UMAP embedding as e. i. 
Expression of RBP4 visualized on UMAP embedding from e. j. Scaled gene expression of 
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the top 20 genes by specificity of each of the 7 cell clusters discovered in the CD10+ data 

depicted in e-h. k. Log fold change of cell cycle stage assignment frequencies in healthy 

and CKD epithelial cells relative to permuted frequencies. Positive numbers represent 

enrichment, negative numbers represent depletion. l. Percentage of cells per cell cluster in 

each cell cycle phase as predicted from gene expression data. m-n. KEGG and GEO Process 

terms enriched in cells belonging to healthy or CKD patients, according to differentially 

expressed genes between healthy and diseased patients (see Fig. 1f). Note Fatty Acid 

Catabolic Process and Lipid Oxidation consistent with KEGG pathway enrichment results o. 

ECM, collagen, proteoglycan and glycoprotein score of human diabetic kidney dataset (Fan 

Y. et. al. Diabetes 2019). Advanced DN (diabetic nephropathy) n=21, early DN n=6, control 

n=9. p. Distribution of single cell ECM scores for all cells in the CD10- cell fraction, colors 

indicate cell groups obtained by unsupervised mixture model clustering of ECM scores. q. 

ECM groups visualized on the UMAP of Fig. 1b. r. The same ECM scores as in p. but 

scaled and visualized on the UMAP embedding from Fig. 1b. s.-u. Scaled expression of 

gene groups summarized in the ECM score including collagens (r), glycoproteins (s) and 

proteoglycans (t). All 50 cell clusters are shown, all cells from each cluster are averaged in 

one column.

Kuppe et al. Page 30

Nature. Author manuscript; available in PMC 2021 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 3. Kidney mesenchymal cells and proximal tubules
a. UMAP embedding of Fibroblast/Pericyte/Myofibroblast cells from 13 human kidneys 

(n=2,689). Colors represent the cell types. Lines refer to a lineage trajectory predicted by 

slingshot (see Methods). b. Expression of selected genes on the embedding of a. c. Gene 

Ontology Biological Process analysis for Pericyte (Pe), Myofibroblast (MF), Fibroblast cell 

clusters (Fib) and vascular smooth muscle cells (VSMCs) based on the top marker genes 

for each cluster (CD10- data, see Methods). d. ECM score and scaled expression of select 

genes visualized on the Mesenchymal cell Diffusion Map embedding of Figure 1o. e.-h. 
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The distribution of ECM score, collagen score, glycoprotein score and proteoglycan scores 

stratified by epithelial cell clusters in the CD10- -cell fraction. i. Scaled expression of select 

genes in proximal tubules and injured proximal tubule cell clusters. Each 100 cells are 

averaged in one column. j. Gene Ontology Biological Process analysis based on differential 

expression between proximal tubules and injured proximal tubules. k.-n. The distribution of 

ECM score, collagen score, glycoprotein score and proteoglycan scores for epithelial cells 

(CD10+ cell fraction) o. Percentage of cells expressing PDGFRb and Col1a1 in each main 

cell niche. Neuronal Schwann cells were excluded since they are represented by a small 

number of cells.
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Extended Data Fig. 4. PDGFRb+ cell enrichment.
a. Patient samples (n=8) visualized on the UMAP from Figure 2a. Different cell clusters 

are indicated by different colors. Stratification of single cells according to patient clinical 

parameters (CKD=chronic kidney disease, eGFR=estimated glomerular filtration rate). b­
c. Expression of select genes on the same UMAP embedding from a. d. Scaled gene 

expression of the top 10 genes in each cell type/state cluster. Gene ranking per cell cluster 

was determined by genesorteR. e. Correlation between cell clusters identified in CD10- 

data (Figure 1, columns) and PDGFRb+ data (Figure 2, rows). f. ECM score stratified 
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by 4 main cell types in PDGFRb+ data. g. ECM score stratified by main mesenchymal 

cell types. h. ECM score stratified by 5 epithelial cells clusters. i. ECM score visualized 

on the UMAP embedding from a. j. Doublet Score (see Methods) for human PDGFRb+ 

cells. k. Representative image of combined immunofluorescent and multiplex RNA in-situ 

hybridization of LTA (proximal tubular marker), Col1a1 and PDGFRb+. Note Col1a1 and 

PDGFRb expression in LTA+ tubular cells (j’ arrows). l. Representative image of combined 

immunofluorescent and multiplex RNA in-situ hybridization of CD68 (macrophage marker), 

Col1a1 and PDGFRb. m. Representative image of multiplex RNA in-situ hybridization of 

Pecam1, Col1a1 and PDGFRb. Scale bars k-m 50 μm.

Kuppe et al. Page 34

Nature. Author manuscript; available in PMC 2021 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 5. Lineage trajectories and spatial localization
a. The mesenchymal cell clusters in Figure 2 here indicated on the Diffusion Map 

embedding from Figure 2c (left) and stratified by eGFR class (right) and the expression 

of selected genes on the same embedding. b. UMAP embedding of mesenchymal cell 

populations from Fig. 2a. Colors represent the cell types/states shown in Fig 2a. c. ECM 

score visualized on the UMAP in b. UMAP embedding indicates distinct and separate 

pericyte and fibroblast origins for myofibroblasts, consistent with Diffusion Map embedding 

of the same cells (Figure 2e) d. 3 main pericyte and (myo-) fibroblast cell types indicated 
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on the same UMAP embedding. e. Pseudotime as predicted by the Slingshot algorithm on 

the same UMAP embedding from b. f.-g. Col1a1 and Notch3 expression on the UMAP 

embedding from b. h-i. Violin plots across mesenchymal cells types of Col1a1 and Postn 

of human PDGFRb+ dataset in Figure 2. j. Quantification of Meg- (Notch3/Postn-) cells in 

human kidneys (n=35) (see patient data Extended data table 2). n=17 (healthy), 10 (early) 

and 8(late); *p<0.05, **p < 0.01 by 1-way ANOVA followed by Bonferroni’s correction. 

Tukey box whisker plot. k-m. Representative image of multiplex RNA in-situ hybridization 

of Meg3, Notch3 and Postn. Note that triple positive cells (arrow with tails) or double 

positive cells (Notch3+Postn+, l magnification 2 arrow heads) can be detected in the kidney 

interstitium. n. Immunofluorescence staining of Cxcl12(SDF-1). Note expression in the 

kidney interstitium in PDGFRb+ cells (arrow with tails) and LTA- tubular cells (arrows). 

o.-q. Representative image of multiplex RNA in-situ hybridization of Ccl19, Ccl21 and 

PDGFRb. r. Quantification of Ccl19/Ccl21+ cells in human kidneys (n=35) (see Patient 

data Extended data table 2). n=17 (healthy), 10 (early) and 8(late); ***P < 0.001, ****P 

<0.0001 by 1-way ANOVA followed by Bonferroni’ post-hoc test. Tukey box whisker plot. 

For details on statistics and reproducibility, please see Methods.
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Extended Data Fig. 6. Mesenchymal pathway activity and role of AP-1
a. KEGG pathway enrichment analysis along pseudotime for lineage 1 (see Figure 

2c.) b. Top: Gene expression dynamics along pseudotime for lineage 2 (Fibroblasts to 

Myofibroblasts, see Figure 2c.). Cells (in columns) were ordered along pseudotime and 

genes (in rows) that correlate with pseudotime were selected and plotted along pseudotime 

(see Methods). Each 10 cells were averaged in one column. Genes were grouped signifying 

their pseudotime expression pattern. Selected example genes for each group are indicated. 

See Supplementary File 3 for gene cluster assignments. Bottom: Cell cycle stage along 
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pseudotime as percent of each 500 cells along pseudotime. c. Same as in b. but for lineage 

3 cells (see Figure 2c) d. PID signaling pathway enrichment analysis along pseudotime 

for lineage 2 cells ordered along pseudotime as in b. e. KEGG pathway enrichment 

analysis along pseudotime for lineage 2. f. Same as in d. but for lineage 3 cells (see 

Figure 2c). g. Same as in e. but for lineage 3 cells. h.-k. Violin plots across mesenchymal 

cells types of selected genes of the human PDGFRb+ dataset in Figure 2. l. TF scores 

for proximal promoter regions (l) and distal regions (m) obtained by TF sequence motif 

enrichment analysis for top marker genes for the mesenchymal cell clusters of the human 

PDGFRb+ dataset (see Methods). Note enrichment of Fos and Jun motifs in promoters 

of fibroblast marker genes. m. Schematic of human kidney PDGFRb+ cell generation and 

immortalization. n. Cell proliferation (WST-1) and expression of cFos, Col1a1, Postn and 

Ogn by RNA qPCR after AP-1 inhibitor treatment (T-5224) and/or TGFb treatment of 

immortalized human PDGFRb kidney cells. n=3 per group. *P < 0.05, **P<0.01, ***P < 

0.001, ****P <0.0001 by 1-way ANOVA followed by Bonferroni’ post-hoc test. Mean± 

S.D. o. Expression of Ogn (Fib1+3) and Postn (MF1) visualized on the same UMAP 

embedding from Extended data Fig. 5b. p. AP-1 average TF expression (left) and average 

expression of putative AP-1-regulated genes (right) against Collagen scores stratified by 

fibroblast and myofibroblast cells. Interestingly, the expression of AP-1 anti-correlates with 

collagen score but the expression of its target genes positively correlates with collagen score, 

potentially pointing towards an inhibitory role for AP-1. q. The number of statistically 

significant receptor-ligand interactions between mesenchymal cells and all other cell types 

(CD10- fraction, Figure 1) according to CellphoneDB Analysis. Dendritic cells, monocytes, 

myofibroblasts, podocytes, arteriolar endothelial cells and injured tubules as major sources 

of signaling ligands to pericytes fibroblasts and myofibroblasts. r. Dot plot for significant 

ligand-receptor interactions from the selected signaling pathways EGFR, PDGF, WNT, 

TGFb, Notch and Hedgehog for pericytes, fibroblast and myofibroblasts. Interacting ligand­

receptor and cell types are shown by pairs. The first cell type of the interacting pair 

expresses the ligand and the second cell type expresses the receptor (i.e. first and second 

proteins from the interaction, respectively). Ligand-receptor interactions are grouped by 

signaling pathways. Yellow: EGFR, pink: PDGF, green: WNT, red: TGFb, black: Notch, 

blue (light or dark): mixed of TGFb and EGFR. None of the hedgehog interactions were 

significant. For details on statistics and reproducibility, please see Methods.
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Extended Data Fig. 7. Origin of myofibroblast in murine kidney.
a. Representative image of Col1a1 in-situ hybridization in a PdgfrbCreER;tdTomato kidney 

after UUO surgery. Scale bar 10 μm b-c. Quantification of aSMA+ cells in PDGFRbtdtom+ 

kidneys from UUO day 10. n=3. Mean± SD. d. Scaled expression of the top 10 genes by 

specificity in each cell cluster depicted in Figure 3e. All cells from each cell cluster are 

averaged in one column. e. Expression of select genes in all 10 cell clusters from Figure 

3e. f. ECM score visualized on the same UMAP embedding from Figure 3e. g. Distribution 

of ECM score, collagen score, glycoprotein score and proteoglycan score per cell cluster. 
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h. Immunofluorescence (IF) staining in sham and UUO (day 10) mouse kidney showing 

Pdgfra expression in a subset of PDGFRbCreER;tdTomato positive cells (arrows). i. RNA 

in-situ hybridization showing colocalization of Col1a1 expression in PDGFRa/PDGFRb 

double-positive cells. Col1a1/PDFGRa/PDFRb triple-positive cells (arrows) occur solely in 

the kidney interstitium. j. Left: Col1a1 expression and ECM score in CD10 negative cells 

(Figure 1b) stratified according to PDGFRa and PDGFRb expression. Right: Percent of 

Col1a1 positive and negative cells in the same data, stratified in the same way. Col1a1 

negative cells occur mostly in PDGFRa/b double-negative cells while Col1a1 positive cells 

occur predominantly in PDGFRa/b double-positive cells (n=51,849). Group comparisons: 

(other genes) vs. (a/b): p~0, (a-) vs. (a/b): p~0, (b) vs. (a/b): p~0, (other genes) vs. (a): 

p~0, (b) vs. (a): p~0, (other genes) vs. (b):p~0. Bonferroni corrected p-values based on 

a two-sided Wilcoxon rank sum test. k. Distribution of IF/TA-Score over 62 patients and 

representative image of a trichrome stained human kidney tissue microarray (TMA) stained 

by multiplex RNA in-situ hybridization using PDGFRa, PDGFRb and Col1a1 probes with 

nuclear counterstain (DAPI) of 62 kidneys (patient data in Extended Data Table 2) (left), 

average scaled Col1a1 expression in the in-situ hybridization data stratified by PDGFRa/

PDGFRb detection in the same data (middle) and percent of Col1a1 positive and negative 

cells in the same data stratified in the same way (right). Group comparison: (a/b) vs. 

(col1α1): p~0, (a/b) vs. (b): p~0, (a/-) vs. (a): p~0. Bonferroni corrected p-values based on a 

two-sided Wilcoxon rank sum test. l-p. A Diffusion Map embedding of pericytes and matrix 

producing cells with annotation of the different time points in m, cell cluster annotation 

in n and scaled expression of selected genes in o-q. q. The surgery type per cell (sham 

versus UUO) visualized on the same UMAP embedding from Figure 4c (top), or with colors 

representing the cell types/states (bottom). r. Expression of select genes on the same UMAP 

embedding from 3j. s. ECM and collagens score distribution for the 4 major cell types (top) 

and for mesenchymal clusters (bottom). Scale bars h+j 50 μm, in k 10 μm. For details on 

statistics and reproducibility, please see Methods.
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Extended Data Fig. 8. PDGFRa+/PDGFRb+ cells in kidney fibrosis.
a. Scaled expression of the top 10 genes by specificity in each of the mesenchymal 

cell clusters depicted in Figure 3d. Each 100 cells are averaged in one column. b. Cell 

doublet score (see Methods) of mouse PDGFRa/b+ dataset per cell cluster. c. A violin 

plot of Col15a1 expression per cell cluster. Only mesenchymal cells are shown. Bonferroni 

corrected p-values based on a two-sided Wilcoxon rank sum test in Supplemental File 4. 

d. A UMAP embedding of Meg3 as in Figure 2a and multiplex in-situ staining of Meg3 

on human kidney tissue. Scale bars d1 30 μm, d2+3 40 μm e. Representative image of 
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multiplex RNA in-situ hybridization for PDGFRa, PDGFRb and Meg3 in n=34 human 

kidneys (Patient Data in Extended Data Table 2). Meg3 colocalizes with PDGFRa and 

PDGFRb. Scale bar 10 μm f. Percent of Meg3-cells out of PDGFRa/b double-positive cells, 

quantified from RNA in-situ hybridization. n=34. Tukey box-whisker plot. g. Expression of 

select genes on the same UMAP embedding from Figure 3j. For details on statistics and 

reproducibility, please see Methods.

Extended Data Fig. 9. Correlation of human and mouse populations and distinct gene-regulatory 
programs of the mesenchyme.
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a. Classification tree of human PDGFRb dataset derived by the CHETAH algorithm based 

on single cell expression and clustering information. b. Supervised classification of mouse 

PDGFRa+/b+ cells using human PDGFRb+ cells as a reference (see classification tree in 

a.). Heatmap displays percentage of mouse PDGFRa+/b+ cells in each mouse cell cluster. 

Fibroblasts 1 in mice are largely classified as Fibroblasts 1 according to human data. 

Mouse myofibroblasts are classified as Node 15 and myofibroblasts 2b in humans indicating 

variability between mouse and human with myofibroblast states. c. Schematic of proposed 

cellular origin of fibrosis. d. Scaled gene expression of transcription factors discovered by 

ATAC-Seq (see Figure 3q) in six fibroblasts and myofibroblast cell populations. e. ATAC­

Seq signal for motif matches inside open chromatin regions for five selected transcription 

factors. f. Genome browser snapshots for select genes. ATAC-Seq signal and motif matches 

in open chromatin regions are shown. Multiz Align is conservation scores between mouse 

and human, ClinVar lift is clinical variants lift to mouse genome coordinates. Nrf, Irf8, 

Elf/Ets and Klf motifs are located in promoter and enhancer open chromatin regions of 

myofibroblast associated genes such as Col1a1, Col15a1, Tgfb and Nkd2. Creb5_Atf3 is 

found in genes associated to Fib1. cluster, such as Tmeff2. g. Expression of some of the 

genes investigated in g-i. Visualized on the same UMAP embedding from Figure 4c. i. 
Scaled expression of genes that correlate or anti-correlate with injury time across matrix 

producing cells (mouse PDGFRb+ data). Note the expression of Ogn, Scara5 and Pcolce2 is 

largely specific to day0-day2 cells while the expression Nkd2, Fbn2 and Nkd1 is specific is 

increased in day 10 after UUO. h. Signaling pathway enrichment in the same mesenchymal 

cell clusters depicted in Figure 3q.
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Extended Data Fig. 10. NKD2 is a potential target in kidney fibrosis
a-b. Gene ontology Biological Process terms for genes that correlate or anti-correlate 

with Nkd2+ expression across single cells in pericytes fibroblasts and myofibroblasts in 

mouse PDGFRa+/b+ data (a) and human PDGFRb+ data (b). Genes correlated with Nkd2+ 

expression are related to ECM expression, integrin signaling and focal adhesion. c. Pathway 

activity as estimated by the PROGENy algorithm in NKD2+ vs. NKD2- cells from the 

human PDGFRb+ dataset. p>0.05 n.s., *p<0.05, **p<0.01, ***p<0.001, p values were 

adjusted for multiple testing using Benjamin/Hochberg method (FDR) (c). d. Scaled gene 
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expression of top 100 genes whose expression is correlated or anti-correlated with Nkd2 

expression across single cells in human PDGFRb+ data (see also b.) e. Gene regulatory 

network predicted based on the expression of cells and genes depicted in l. using the 

GRNBoost2+ algorithm. Connection between genes indicate putative direct or indirect 

regulatory interactions. Colors indicate clustering of the gene regulatory network using 

the Louvain algorithm and highlights the regulatory network of ECM expression (module 

2, Nkd2+) and fibroblast and pericyte maintenance (module 4 and 3) f. Module 2 from l. 

Depicted separately, connections of Nkd2 are highlighted in red. g. Expression of genes 

highlighted in e. and f. including Etv1 transcription factor and Lamp5 which are both 

directly connected to Nkd2 in e. and f. h. Expression of Col1a1, Fibronectin (Fn) and 

Acta2 (aSMA) by qPCR after Nkd2 over-expression in human immortalized PDGFRb+ 

cells treated with transforming growth factor beta (TGFb) or vehicle (PBS). n=3 per group. 

1-way ANOVA followed by Bonferroni’ post-hoc test. Data represent the mean ± SD. i. 
Expression of NKD2 by RNA qPCR in NKD2 KO cells. ****P <0.0001 by 1-way ANOVA 

followed by Bonferroni’ post-hoc test. Data represent the mean ± SD. j. Expression of 

Col1a1, Fibronectin (Fn) and Acta2 by RNA qPCR after Nkd2 knock-out in the same clones 

depicted in h. n=3 per group. #p<0.05, ##p<0.01, ###p<0.001, ####p<0.0001 (vs. control 

NTG); ****p <0.0001 (vs. TGFb NTG) by 2-way ANOVA followed by Sidak’s post-hoc 

test. Data represent mean ± SD. k. PID signaling pathways enriched in PDGFRb+ NKD2­

KO clones and overexpression (up indicates up-regulated genes in indicated condition, and 

down indicates down regulated genes). l. Gene ontology Biological Process terms enriched 

in PDGFRb+ NKD2-KO clones (up indicates up-regulated genes in KO condition, and down 

indicates down regulated genes). m. Scaled gene expression of WNT pathway receptors and 

ligands in Nkd2-perturbed human kidney PDGFRb+ cells.*p< 0.05, **p< 0.01, and ***p < 

0.001 as determined by the empirical Bayes from the test for differential expression after 

adjusting p-values for multiple testing correction (Benjamini & Hochberg) n. Representative 

image of multiplex RNA in-situ hybridization of PDGFRa, PDGFRb and NKD2 in human 

iPSC derived kidney organoids. o. Immunofluorescence stainings of human iPSC derived 

kidney organoids (day 7+18). LTA and HNF4a mark proximal tubular like-cells. pan-CK 

(Cytokeratin) marks epithelial-like cells. ERG (ETS regulated-gene) marks endothelial-like 

cells. Dach1 and Nephs1 mark podocyte-like cells. Col1a1 marks fibroblast/myofibroblasts. 

p. Immunofluorescence stainings of Col1a1 in IL1b treated kidney organoids. Scale bar in n, 

o, p=50 μm. For details on statistics and reproducibility, please see Methods.
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Figure 1. Single cell atlas of human chronic kidney disease (CKD)
a. Scheme of the kidney b. UMAP embedding of 51,849 CD10- single cells from 15 

human kidneys. Labels refer to 50 clusters identified, see Supplementary File 1. c. Scaled 

gene expression of the top 10 specific genes in each cluster (see Supplementary File 

2 for detailed information). Each column is the average expression of all cells in a 

cluster. d. Stratification of cells by estimated glomerular filtration rate (eGFR). e. UMAP 

embedding of 31,875 CD10+ single cells stratified by eGFR f. KEGG pathway enrichment 

for CD10+ cells. g. CD10- clustering by ECM (extracellular matrix) score stratified by 

eGFR (see Extended Data Figure 2p). h. ECM score stratified by cell type and eGFR, 

Mesenchymal (p ~0), Immune (p ~0), Epithelial (p ~0), Endothelial (p ~0) i. Single cell 

ECM score for mesenchymal cells, stratified by major cell types and by eGFR. P-value 

of differences in eGFR categories: Fib1 (0.00015), Fib2 (1), Fib3 (0.54), MF1a (1), MF1b 

(0.59), Pe1 (0.096), Pe2 (1), SMC (0.162). (h.-i.) Bonferroni corrected p-values based on 

two-sided t-test. j. Number of cells per mesenchymal cell type and clinical parameter. 

Hypergeometric test, adjusted p value for fibroblast and myofibroblast = ~0 - for pericyte 

and vascular smooth muscle cells ~ 1. k. Diffusion mapping of mesenchymal cells, 

pseudotime indicates cell ordering along putative differentiation processes. For details on 

statistics and reproducibility, please see Methods.
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Figure 2. Origin of myofibroblasts in the human kidney
a. UMAP embedding of 37,800 Pdgfrb+ single cells from 8 human kidneys. Labels refer to 

identified cell-types by unsupervised clustering (see Supplementary File 1). b. Expression 

of selected genes on the embedding from a. c. Diffusion Map embedding of Pdgfrb+ 

fibroblasts, myofibroblasts and pericytes (n=23,883) and the expression of selected genes 

on the same embedding. Red lines correspond to the three lineage trajectories (L1, L2 

and L3) predicted by Slingshot given the Diffusion Map coordinates and the clusters 

depicted in Extended Data Figure 5b. d. Representative images of RNA-in-situ hybridization 

for Meg3, Notch3, Postn in 35 human kidneys (Patient Data in Extended Data Table 2, 

IFTA=interstitial fibrosis, tubular atrophy score). n=17 (a), 10 (b) and 8(c); ***p < 0.001 by 

1-way ANOVA followed by Bonferroni’s correction. Tukey box whisker plot. Scale bar left 

10 μm, right 25 μm. e. Top: Gene expression dynamics along pseudotime for Lineage 1 (see 

c., see Methods). Middle: Cell cycle stage as percent of each 2000 cells along pseudotime. 

Bottom: PID Signaling pathway enrichment along pseudotime. For details on statistics and 

reproducibility, please see Methods.
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Figure 3. Origin of myofibroblasts in mice.
a. Fate tracing experiment design b. Col1a1 in-situ hybridization in a 

PdgfrbCreER;tdTomato kidney. Scale bar 1000 μm. c. Percentage of Col1a1-mRNA 

expressing cells that co-express tdTomato at day10 after (unilateral ureteral obstruction, 

UUO, n = 3, shown mean). d. Time-course UUO experiment design. e. UMAP embedding 

of the mouse Pdgfrb+ cells. Labels refer to a cell-types identified. f. Percent of cells per 

cell type and time-point. g. Expression of selected genes on the UMAP embedding from 

e. h. Scheme of the PDGFRa/PDGFRb isolation UUO experiment. i. Quantification of 

Pdgfra+/Pdgfrb+ cells by flow cytometry (n=5 per group). *p<0.05; **p<0.01 by one-way 

ANOVA with post-hoc Bonferroni correction. Data shown as mean ± s.e.m. j. Left: UMAP 

embedding of the Pdgfra+/Pdgfrb+ cells Right: Percent of cells per cluster. k. Expression 

of selected genes in each of the cell clusters from j. n., o. UMAP and diffusion map 

embedding of fibroblasts and myofibroblasts. p. Computational cell ordering (pseudotime) 

and expression of selected genes on the embedding in n. q. Enrichment of transcription 

factor motif occurrence in fibroblasts and myofibroblasts. TF motifs were identified from 

Pdgfra+/Pdgfrb+ day 10 UUO ATAC-Seq data (see Methods). For details on statistics and 

reproducibility, please see Methods.

Kuppe et al. Page 52

Nature. Author manuscript; available in PMC 2021 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Nkd2 as therapeutic target.
a. Expression of Nkd2 visualized on the UMAP embedding from Figure 3j. b. Percent 

of Col1a1+/- cells in mouse Pdgfra+/Pdgfrb+ cells (Figure 3j, stratified by Pdgfra and 

Nkd2 expression). c. Scaled gene expression of Nkd2 correlating or anti-correlating genes 

in human Pdgfrb+ cells (Figure 2). d.-e. RNA in-situ hybridization (ISH) of PDGFRa, 

PDGFRb and NKD2 in human kidneys and quantification of triple positive cells (n=36, 

Patient data in Extended Data Table 2). n=20 and 16. Two-tailed Mann-Whitney test. 

Tukey box whisker plot. IF-score = interstitial fibrosis score. Scale bar 10μm. f.-g. 

Representative Western blots of Nkd2 overexpression and KO cells. For gel source data, 

see Extended Data Fig. 10e. h. GSEA (Gene set enrichment analysis) of ECM genes in 

Nkd2-perturbed PDGFRb- kidney cells. n=3 each. *P < 0.05, **p< 0.01, and ***p < 0.001 

as determined by FGSEA-multilevel method after adjusting p-values for multiple testing 

correction (Benjamini & Hochberg). i. ISH of Pdgfra, Pdgfrb and Nkd2 in human iPSC 

derived kidney organoids. j. Quantification of Nkd2 RNA expression in organoids. n=4 each. 

Two-tailed unpaired t-test. k.-l. Immunofluorescence staining and quantification of Col1a1 

in organoids. n=4 each. *P < 0.05, **p< 0.01, and ***p < 0.001 by 1-way ANOVA followed 

by Bonferroni’s correction. Scale bar in i+k 50 μm. Data shown as mean±SD. For details on 

statistics and reproducibility, please see Methods.
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