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Rat model of an autologous 
cancellous bone graft
Tomo Hamada  , Hidenori Matsubara  *, Toshifumi Hikichi, Kanu Shimokawa & 
Hiroyuki Tsuchiya

Autologous cancellous bone (ACB) grafting is the “gold standard” treatment for delayed bone union. 
However, small animal models for such grafts are lacking. Here, we developed an ACB graft rat 
model. Anatomical information regarding the iliac structure was recorded from five rat cadavers (10 
ilia). Additionally, 5 and 25 rats were used as controls and ACB graft models, respectively. A defect 
was created in rat femurs and filled with ACB. Post-graft neo-osteogenic potential was assessed 
by radiographic evaluation and histological analysis. Iliac bone harvesting yielded the maximum 
amount of cancellous bone with minimal invasiveness, considering the position of parailiac nerves and 
vessels. The mean volume of cancellous bone per rat separated from the cortical bone was 73.8 ± 5.5 
mm3. Bone union was evident in all ACB graft groups at 8 weeks, and new bone volume significantly 
increased every 2 weeks (P < 0.001). Histological analysis demonstrated the ability of ACB grafts to 
act as a scaffold and promote bone union in the defect. In conclusion, we established a stable rat 
model of ACB grafts by harvesting the iliac bone. This model can aid in investigating ACB grafts and 
development of novel therapies for bone injury.

Autologous cancellous bone (ACB) grafts are considered the “gold standard” treatment for post-traumatic bone 
conditions, including fracture, delayed union, and nonunion1. Cancellous autografts contain osteoblasts, mesen-
chymal stem cells, bone morphogenetic protein, and growth factors. The cancellous matrix serves as an excellent 
scaffold for vascular ingrowth and osteoblastic cell infiltration owing to its osteogenic, osteoinductive, and osteo-
conductive properties2–6, making it a potential candidate for the treatment of acute and reconstructive traumas. 
However, limitations, including donor-site morbidity and graft availability, render autografts suboptimal for some 
patients. Nevertheless, advances in allografts and artificial bone grafts have made them viable alternatives owing 
to their convenient application, abundance, and absence of procurement-related patient morbidity. Although 
allografts or artificial bone grafts have bone union properties7–9, autologous bones remain the “gold standard” 
in orthopedic surgery due to ethical reasons and because the bone union property of the autologous cancellous 
bone is superior to that of allografts or artificial bone grafts10–12.

Studies on bone grafts in various rat models have employed the strategy of grafting natural bovine cancel-
lous bone particles into the alveolar ridge13, implanting heat-treated porcine cancellous bone particles into the 
calvarial defects14, and implanting freeze-dried cancellous bone of the tibia of other rats15,16. An advantage of rat 
models with an allograft is that they do not require invasive bone collection. However, as freeze-dried or heat-
treated bone grafts have lower osteogenic, osteoconductive, and osteoinductive potentials than bone autografts, 
bone grafts implanted in these models differ from clinically used autologous bone grafts. Furthermore, additional 
rats are required for bone collection, making the process cost-intensive. Although various medium- and large-
sized animal ACB models have been established17–20, effective small animal models, capable of recapitulating 
the clinical conditions of ACB grafts, have not been developed. Small animal models can provide important 
insights into disease pathogenesis and the underlying molecular pathways, thereby facilitating the develop-
ment of novel therapeutic agents and strategies. Therefore, it is necessary to establish new animal models for 
orthopedic research.

Accordingly, in this study, we aimed to determine whether collecting rat ilium is a safe procedure and to 
determine the volume (and whether it is sufficient) of cancellous bone that can be obtained from the ilium. 
Moreover, we analyzed the ability of the collected cancellous bone to promote bone union.

Methods
Animal experiments.  All animal experiments complied with the ARRIVE guidelines, and the Institutional 
Ethics Committee at Kanazawa University Advanced Science Research Center approved all experimental pro-
tocols of this study (approval no.: AP-184005). All methods were performed in accordance with the relevant 
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guidelines and regulations. Thirty-five healthy male Sprague–Dawley rats, aged 12 weeks and weighing 374.8 g 
(range 350–400 g), were obtained from Charles River Laboratories, Inc. (Wilmington, MA, USA). Of note, these 
rats were not previously exposed to any specific drug. The rats were randomly allocated to three groups, namely, 
group A (n = 5)—subjected to iliac ACB harvesting—and groups B (n = 25) and C (n = 5) (described below). The 
rats were individually housed in cages under specific pathogen-free conditions, with a 12-h light/dark cycle and 
free access to food and water and were acclimatized for 1 week in the laboratory before the experiments. The 
rats were anesthetized with an intraperitoneal injection of medetomidine (0.15 mg/kg), midazolam (2 mg/kg), 
and butorphanol (2.5 mg/kg) in all experiments. Analgesia was induced via subcutaneous administration of 
buprenorphine (0.01 mg/kg) before and immediately after surgery. The rats were euthanized via intraperitoneal 
injection of secobarbital (450 mg/kg). Two rats in group B died during the experiment and were thus excluded 
from the analyses.

Anatomy of ACB for iliac bone harvesting.  Bilateral ilia from five freshly frozen male Sprague–Daw-
ley rat cadavers from group A were dissected to determine the formation ilium and organization of parailiac 
nerves and vessels. We measured the distance from the top of the ilium to the iliac crests to determine the safest 
osteotomy line (n = 10). We then determined the maximum volume of stable cancellous bone by measuring the 
total volume of cancellous bone in the harvested iliac crests by computerized tomography (CT). Thereafter, the 
cancellous bone was separated from the cortical bone in all iliac crests, and its total volume was measured in the 
same way. The combined cancellous bone volume obtained from the left and right iliac crests represented the 
total volume collected from one rat. The cancellous bone was then embedded in paraffin for hematoxylin and 
eosin (HE) staining and observed by optical microscopy.

ACB graft model.  Figure 1 shows an overview of the experimental design. The femoral bone defect model 
was adapted from previous studies that showed nonunion without implant21,22. Each animal was placed in a 
lateral position on the operating table. A lateral longitudinal skin incision was created over the right femur, 
followed by an incision and subsequent separation of the quadriceps femoris and hamstrings. After predrill-
ing with a Kirschner wire (1.4 mm diameter), an external fixator (Meira, Nagoya, Japan) was fixed with four 
self-tapping pins (1.6 mm diameter; Japan Medicalnext, Osaka, Japan) in the femur. Two osteotomies were per-
formed between the second and third pins using a manual saw under irrigation with physiological saline to cre-
ate a 5-mm segmental defect. The femoral bone defect in group B was filled with the cancellous bone harvested 
from the bilateral ilia. The femoral bone defect in group C was left without an implant. Muscle, subcutaneous 
tissue, and skin were closed with simple interrupted sutures, and the rats were returned to their cages without 
immobilization. The rats in group B (n = 5 per time point) were euthanized 2, 4, 6, and 8 weeks post surgery. To 
assess bone formation, digital images were obtained, and histological analyses were performed on rats for which 
CT images were obtained immediately before euthanasia. Furthermore, to determine the progression of bone 
formation, the right femurs of five rats in groups B and C were immediately assessed by X-ray CT, as well as every 
2 weeks for 8 weeks post surgery.

Figure 1.   Schematic representation of the experimental procedures for transplanting autologous cancellous 
bone into a femoral bone defect in rats.
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ACB harvesting.  We examined the anatomy of rats by referring to a previous study23 (Fig. 2) and harvested 
ACB as follows: (i) identified bilateral iliac crests on the skin surface and made a single ~ 4 cm vertical inci-
sion along the midline dorsal region around the highest point of each crest (Fig. 3a); (ii) separated the cutane-
ous muscle from the trunk and the gluteus maximus muscle 5 mm lateral to the dorsal midline (Fig. 3b); (iii) 
separated sacrococcygeal dorsalis medialis and lateralis muscles to access the iliac crest (Fig. 3c); (iv) performed 
transversal osteotomy of the ilium between the first and second transverse processes of the cranial sacrum 
(Fig. 3d); (v) separated the sacroiliac joint between the first transverse process of the cranial sacrum and the 
ilium, using a scalpel (Fig. 3e); (vi) harvested both iliac crests from each rat (Fig. 3f); (vii) closed the cutaneous 
muscles of the trunk and gluteus maximus muscle with simple interrupted sutures and stitched the skin; (viii) 
separated the cancellous bone from the cortical bone in iliac crests using standard pointed and circular scalpels 
(Fig. 3g) and morselized it using a sharp scalpel; and (ix) placed the morselized cancellous bone in cylindrical 
molds (diameter, 4 mm) and compressed into 5 mm blocks (Fig. 3h).

Radiographic evaluation.  All femurs were evaluated by X-ray micro-CT on a LaTheta LCT-200 CT system 
(Hitachi-Aloka, Tokyo, Japan)24, and DICOM viewer software, Onis version 2.5 (DigitalCore Co., Ltd., Tokyo, 
Japan) was used to quantify DICOM data. The femoral axis was set using coronal images, and bone formation 
was evaluated only in the 5 mm (200 slices) central defect region to ensure that no preexisting cortical bone was 
included in the analyses. The CT values were calibrated to those for water (CTw = 0) and air (CTa =  − 1000), and 
areas with CT values above þ1000 were extracted as new bone volumes.

Histological analysis of tissues.  The femurs harvested at 2, 4, 6, and 8 weeks post surgery, with the sur-
rounding soft tissue and external fixator attached (n = 5 per time point), were fixed in 10% neutralized formalin 
and dehydrated using an ethanol gradient (70%, 80%, 90%, and 100%). The fixed specimens were decalcified in 

Figure 2.   Dissection of the iliac and parailiac regions. The upper figure shows the iliac and parailiac regions 
from above. (a) Iliac crest. (b) Ilium. (c) First transverse process of the cranial sacrum. (d) Second transverse 
process of the cranial sacrum. The lower figure shows an axial section of the iliac and parailiac regions. (e) 
Cutaneous muscle from the trunk. (f) Sacrococcygeus dorsalis medialis muscle. (g) Sacrococcygeus dorsalis 
lateralis muscle. (h) Gluteus minimus muscle. (i) Gluteus maximus muscle. (j) Transverse process of the sacrum. 
(k) Sacroiliac joint. (l) Ilium. (m) Sacral canal. (n) Ischiatic nerve.
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Figure 3.   Surgical harvesting of autologous cancellous bone. (a) Bilateral iliac crests located on the skin surface; 
a single ~ 4 cm vertical incision was made in the midline dorsal region, around the highest point of each crest. 
(b) The cutaneous muscle was separated from the trunk and gluteus maximus, laterally (5 mm) to the dorsal 
midline. White arrow, sacrococcygeal dorsalis lateralis muscle. (c) The sacrococcygeal dorsalis and dorsalis 
lateralis muscles were separated to access the iliac crest. White arrow, sacrococcygeal dorsalis lateralis muscle; 
black arrow, sacrococcygeal dorsalis medialis muscle; white arrowhead, iliac crest. (d) Transversal osteotomy 
of the ilium between the lateral first and second cranial parts of the sacrum. White dotted circle, hole between 
the first and second transverse processes of the cranial sacrum; yellow line, osteotomy line. (e) The sacroiliac 
joint was separated between the lateral part of the sacrum and the ilium using a scalpel. (f) Both iliac crests were 
harvested from each rat. White dotted line, osteotomy line. (g) Cancellous bone was separated from the cortical 
bone in the iliac crests. (h) The morselized cancellous bone was placed in cylindrical molds (diameter, 4 mm) 
and compressed into 5 mm blocks. Scale bar: 1 mm.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18001  | https://doi.org/10.1038/s41598-021-97573-0

www.nature.com/scientificreports/

10% formic sodium citrate, and the external fixator was removed. The specimens were embedded in paraffin, 
sectioned in the sagittal plane, stained with HE and Safranin O, and assessed using a Biorevo BZ-9000 optical 
microscope (Keyence Co., Osaka, Japan).

Statistical analysis.  Power analysis using G*Power showed that to detect a 25% difference in bone growth 
with statistical significance (α = 0.05; power = 0.8) at the known level of variance, calculated from mean and 
standard deviation published by pilot studies, we required five rats in both control and experimental test groups. 
Data were subjected to Shapiro–Wilk normality test and statistical analyses using Statistical Package for Social 
Sciences version 23.0 (IBM Corp., Armonk, NY, USA). Results are presented as mean ± standard deviation. The 
data were normally distributed; thus, paired comparisons of bone growth rates at various time points were per-
formed using the ANOVA. Differences were considered significant at P < 0.05.

Results
Anatomy of an ACB for iliac bone harvesting.  Similar to humans, rats have iliac crests that are not sur-
rounded by important vessels or nerves (Fig. 4a). The ischiatic nerve and vein cross the pelvis at the caudal end 
of the iliac crest and enter the pelvis (Fig. 4a). The mean distance from the top of the iliac crest to the intersection 
of the ischiatic nerve or vein with the pelvis was 15.5 ± 0.55 and 18.8 ± 0.94 mm, respectively (Fig. 4a). The land-
mark for safe osteotomy was the hole between the first and second transverse processes of the cranial sacrum. 
This hole was easily spotted while harvesting the iliac bone crest. The mean distance from the top of the iliac crest 
to this hole was 11.4 ± 0.89 mm (Fig. 4a). We set the safest osteotomy line at the level of the hole most cranial to 
the transverse process of the sacrum. The radiographic evaluation showed that the mean cancellous bone volume 
in the iliac crest was 132.2 ± 6.3 mm3, whereas after separation from the cortical bone, it was 73.8 ± 5.5 mm3. His-
tological findings confirmed that only the cancellous bone with cell nuclei remained after separation (Fig. 4b,c).

Radiographic evaluation of model ACB grafts.  Figure 5 shows X-ray CT images of representative rats 
in groups B and C at consecutive time points. Changes suggestive of neo-osteogenesis were confirmed at 2 weeks 
and were more prominent at 8 weeks post grafting in group B. The increase in new bone volume, measured by 
X-ray CT, was gradual and significant in group B (P < 0.001; Fig. 6). Bone union was evident in the ACB graft 
groups at 8 weeks, whereas bone did not fuse in the control rats.

X-Ray micro-CT images acquired for rats in group B showed that the bone graft structure at 2 weeks after 
surgery was only trabecular (Fig. 7a). At 4 weeks, the trabecular structure in the outer periphery of the bone 
defect was completely replaced by the cortical bone, indicating that the defect was securely bridged (Fig. 7b). By 
6 and 8 weeks, the cortical bone had thickened (Fig. 7c,d). By 8 weeks, the earlier rounded and plump new bone 
appeared slimmer and more compact.

Histological analysis of ACB grafts.  Sagittal sections stained with HE at 2 weeks post surgery showed 
that the grafted cancellous bone was located within the bone defect (Fig. 8a). Chondrocytes were absent in the 
Safranin O-stained sections (Fig. 8b). Two chondrocyte layers were evident in the bone defect, near the bone 
stumps, 4 weeks post surgery (Fig. 8c,d). We hypothesized that these layers converted the grafted cancellous 

Figure 4.   Anatomy associated with harvesting of autologous cancellous bone from the ilium. (a) The iliac bone 
and organization of the parailiac region. White dotted line, top of the iliac crest; white arrow, ischiatic nerve; 
black arrow, ischiatic vein. Distance from the top of the iliac crest to the (*) intersection of the ischiatic nerve, 
†intersection of an ischiatic vein, and ‡hole between the lateral and first and second cranial parts of the sacrum. 
Scale bar: 1 mm. (b) Hematoxylin and eosin-stained sections of the harvested bone confirmed to be cancellous. 
Scale bar: 100 μm. (c) Higher magnification of the inset in (b). Scale bar: 200 μm.
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bone into new bone in each bone stump. One chondrocyte layer positioned near the center of the bone defect 
at 6 weeks post surgery (Fig. 8e,f) may have been generated by a combination of the two chondrocyte layers 
observed 2 weeks earlier. By 8 weeks post surgery, the chondrocyte layer had nearly disappeared, and the new 
bone was connected on both sides (Fig. 8g,h). Under higher magnification, no nuclei were observed in bone cells 
at 2 weeks post surgery (Fig. 8a*), whereas bone cells without nuclei and live bone cells were mixed at 4 weeks 
post surgery (Fig. 8c*). At 6 and 8 weeks post surgery, all bone cells (autologous graft or new bone) in the defect 
were alive (Fig. 8e*,g*).

Discussion
ACB is highly osteogenic, and it easily revascularizes and rapidly incorporates into host sites due to a large 
surface area covered with dormant and active osteoblasts5. Although ACB is an excellent space filler, it does not 
provide sufficient structural support25–28. Conversely, autologous cortical bone grafts provide immediate struc-
tural support29,30 but exhibit negligible osteoinductive potential29,31. Although rat models of autologous bone 

Figure 5.   X-Ray computed tomography micrographs of the model rats at sequential time points. An autologous 
cancellous bone graft in group B and control (group C) over time.

Figure 6.   New bone volume in rats from group B (with bone defects). New bone volume was determined 
as the volume of bone with a computerized tomography value above þ1000 (mL). Data are presented as 
mean ± standard error of the mean (n = 5). Statistical significance was assessed using the ANOVA.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18001  | https://doi.org/10.1038/s41598-021-97573-0

www.nature.com/scientificreports/

grafts have been previously described32–34, most of these grafts comprised the cortical bone. To the best of our 
knowledge, the model reported herein is the first to use only cancellous bone grafts in rats.

Regarding the safety of ilium collection, some studies have reported the use of bone grafts from the rat iliac 
bone25,35, but we could not confirm the safety details in these reports. Furthermore, the anatomy of the iliac 
bone as well as important parailiac structures such as the blood vessels and nerves surrounding the ilium has 
been previously reported23, but a safe osteotomy position for the ilium has been difficult to determine. Here, 
we minimized invasiveness during bone harvesting and increased the safety of our model by considering the 
morphology of the ilium and important parailiac structures.

The volume of cancellous bone that can be collected is vital for its application in multiple experiments. Here, 
the volume of the collected cancellous bone exceeded that observed in bone defects of several previous models. 
Moreover, the bone defects inflicted in models to improve bone formation can be classified as diaphysis, bone 
holes, and calvarial defects. Most rat models of bone holes13,15,16,36 and calvarial defects14,34 require some cancel-
lous bone, and we believe that our model would fulfill such requirements. The length of the model diaphysis 
defect varies among studies9,21,37–40, ranging from 0.538 to 8 mm39, whereas the diameter of the bone graft has 
not been reported. Artificial bone grafts with 3–4 mm diameter have been grafted9,22,40, from which the amount 

Figure 7.   Axial micro-computerized tomography view of the center of the bone defect in model rats euthanized 
at various time points after surgery (group B). (a) Central defect region showed that the bone graft structure at 
2 weeks post surgery was only trabecular. (b) At 4 weeks, the trabecular structure in the outer periphery of the 
bone defect was completely replaced by the cortical bone. (c) By 6 weeks, the cortical bone had thickened. (d) By 
8 weeks, new bone appeared slimmer and more compact.

Figure 8.   Histological analysis of the sagittal sections. (a–h) Magnified microphotographs of the sagittal 
sections (a,c,e,g) stained with hematoxylin and eosin and (b,d,f,h) Safranin O. Magnified images of the boxed 
regions in the upper panels (a,c,e,g). Scale bars: 1 mm (a–h) and 200 μm (a*,c*,e*,g*).
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of ACB required for the femoral bone defect in rats has been calculated. We harvested a mean pure cancellous 
bone volume of 73.8 ± 5.5 mm3, which is sufficient to fill bone defects of diameter 4 mm and length ~ 5 mm 
(2 × 2 × π × 5 = 62.8 mm3) or diameter 3 mm and length ~ 8 mm (1.5 × 1.5 × π × 8 = 56.5 mm3). Hence, our model 
can be applied to nearly all known bone defect models.

In this study, as well as in models in which all rats presented nonunion in the absence of bone grafting21,22, 
autologous cancellous bone grafting led to good bone union, indicating that rat autologous cancellous bone graft-
ing strongly promotes bone union. Regarding the role of each tissue in bone union, a previous study indicated 
that cells lining the endosteum and marrow stroma contribute to over half of the newly formed bones, and the 
contribution of osteocytes is approximately 10%26. In this study, all cells in the ACB graft were already dead at 
2 weeks post surgery. However, a large surface area covered with active osteoblasts rendered ACB highly osteo-
genic, easily revascularized, and rapidly incorporated at host sites. Thus, 4 weeks post surgery, the cancellous 
bone with dead cells was readily covered by the new bone containing live cells, and this supports the findings of 
the abovementioned study. There are still several unclear aspects about the process of bone fusion by autologous 
cancellous bone grafting. We believe that one of the reasons is that it is difficult to pathologically examine the 
course of bone fusion over time in humans and large animals. This study confirmed, using a rat model, during 
the fusion of the ACB graft with the bone defect, two distinct chondrocyte layers that initially appeared in the 
bone defect near each bone stump and gradually became a single layer, extending toward the center of the defect. 
Although these chondrocyte layers may have been generated by micromotion during the external fixation used 
in this study, this process suggests the possibility of chondrocyte layer-mediated bone neoformation, protruding 
from the bone stumps toward the center of the defect, using the ACB graft as a scaffold. Nevertheless, this study 
was limited by the fact that osteoblasts or mesenchymal stem cells were not considered in the process of bone 
fusion by autologous cancellous bone grafting. Furthermore, we did not conduct histological, morphometric, 
and immunolabeling analyses to evaluate new bone formation. However, the key purpose of this study was to 
establish the first autologous cancellous bone graft rat model, and we plan to analyze the functions of these cells 
in new bone formation using comprehensive in vitro techniques in future studies. Another limitation was that 
we could not prove that this mechanism is similar to that occurring in humans.

Numerous strategies to improve bone healing have been reported, including the use of growth factors41–44, 
extracellular matrix peptides45–48, small regulators of bone mass49–51, and stem cells52–55; however, only a few 
therapies have been clinically translated. For the clinical translation of new strategies, it is essential to compare 
them with ACB grafts. To the best of our knowledge, this is the first attempt to develop a stable model of ACB 
fusion in rats by grafting ACB harvested from the iliac bone. This model will facilitate the exploration of neo-
osteogenesis and technically complement the existing bone healing strategies and ACB grafts.

In conclusion, we established a stable rat model of ACB grafts by harvesting the iliac bone. This rat model can 
aid further investigation of ACB grafts and the future development of novel therapies for bone injury.

Data availability
All data generated or analyzed during this study are included in this published article.
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