Supplementary information

Structural insight into the distinct regulatory mechanism of the HEPN-MNT toxin-antitoxin system in *Legionella pneumophila*

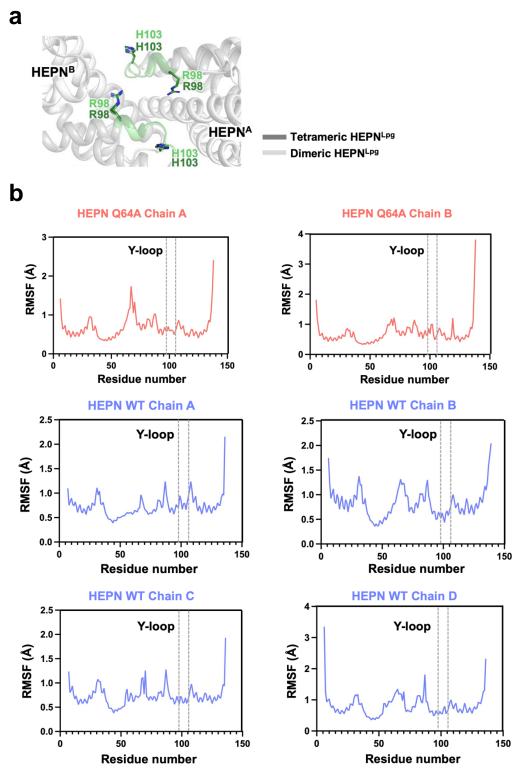
Authors: Chenglong Jin^{1,2,8}, Cha-Hee Jeon^{1,3,8}, Heung Wan Kim¹, Jin Mo Kang^{1,3}, Yuri Choi⁴, Sung-Min Kang⁵, Hyung Ho Lee⁴, Do-Hee Kim^{6,9}, Byung Woo Han^{1,3,9} and Bong-Jin Lee^{2,7,9}

Affiliations

- ¹ The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- ² MasterMediTech, Seoul 07793, Republic of Korea
- ³ Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- ⁴ Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- ⁵ College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- ⁶ Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- ⁷ College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- ⁸ These authors contributed equally: Chenglong Jin and Cha-Hee Jeon
- ⁹ These authors jointly supervised this work: Do-Hee Kim, Byung Woo Han and Bong-Jin Lee

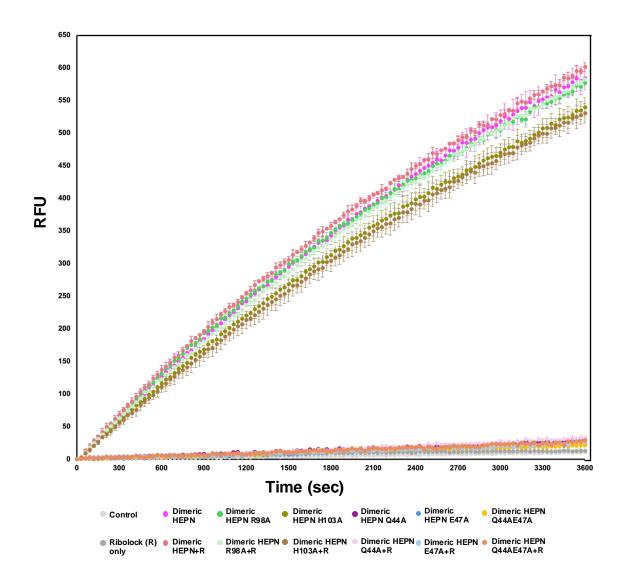
Corresponding authors:

- Do-Hee Kim (E-mail: dohee.kim@sookmyung.ac.kr)
- Byung Woo Han (E-mail: bwhan@snu.ac.kr)
- Bong-Jin Lee (E-mail: <u>lbj@nmr.snu.ac.kr</u>)

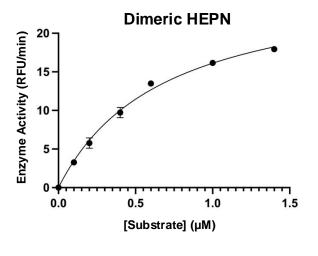

This file contains:

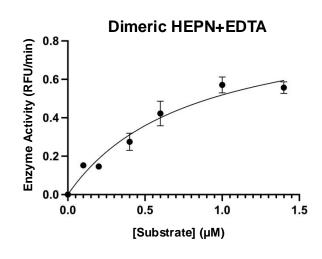
- Supplementary Figure 1–11
- Supplementary Table 1–4

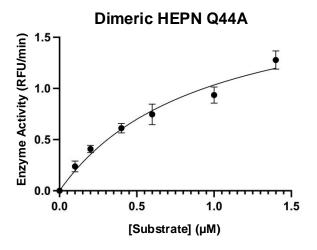
Supplementary Fig. 1. In Vitro RNase Assay

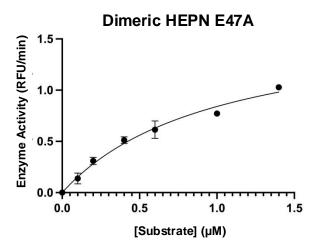

a A 12% polyacrylamide gel shows that dimeric HEPN^{Lpg} does not digest 5S rRNA and tRNA. Dimeric HEPN^{Lpg} was tested at varying concentrations (20 nM–160 nM) in this assay. **b** A 1.8% agarose gel shows that dimeric HEPN^{Lpg} cleaves 23S rRNA and 16S rRNA present in an intact 70S ribosome. The 70S ribosome from an E. coli B strain was used for this assay. RNase A (1 U) was used as a positive control.

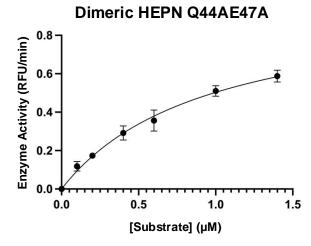
Supplementary Fig. 2. Structural comparison of the Y-loop region of HEPN^{Lpg} in two oligomeric states.

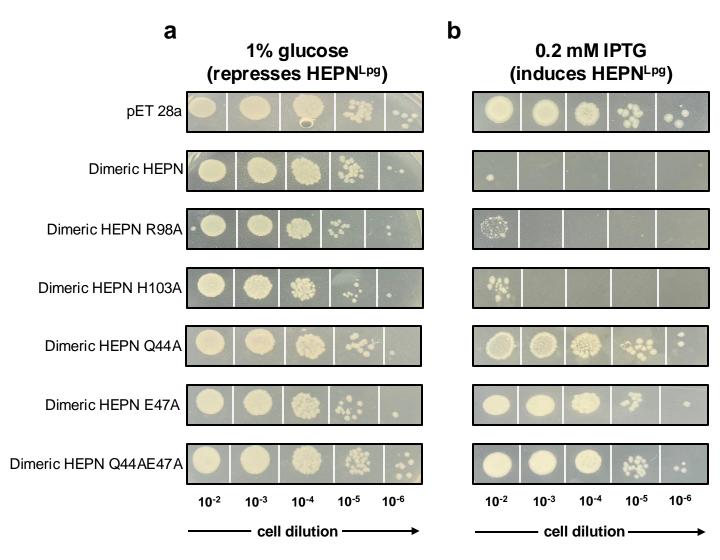

a Structural alignment of the HEPN^{Lpg} dimer from the crystal structures of tetrameric and dimeric HEPN^{Lpg}. The Y-loop region from tetrameric HEPN^{Lpg} and dimeric HEPN^{Lpg} is highlighted in dark green and lime, respectively. b RMSF analysis of HEPN^{Lpg} in two oligomeric states. The RMSF values of the $C\alpha$ atoms are plotted as a function of residues for chains A/B of dimeric HEPN^{Lpg} and chains A/B/C/D of tetrameric

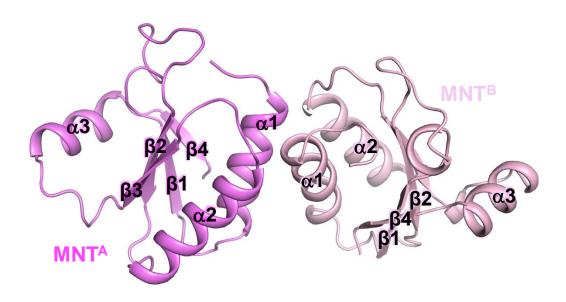

HEPN^{Lpg}. The residues located in the Y-loop regions are indicated with dashed boxes.




Supplementary Fig. 3. In vitro RNase activity assay

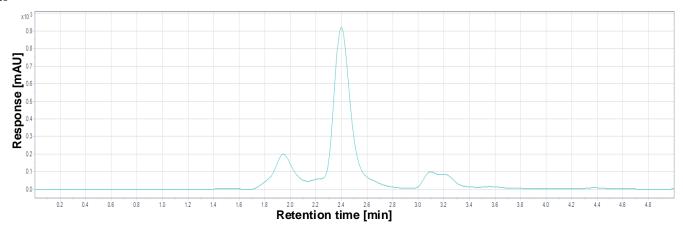

Fluorescence kinetics measured for dimeric HEPN^{Lpg} and its mutants with and without treatment of Ribolock RNase inhibitor. Minimal RFU variation between Ribolock-treated and untreated samples confirms the specificity of RNase activity, ruling out contamination by external RNases. The data are presented as the average of two independent replicates with standard deviation (±SD).

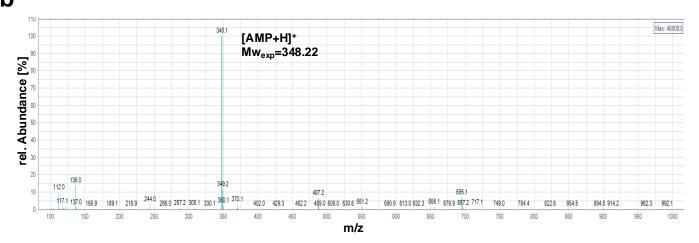



Supplementary Fig. 4. Plot of v versus [S] according to the Michaelis–Menten equation.

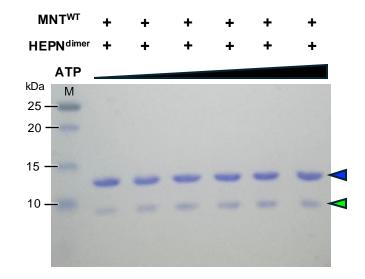
Dimeric HEPN^{Lpg}, EDTA-treated dimeric HEPN^{Lpg}, dimeric HEPN^{Lpg} Q44A, dimeric HEPN^{Lpg} E47A and dimeric HEPN^{Lpg} Q44AE47A were subjected to *in vitro* RNase assays. The resulting data were processed using the Michaelis–Menten equation, and the results are presented in Supplementary Table 2.

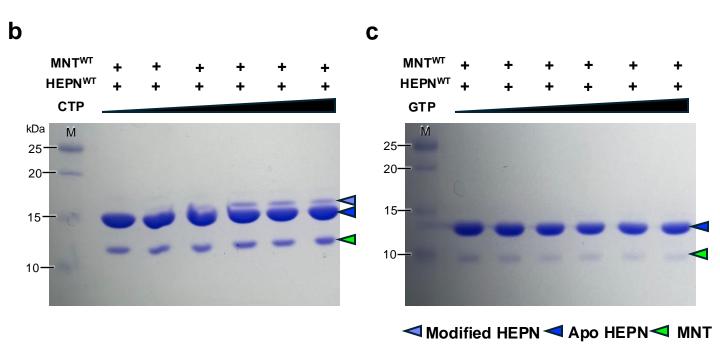
Supplementary Fig. 5. In vivo spot-plating assay


E. Coli Rosetta2 (DE3) cells harboring pET 28a vector with each HEPN^{Lpg} variant as indicated. The plates contains 1% glucose to repress background expression from T7 promotor (**a**) and 0.2 mM IPTG to induce HEPN^{Lpg} expression (**b**).


Supplementary Fig. 6. Overall structure of MNT^{Lpg} .

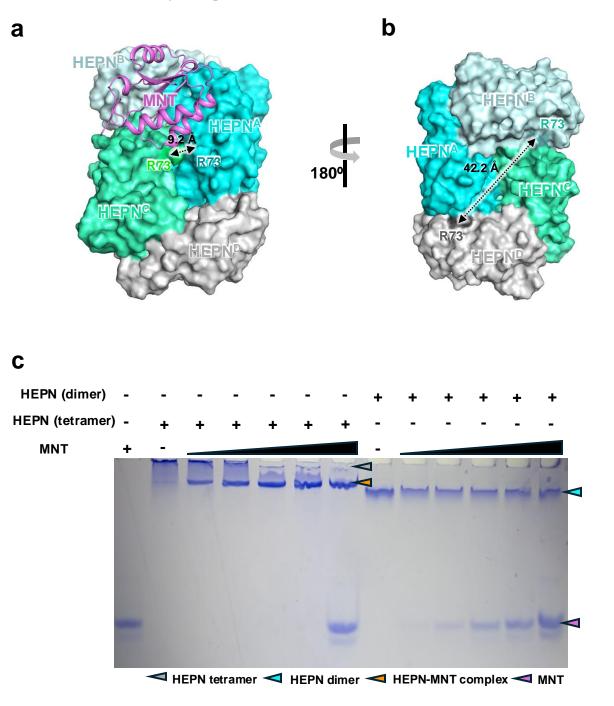
MNT^{Lpg} forms a homodimer in the asymmetric unit (ASU). Chains A and B of MNT are represented in violet and pink, respectively.


b

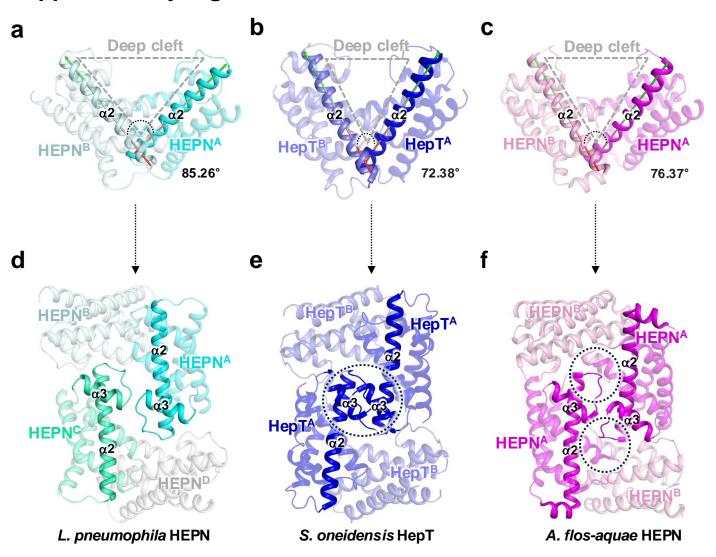


Supplementary Fig. 7. Analysis and characterization of NMPs digested from NMPylated HEPN Lpg using LC-MS.

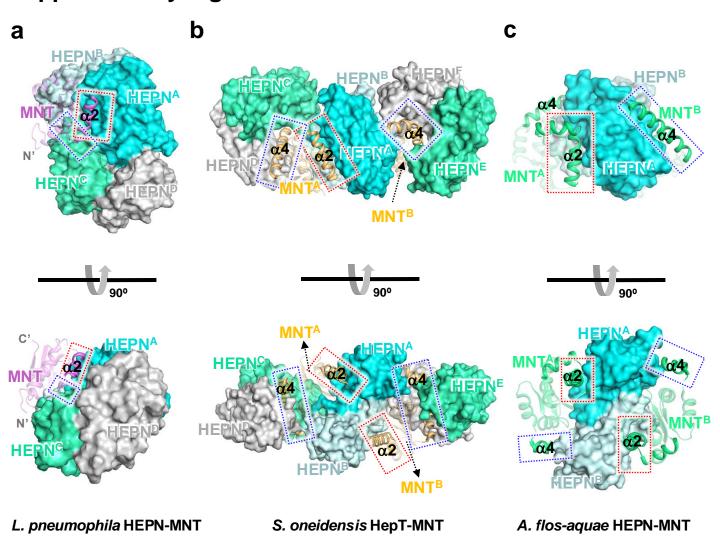
a The sample was separated by HPLC, and the peaks were measured and collected at 260 nm. **b** The separated sample was ionized, and the mass-to-charge ratio (m/z) was determined by an MS system. The obtained result revealed a peak at m/z 348.1, corresponding to the molecular weight of AMP.



Supplementary Fig. 8. In vitro NMPylation assay.


a In vitro AMPylation assay conducted by dimeric $HEPN^{Lpg}$ and MNT^{Lpg} WT

In vitro CMPylation assay (b) and in vitro GMPylation assay (c) were conducted by HEPN^{Lpg} WT and MNT^{Lpg} WT. All experiments involved increasing the substrate concentration.


Supplementary Fig. 9. The binding stoichiometry between HEPN^{Lpg} and MNT^{Lpg}.

a, b Overall structure of the HEPN^{Lpg}–MNT^{Lpg} complex. The front (**a**) and opposite (**b**) perspectives aligning with the viewpoints presented in Fig. 8a, b. The distance between R73 residues in chains A and C is 9.2 Å, while the distance between R73 residues in chains B and D is 42.2 Å. **c** Analysis of binding stoichiometry by Coomassie blue-stained native-PAGE. MNT^{Lpg} was subjected to incubation with dimeric or tetrameric HEPN^{Lpg} at the following ratios: 1:5, 1:2, 1:1, 2:1 and 5:1. HEPN^{Lpg} Q64A was used as dimeric form of HEPN^{Lpg}. The formation of a HEPN^{Lpg}–MNT^{Lpg} complex occurred exclusively when MNT^{Lpg} was introduced to tetrameric HEPN^{Lpg}.

Supplementary Fig. 10. Molecular basis of oligomeric state transition.

Dimeric state of HEPN from *L. pneumophila* (a), *S. oneidensis* (b) and *A. flos-aqua* (c). The deep cleft region is indicated by a dashed triangle, and the angle between the $\alpha 2$ helix and each monomer was calculated by *PyMOL*. **d** Crystal structure of HEPN^{Lpg} WT; **e** Tetrameric HepT model from *S. oneidensis*; **f** Tetrameric HEPN model from *A. flos-aquae*. The tetrameric structures of HepT from *S. oneidensis* and HEPN from *A. flos-aquae* were constructed using the crystal structure of HEPN^{Lpg} WT as a model. The $\alpha 2$ and $\alpha 3$ helices involved in tetrameric interfaces are highlighted. Due to the constricted space within a deep cleft, a steric clash would occur upon the assembly of *S. oneidensis* HepT and *A. flos-aquae* HEPN into a tetramer. The specific clash sites are indicated by black dashed circles.

Supplementary Fig. 11. Comparison of the HEPN^{Lpg}-MNT^{Lpg} complex with its homologs.

a The HEPN–MNT complex from *L. pneumophila*. **b** The HEPN–MNT complex from *S. oneidensis* (PDB ID: 7BXO). **c** The HEPN–MNT complex from *A. flos-aqua* (PDB ID: 7AE2). MNTs and HEPNs are depicted as cartoons and surfaces, respectively. The α 2 helices in MNT from all three homologs participate in interacting with HEPN, establishing a "primary docking site". Additionally, the α 4 helices in MNT from *S. oneidensis* and *A. flos-aqua* contribute to a "secondary docking site", whereas in MNT^{Lpg}, a loop region following the α 2 helix is implicated in this site. The primary docking site and secondary docking site are indicated by red and blue dashed squares, respectively.

 $\label{eq:Supplementary Table 1. Surface area of the crystal structures of the HEPN^{Lpg}_MNT^{Lpg}$ module

Type of interface	HEPN ^{Lpg} WT	Surface area (Ų)		Entire surface area (Ų)	Buried surface Area (Ų)	Buried surface area percentage (%)
Dimeric	Chains A/B	Chain A: 7214	Chain B: 7339	14553	882	6.1
	Chains C/D	Chain C: 7121	Chain D: 7265	14386	874	6.1
Tetrameric	Chains A/D	Chain A: 7214	Chain D: 7265	14479	405	2.8
	Chains B/C	Chain B: 7339	Chain C: 7121	14460	419	2.9
	Chains A/C	Chain A: 7214	Chain C: 7121	14335	311	2.2
Type of interface	HEPN ^{Lpg} Q64A	Surface area (Ų)		Entire surface area (Ų)	Buried surface Area (Ų)	Buried surface area percentage (%)
Dimeric	Chains A/B	Chain A: 7490	Chain B: 7607	15097	928	6.1
Type of interface	HEPN ^{Lpg} -MNT ^{Lpg} complex	Surface area (Ų)		Entire surface area (Ų)	Buried surface Area (Ų)	Buried surface area percentage (%)
Dimeric	Chains A/B	Chain A: 7744	Chain B: 7167	14911	848	5.7
	Chains C/D	Chain C: 7438	Chain D: 6941	14379	975	6.8
Tetrameric	Chains A/D	Chain A: 7744	Chain D: 6941	14685	430	2.9
	Chains B/C	Chain B: 7167	Chain C: 7438	14605	434	3.0
	Chains A/C	Chain A: 7744	Chain C: 7438	15182	273	1.8
HEPN-MNT complex	Chians A/E	Chain A: 7744	Chain E: 6224	13968	512	3.7
	Chains C/E	Chain C: 7438	Chain E: 6224	13662	629	4.6

Supplementary Table 2. Relative RNase activity of dimeric HEPN^{Lpg} and its variants

HEPN ^{Lpg}	V _{max}	K _{cat} ^a	K _m ^a	K _{cat} /K _m
Dimeric HEPN ^{Lpg}	27.18	271.80	0.69	393.91
Dimeric HEPN ^{Lpg} +EDTA	0.93	9.34	0.80	11.68
Dimeric HEPN ^{Lpg} Q44A	1.99	19.88	0.92	21.61
Dimeric HEPN ^{Lpg} E47A	1.69	16.86	1.01	16.69
Dimeric HEPN ^{Lpg} Q44AE47A	0.98	9.83	0.95	10.35

^aThe units for k_{cat} and K_m are defined as RFU min⁻¹ μ M⁻¹ and μ M, respectively.

Supplementary Table 3. Oligonucleotides used in the study

Oligomer	Sequence		
HEPN ^{Lpg} -F	5'-GGA ATT CCA TAT GAC CAA TAT CGA TGT TCG C-3'		
HEPN ^{Lpg} -R	5'-CCG CTCGAG TTA TTC ATG CTC TTT CAG ACC-3'		
MNT ^{Lpg} -F	5'-GGA ATT CCA TAT GAA TGA GCA ATT AAA CC-3'		
MNT ^{Lpg} -R	5'-CCG CTCGAG TTA CGA TTC TTT TGT ATA AAA C-3'		
HEPN ^{Lpg} -MNT ^{Lpg} -F	5'-GGA ATT CCA TAT GAC CAA TAT CGA TGT TCG C-3'		
HEPN ^{Lpg} -MNT ^{Lpg} -R	5'-CCG CTC GAG TTA CGA TTC TTT TGT ATA AAA CAG G-3'		
HEPN ^{Lpg} R98A-F	5'-GGA TGG AAA TGA TTA AAA GTG CCA ACC AAA CCT CTC ATA		
	CCT A-3'		
HEPN ^{Lpg} R98A-R	5'-TAG GTA TGA GAG GTT TGG TTG GCA CTT TTA ATC ATT TCC		
	ATC C-3'		
HEPN ^{Lpg} H103A-F	5'-AAA AGT CGC AAC CAA ACC TCT GCT ACC TAC AAC CAA TCC		
	GTT GCC-3'		
HEPN ^{Lpg} H103A-R	5'-GGC AAC GGA TTG GTT GTA GGT AGC AGA GGT TTG GTT GCG		
	ACT TTT-3'		
HEPN ^{Lpg} Q44A-F	5'-GGA AAA GCA AGG CTT AAT CGC AGC CTT TGA ATT TAC CCA		
	TG-3'		
HEPN ^{Lpg} Q44A-R	5'-CAT GGG TAA ATT CAA AGG CTG CGA TTA AGC CTT GCT TTT		
	CC-3'		
HEPN ^{Lpg} E47A-F	5'-CTT AAT CCA AGC CTT TGC ATT TAC CCA TGA GCT GG-3'		
HEPN ^{Lpg} E47A-R	5'-CCA GCT CAT GGG TAA ATG CAA AGG CTT GGA TTA AG-3'		
HEPN ^{Lpg} Q44AE47A-F	5'-AAA GCA AGG CTT AAT CGC AGC CTT TGC ATT TAC CCA TGA		
	GCT GG-3'		
HEPN ^{Lpg} Q44AE47A-R	5'-CCA GCT CAT GGG TAA ATG CAA AGG CTG CGA TTA AGC CTT		
	GCT TT-3'		
HEPN ^{Lpg} Q64A-F	5'-TGA AAG ATT ATT TCT TTT TCG CGG GAA ATT CTG CAA TTA CTG		
	G-3'		
HEPN ^{Lpg} Q64A-R	5'-CCA GTA ATT GCA GAA TTT CCC GCG AAA AAG AAA TAA TCT		
	TTC A-3'		
HEPN ^{Lpg} R73A-F	5'-CTG CAA TTA CTG GTT CTG CTG ATG CAA CAC GCG AAT C-3'		
HEPN ^{Lpg} R73A-R	5'-GAT TCG CGT GTT GCA TCA GCA GAA CCA GTA ATT GCA G-3'		
MNT ^{Lpg} G36AS37T-F	5'-TGA TAA TGC GAT TCT CTA CGC AAC TCG TGC CAA AGG CAC		
	ATA TC-3'		
MNT ^{Lpg} G36AS37T-R	5'-GAT ATG TGC CTT TGG CAC GAG TTG CGT AGA GAA TCG CAT		
	TAT CA-3'		
MNT ^{Lpg} D48E-F	5'-GGC ACA TAT CAT CAG GGC TCA GAG ATT GAT CTT TGC CTT		
	ACC GGA-3'		

MNT ^{Lpg} D48E-R	5'-TCC GGT AAG GCA AAG ATC AAT CTC TGA GCC CTG ATG ATA
	TGT GCC-3'
MNT ^{Lpg} D50E-F	5'-CAT CAG GGC TCA GAT ATT GAG CTT TGC CTT ACC GGA AAC-
	3'
MNT ^{Lpg} D50E-R	5'-GTT TCC GGT AAG GCA AAG CTC AAT ATC TGA GCC CTG ATG-
	3'
MNT ^{Lpg} D48ED50E-F	5'-CAT ATC ATC AGG GCT CAG AGA TTG AGC TTT GCC TTA CCG
	GAA A-3'
MNT ^{Lpg} D48ED50E-R	5'-TTT CCG GTA AGG CAA AGC TCA ATC TCT GAG CCC TGA TGA
	TAT G-3'

Supplementary Table 4. Statistics for data collection and model refinement

Dataset	MNT ^{Lpg}	HEPN ^{Lpg} WT	HEPN ^{Lpg}	AMPylated	HEPN ^{Lpg} -MNT ^{Lpg}	
			Q64A	HEPN ^{Lpg}	complex	
Data collection						
Wavelength (Å)	0.97949	0.97942	1.02000	0.97933	0.97942	
Space group	P 2 ₁ 2 ₁ 2 ₁	C 2	P 222	C 2	C 2	
Cell dimensions						
a, b, c (Å)	58.17, 61.59,	143.88, 53.19,	43.774,	144.199, 53.296,	113.563, 93.747,	
	66.48	86.97	43.772,	88.021	84.958	
			163.302			
α, β, γ (°)	90.00, 90.00,	90.00, 122.10,	90.00, 90.00,	90.00, 122.31,	90.00, 123.86,	
	90.00	90.00	90.00	90.00	90.00	
Resolution range	50.00-2.79 (2.85-	50.00-1.80 (1.83-	50.00-1.59	50.00-1.65 (1.68-	50.00-2.40 (2.44-	
(Å)	2.79)	1.80) (1.69–1.59)		1.65)	2.40)	
Total/unique	37 577/6 291	345 212/51 227	273 546/67	444 697/67 341	195 822/28 576	
reflections			303			
Completeness (%)	99.7 (99.7)	98.4 (99.2)	83.0 (65.3)	99.6 (99.5)	98.4 (98.1)	
Redundancy	6.0 (5.2)	6.7 (6.7)	4.1 (3.2)	6.6 (6.3)	6.9 (6.7)	
R _{merge} (%) ^a	13.0 (53.6)	10.2 (58.7)	6.5 (37.7)	12.6 (229.3)	10.3 (56.0)	
Mean I/σ (I)	22.3 (2.4)	24.8 (2.7)	24.8 (2.7) 11.8 (1.9)		20.3 (2.0)	
CC _{1/2}	0.974 (0.967)	0.994 (0.881)	0.997 (0.862)	0.996 (0.662)	0.996 (0.847)	
Refinement						
Resolution range	45.18–2.79	48.75–1.80	42.28–1.59	29.01–1.65	47.15–2.40	
(Å)						
Rwork/Rfree ^b	23.1/28.7	16.4/20.4	18.8/21.4	17.8/20.8	19.8/24.7	
RMSDs						
Bond lengths (Å)	0.002	0.006	0.011	0.013	0.002	
Bond angles (°)	0.451	0.913	0.843	1.264	0.489	
Number of						
atoms/average B-						
factors (Å ²)						
Protein	1528/62.96	4342/30.48	2198/24.24	4342/29.03	5104/50.49	
Water	26/54.93	457/39.86	306/34.11	394/40.51	141/42.44	
Other	-	2/39.36	1/22.24	90/71.54	-	
Ramachandran plot						
Most favored (%)	95.79	98.84	99.24	99.03	97.88	
Allowed (%)	4.21	1.16	0.76	0.97	2.12	
Outliers (%)	0.00	0.00	0.00	0.00	0.00	
Rotamer outliers	0.60	0.00	0.43	0.00	0.91	
PDB accession	8XEO	8XEM	8YUF	8XDJ	8XEH	
code						

 $[^]aR_{\text{merge}} = \Sigma_h \Sigma_i \mid I(h)_i - \langle I(h) \rangle \mid / \Sigma_h \Sigma_i I(h)_i$, where I(h) is the intensity of reflection h, Σ_h is the sum over all reflections, and Σ_i is the sum over in measurements of reflection h. $^bR = \Sigma \mid |F_{\text{obs}}| - |F_{\text{calc}}| \mid / \Sigma \mid F_{\text{obs}}|$, where R_{free} is calculated for a randomly chosen 5% of reflections, which were not used for structure refinement and R_{work} is calculated for the remaining reflections.