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Abstract

Background: A test for diagnosis of active Tuberculosis (TB) from peripheral blood could tremendously improve clinical
management of patients.

Methods: Of 178 prospectively enrolled patients with possible TB, 60 patients were diagnosed with pulmonary and 27
patients with extrapulmonary TB. The frequencies of Mycobacterium tuberculosis (MTB) specific CD4+ T cells and CD8+ T cells
producing cytokines were assessed using overnight stimulation with purified protein derivate (PPD) or early secretory
antigenic target (ESAT)-6, respectively.

Results: Among patients with active TB, an increased type 1 cytokine profile consisting of mainly CD4+ T cell derived
interferon (IFN)-c was detectable. Despite contributing to the cytokine profile as a whole, the independent diagnostic
performance of one cytokine producing T cells as well as polyfunctional T cells was poor. IFN-c/Interleukin(IL)-2 cytokine
ratios discriminated best between active TB and other diseases.

Conclusion: T cells producing one cytokine and polyfunctional T cells have a limited role in diagnosis of active TB. The
significant shift from a ‘‘memory type’’ to an ‘‘effector type’’ cytokine profile may be useful for further development of a
rapid immune-diagnostic tool for active TB.
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Introduction
Tuberculosis (TB) remains to be a global health care problem

and together with malaria and HIV is considered to be one of the

three key infectious diseases worldwide [1]. The improvement

of clinical management of active TB relies primarily on the

unambiguous diagnosis of the disease. However, a rapid and

straightforward test to confirm or rule out active TB is lacking in

clinical routine [2]. Indeed, a diagnostic test for diagnosis of active

TB from an easily accessible compartment such as peripheral

blood could significantly improve patient management.

Such a test appeared to be in reach after the discovery of

Mycobacterium tuberculosis (MTB) specific antigens and their use for

T cell stimulation assays based on Enzyme Linked Immuno

Spot Technique (ELISPOT) and Enzyme-Linked Immunosorbent

Assay (ELISA) techniques [3,4]. Both tests rely on in vitro

produced interferon (IFN)- c as read out and have been shown to

introduce increased sensitivity and specificity for the diagnosis of

latent TB infection [5]. Disappointingly, however, the tests are not

suitable for the diagnosis of active TB [4].

A flow cytometry based read out has been suggested to possibly

improve the diagnostic accuracy of MTB specific stimulation

assays, because MTB specific T cell subsets producing different

types of cytokines can be analysed on a single cell basis [6]. T cells

producing single cytokines [7], two cytokines – ‘‘polyfunctional T

cells [8]’’ - and three cytokines - ‘‘multifunctional T cells [9,10]’’ –

have been linked to bacterial load and disease activity. More

recently CD4+ T cells producing single tumor necrosis factor

(TNF)-a have been suggested to differentiate between active TB

and latent infection [7]. Moreover, cytokines generally regarded as

pro-inflammatory such as TNF-a, IFN-c and Interleukin (IL)-2

were associated with active TB as well as regulatory cytokines like

IL-10 and transforming growth factor (TGF)-b [11–13]. Thus, we

hypothesised that a distinct cytokine profile could be useful for the

diagnosis of active TB.

The recent investigation was conducted to prospectively assess

sensitivity and specificity of MTB specific, one cytokine producing

and polyfunctional T cells in patients with the clinical suspicion of

active TB to possibly discover an MTB specific cytokine signature.

Materials and Methods

1. Patients
Patient recruitment was confined to the wards of the Medical

University of Vienna (Division of Infectious Diseases and Tropical
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Medicine) and the Department of Respiratory and Critical Care

Medicine at the Otto-Wagner Hospital in Vienna, Austria.

Written informed consent was obtained from all participating

individuals. Human experimentation guidelines of the Medical

University of Vienna were followed during the clinical research.

Ethical clearance was given by the Ethics Committee of the

Medical University of Vienna and the Viennese Krankenanstal-

tenverbund.

Patients presenting with signs and symptoms suggestive of TB

were eligible for this study. Human immunodeficiency (HI)-virus

infected patients were not included in the study. All study

participants had a history of BCG vaccination (in Austria BCG

vaccination was stopped in 1990; countries of origin of all other

study participants (e.g. Russian Federation, Serbia, Romania,

Ukraine, Bulgaria,…) are still administering BCG vaccines. No

history of previous TB was reported by any of the patients. The

presence of latent MTB-infection was not generally looked at, as it

was the purpose of the study to potentially differentiate active TB

from other diseases. According to the attending physicians, the pre-

test probability for TB in this study population was approximately

30%, taking in account the history, social background, signs and

symptoms. Approximately 27 ml of blood were drawn for the

isolation of peripheral blood mononuclear cells (PBMC) during

initial assessment.

Pulmonary TB was defined by the presence of the following

criteria: detection of MTB by culture or PCR in sputum or

bronchoalveolar fluid obtained by bronchoalveolar lavage (BAL)

and the clinical diagnosis of pulmonary TB with the concomitant

initiation of a tuberculostatic drug therapy. Extra-pulmonary TB

was defined by the detection of MTB in other tissue than the

lungs, the clinical diagnosis of active TB disease and the initiation

of treatment.

If MTB was not detectable by culture or PCR, the

unambiguous clinical diagnosis and the initiation of a tuberculo-

static drug therapy was required to fulfil the diagnosis of active TB.

In these cases, active TB infection was diagnosed by the presence

of necrotizing granulomatous inflammation without other causes,

clinical history suggestive of active TB, including at least three of

the following symptoms: night sweat, unintended weight loss,

malaise, fever, lassitude and known exposure to open TB.

Additionally, the absence of another diagnosis and the clinical

response to tuberculostatic drugs was evaluated.

Importantly, doctors involved in clinical management and

decision making were completely unaware of the results of the

stimulation assays.

2. Methods
PBMC were isolated from heparinized blood by ficoll-

diatrizoate centrifugation, and plated out into 24-well plates

(BD Falcon, Mountain View, CA, USA) at 26106 per well. Cells

were cultured in ultra-culture medium (UCM) (Bio Whittaker,

Walkersville, MD, USA) supplemented with L-glutamine (2 mM/

L; Sigma, St. Louis, MI, USA), gentamicin (170 mg/l; Sigma)

and 2-mercaptoethanol (3.5 ml/L; Merck, Darmstadt, Germany)

for 18 h at 37uC in 5% CO2 and stimulated with purified protein

derivate (PPD) (Statens Serum Institute, Copenhagen, Denmark),

at a final concentration of 10 mg/mL or with early secretory

antigenic target (ESAT)-6 (Statens Serum Institute, Copenhagen,

Denmark) with a final concentration of 5 mg/ml. In order to

amplify TCR signalling and to facilitate the initial phase of the T-

cell activation, the co-stimulatory MAb CD28 (Pharmingen San

Diego, CA, USA), was added at a final concentration of 5 mg/

mL. Brefeldin A (10 mg/mL final concentration, Sigma) was

added after 6 h to block protein secretion. After 18 h, cells were

harvested on ice, washed twice in phosphate-buffered saline

(PBS), and fixed with 2% formaldehyde (1 mL per 26106 cells)

for 20 minutes. After two additional washes in PBS, the cells were

re-suspended in Hank’s balanced salt solution (supplemented with

0.3% bovine serum albumin and 0.1% sodium-azide). The cells

were washed twice with PBS and made permeable with saponin

(0.1%; Sigma), re-suspended with 50 mL of saponin-buffered

diluted antibodies and incubated for 25 minutes in the dark. The

following monoclonal antibodies were used: Anti-CD4, PerCP

and APC labelled, Anti-CD8, PerCP labelled (Becton and

Dickinson, Mountain View, CA); Anti-TGF-b, PE labelled

(IQProducts, Groningen, The Netherlands); MAb IFN-c (clone:

B 27), fluorescein–isothiocyanate (FITC) labelled; MAb IL–2

(clone: MQ1-17H12), PE labelled; MAb IL-10 (clone: JES3-9D7),

PE labelled; MAb TNF–a (clone: MAB -11), PE labelled (all

Becton and Dickinson). Four-color staining was performed, and a

minimum of 105 PBMCs were analysed on a FACS-Calibur

Figure 1. Representative dot plots. Representative two-parameter dot plots of a patient with extrapulmonary TB (urogenital TB) indicating the
frequency of PPD and ESAT-6-specific CD4+ T cells expressing IFN-c and/or IL-2, respectively. PBMC were incubated with medium alone (control), PPD
and ESAT-6, respectively.
doi:10.1371/journal.pone.0035290.g001
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(Becton Dickinson) equipped with a two-laser system (488- and

630-nm wavelength, respectively) (Figure 1). All cytokine

combinations were stained in conjunction with CD4 and CD8.

The data were analysed with CELL-Quest software (Becton

Dickinson) and the results were expressed as the percentage of

cytokine-producing cells in each CD4+ or CD8+ population. To

assure specificity, spontaneous cytokine production in control

wells was subtracted from cytokine production after stimulation

with PPD or ESAT-6.

3. Statistics
Statistical analysis was performed using SPSS 15.0 for

Windows, SPSS Inc., Chicago. The independent-samples T-test

was applied to screen for differences between 2 groups. A one-way

between-groups analysis of variance (ANOVA) with a Tukey post-

hoc test was used for 3 groups. Direct logistic regression

was calculated between the following groups: pulmonary TB and

non-TB diseases, extrapulmonary TB and non-TB diseases,

pulmonary and extrapulmonary TB. Cytokine ratios were

calculated by dividing the total percentages of the respective

cytokine. Receiver-operating-characteristic curves (ROC) were

calculated and expressed as areas under the curve (AUC), with an

asymptotic 95% confidence interval (CI). A p-value of ,0.05 (two

tailed) was considered significant.

Results

1. Patients
A total of 178 patients were included in the study. 112 were men

(62.9%) and 66 were women (37.1%). 60 patients were classified as

suffering from pulmonary TB, 27 from extrapulmonary TB and

91 from non-TB diseases. Patient details are depicted in Table 1.

Clinical characteristics and total MTB specific CD4+IFN-c+ T

Table 1. Patient characteristics.

diagnosis

number of
individuals,
total: 178

male/female
total: 112/66

age (median, min–max)
total: 47.4 (14.8–86.5)

MTB
confirmation
total: 85.1%

histological
evidence of TB

pulmonary TB 60 39/21 42.8 (17.8–86.5) 55 (91.7%) 11 (18.3%)

extra pulmonary TB (n = 27) bone TB 2 1/1 24.1 (21.3–26.9) 1 (100%)

TB lymphadenopathy 3 1/1 29.9 (25.8–33.5) 3 (100%) 1 (50%)

miliary TB 2 0/2 31.8 (24.7–38.9) 2 (100%)

peritoneal TB 4 3/1 31.7 (14.7–84.2) 1 (25%) 3 (75%)

soft tissue TB 5 2/3 58.8 (29.9–82.6) 4 (80%) 3 (60%)

liver TB 1 0/1 72 1 (100%)

TB meningitis 2 1/1 38 (18.2–57.8) 2 (100%)

joint TB 2 1/1 57.8 (46.1–69.5) 1 (50%) 2 (100%)

TB pericarditis 1 0/1 47.3 1 (100%) 1 (100%)

TB pleuritis 3 2/1 31.3 (17.8–52) 1 (33.3%)

urogenital TB 2 0/2 44.8 (22.6–67) 1 (100%) 1 (100%)

non-TB diseases (n = 91) bacterial peritonitis 1 1/0 53.4

cancer 26 17/9 58.4 (30.9–84.0)

bronchitis 2 1/1 39.4 (36.8–42.1)

CKR changes of unknown origin 13 10/3 53 (28–64.4)

pneumonia 26 18/8 46.3 (20.6–78.1)

liver cirrhosis 1 1/0 56.2

COPD1 4 3/1 51.8 (50–69.8)

viral encephalitis 1 1/0 56.4

fibrosis of the lung 3 1/3 26.0 (24.7–59.8)

M.chelonae2 1 0/1 73.2

M.kansasii2 2 0/2 47.7 (47.6–47.9)

M.xenopi2 2 1/1 64.7 (51.1–78.5)

idiopathic pericarditis 1 0/1 37.8

pneumoconiosis 1 1/0 77.2

rheumatoid arthritis 1 1/0 42.8

sarcoidosis 2 0/2 68.7 (66.8–70.6)

septic arthritis 1 1/0 53.2

idiopathic polyserositis 2 1/1 53 (24.3–81.7)

silicosis 1 0/1 42.7

1chronic obstructive pulmonary disease.
2infection with non-tuberculous mycobacteria.
doi:10.1371/journal.pone.0035290.t001
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cells from peripheral blood of 25 patients were published already

[14].

2. Frequencies of MTB-specific T cells
2.1. Differences between pulmonary TB and diseases

other than TB. An independent-samples t-test showed an

increased frequency of CD4+ T cells expressing IFN-c
(p = 0.034) and a significantly decreased frequency of CD4+ T

cells expressing IL-2 (p = 0.037) - both ESAT-6 specific - in

patients with pulmonary TB when compared to diseases other

then TB (Figure 2). With regard to PPD stimulated T cells no

differences were found between TB and non-TB patients

(Figure 3).

Direct logistic regression was performed to assess the impact of

each single factor on the likelihood that patients would have

pulmonary TB or not. The full model containing age, sex,

CD4+IFN-c+ T cells, CD4+IL-2+ T cells was statistically

significant, X2 (4 df) = 34.465, p,0.001. The model as a whole

correctly classified 72.7% of the cases. Age (p,0.001), CD4+IFN-

c+ T cells (p = 0.033), CD4+IL-2+ T cells (p = 0.032) made a

unique statistically significant contribution to the model. A

Receiver-operating-characteristic curve (ROC) was calculated

and expressed as area under the curve (Figure 4), with an

asymptotic 95% confidence interval (CI).

2.2. Differences between extrapulmonary TB and

diseases other than TB. An independent-samples t-test

showed decreased frequency of PPD specific CD4+IFN-c+IL-10+

T cells (p = 0.007) and an increased frequency of ESAT-6 specific

CD4+IFN-c+ T cells (p = 0.037) (Figures 2, 3). Direct logistic

regression was performed to assess the impact of each single factor

on the likelihood that patients would have extrapulmonary TB or

not. The full model containing age, sex, PPD specific CD4+IFN-

c+IL-10+ T cells and ESAT-6 specific CD4+IFN-c+ T cells was

statistically significant, X2 (7 df) = 33.2 p,0.001. The model as a

whole correctly classified 82.2% of the cases. Age (p = 0.006) and

CD4+IFN-c+ T cells (p = 0.015) made a unique statistically

significant contribution to the model. A Receiver-operating-

characteristic curve (ROC) was calculated and expressed as area

under the curve (Figure 4), with an asymptotic 95% confidence

interval (CI) (summarized in Table 2).

2.3. Differences between extrapulmonary and pulmonary

TB. An independent-samples t-test showed an increased

frequency of PPD specific CD8+ T cells expressing IL-2

(p = 0.011) and ESAT-6 specific CD8+ T cells expressing IFN-c
and TNF-a+ (p = 0.041) (Figures 2, 3). Direct logistic regression

was performed to assess the impact of each single factor on the

likelihood that patients would have extrapulmonary or pulmonary

Figure 2. Frequencies of ESAT-6 specific T cells. Frequencies of
single cytokine producing T cells and multifunctional T cells of 60
patients with pulmonary TB (light grey), 27 extrapulmonary TB (dark
grey) and 91 with non-tuberculous diseases (white) after overnight
stimulation with ESAT-6 are depicted. Boxes and whiskers are shown;
the black line marks the median. Differences between patient groups
are marked with a bar. A significantly increased frequency of CD4+ T
cells expressing IFN-c (0; 0–0; 0–0.07 vs. 0; 0–0.02; 0–0.3 or 0; 0–0.03; 0–
0.3 [median; 25%–75% percentile; min–max], respectively. p = 0.034)
and a decreased frequency of CD4+ T cells expressing IL-2 (0; 0–0.02; 0–
0.26 vs. 0; 0–0.01; 0–0.06 [median; 25%–75% percentile; min–max].
p = 0.037) were found in patients with pulmonary TB when compared to
diseases other then TB. CD8+ T cells expressing IFN-c and TNF-a+ (0; 0–
0.02; 0–0.16 vs. 0.02 ; 0–0.05; 0–0.23 [median; 25%–75% percentile; min–
max]. p = 0.041) were different when pulmonary and extrapulmonary TB
were compared. An independent-samples t-test was used to test for
significance.
doi:10.1371/journal.pone.0035290.g002
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TB. The full model containing age, sex, PPD specific CD8+IL-2+

T cells and ESAT-6 specific CD8+IFN-c+TNF-a+ T cells was

statistically significant, X2 (4 df) = 22.286, p,0.001. The model as

a whole correctly classified 74.4% of the cases. PPD specific

CD8+IL-2+ T cells (p = 0.004) and ESAT-6 specific CD8+IFN-

c+TNF-a+ T cells (p = 0.031) made a unique statistically significant

contribution to the model. A Receiver-operating-characteristic

curve (ROC) was calculated and expressed as area under the curve

(Figure 4), with an asymptotic 95% confidence interval (CI)

(summarized in Table 2).

2.4. Differences of cytokine ratios between groups. A

one way between-groups analysis of variance using the tukey test

for post hoc analysis was conducted to explore the impact of

different cytokine ratios between pulmonary TB, extrapulmonary

TB and other diseases than TB (displayed in Figure 5, the

percentile ranges of the box and whiskers are depicted in Tables 3,

4, 5).

The following cytokine ratios were found to be different

between non-TB diseases and pulmonary TB: PPD induced

IFN-c/IL-2 (p,0.001) and ESAT-6 induced TNF-a/IFN-c
(p = 0.048). TNF-a/IL-2 (p = 0.03), and IFN-c/IL-2 (p = 0.005).

All were CD4+ T cell derived.

The following cytokine ratios were found to be different

between non-TB diseases and extrapulmonary TB: PPD induced

TNF-a/IL-2 (p,0.001), IFN-c/IL-2 (p = 0.001) and ESAT-6

induced TNF-a/IFN-c (p = 0.026), TNF-a/IL-2 (p = 0.008), and

IFN-c/IL-2 (p,0.001). All were CD4+ T cell derived.

The following cytokine ratio was found to be different between

pulmonary and extrapulmonary TB: PPD induced TNF-a/IL-2

(p = 0.001), CD4+ T cell derived.

For each cytokine ratio, a receiver-operating-characteristic

curve (ROC) was calculated and expressed as area under the

curve with an asymptotic 95% confidence interval (CI). The

highest AUCs to discriminate between pulmonary TB and other

diseases 20.704 and 0.654 - were the ratios of IFN-c divided by

IL-2, induced by PPD and ESAT-6, respectively. The highest

AUCs to discriminate between extrapulmonary TB and other

diseases 20.756 and 0.712 - were the ratios of PPD induced IFN-c
and TNF-a, divided by IL-2, respectively (Figure 4, summarized in

Table 2).

Discussion

In this prospective clinical study a type 1 cytokine profile specific

for both pulmonary and extrapulmonary TB was detected,

consisting of a robust production of IFN-c by MTB-specific

CD4+ T cells. Neither one cytokine producing T cells nor

polyfunctional T cells appeared to have a useful diagnostic value

on their own. In contrast, a relative shift from IL-2 towards IFN-c
production in T cells was associated with active TB, suggesting

that cytokine ratios might introduce more discriminatory power

than assessing single cytokine producing T cells.
Figure 3. Frequencies of PPD specific T cells. Frequencies of single
cytokine producing T cells and multifunctional T cells of 60 patients with

pulmonary TB (light grey), 27 extrapulmonary TB (dark grey) and 91
with non-tuberculous diseases (white) after overnight stimulation with
PPD are depicted. Boxes and whiskers are shown; the black line marks
the median. CD4+IFN-c+IL-10+ T cells (0.01 ; 0.02–0.33; 0–0.16 vs. 0; 0–
0.01; 0–0.08 [median; 25%–75% percentile; min–max]. p = 0.007) were
significantly different when extrapulmonary TB was compared to other
diseases then TB. Comparing pulmonary and extrapulmonary TB, PPD
specific CD8+ T cells expressing IL-2 (0.14 ; 0.09–0.365; 0–4.61 vs. 0.13;
0.06–0.33; 0–2.93 [median; 25%–75% percentile; min–max]. p = 0.011)
were significantly different. Differences between patient groups are
marked with a bar. An independent-samples t-test was used to test for
significance.
doi:10.1371/journal.pone.0035290.g003
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Differences between pulmonary TB and other diseases were

restricted to increased frequencies of CD4+IFN-c+ T cells and

decreased frequencies of CD4+IL-2+ T cells, contributing

independently to the logistic regression model. Disappointingly,

the AUC for the respective cytokines after ROC analysis were

comparatively low, limiting thereby their diagnostic value. The

independent increase of CD4+IFN-c+ ‘‘effector’’ T cells during

active – both pulmonary and extrapulmonary – TB is backed by

the recently published transcriptional signature for active TB,

consisting mainly of an interferon gene profile [15].

The decrease of IL-2 producing T cells – a functional

‘‘memory’’ equivalent [16] - is in line with published data,

showing that patients with active TB had decreased frequencies of

single IL-2 producing T cells if compared to their house hold

contacts [17].

In contrast to CD4+IFN-c+ T cells, TNF-a producing T cells

were not independently associated with active TB. In fact, TNF-a
producing CD4+ T cells were not even statistically different

between patient groups, questioning their value as a diagnostic

tool. These results differ significantly from previously published

results, showing high association between active TB and T cells

producing single TNF-a [7,12]. This discrepancy could be due to

two main differences.

Firstly and in contrast to these previous investigations, the

control group in our recent study consisted of patients who

suffered from other diseases than TB. The control groups in the

Figure 4. ROC curves. Receiver-operating-characteristic curves (ROC) were calculated for every significantly different cytokine and cytokine ratio.
AUCs are summarized in Table 2.
doi:10.1371/journal.pone.0035290.g004
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above mentioned studies were latently infected but apparently

healthy individuals. Thus, it is intriguing, that the value of single

TNF-a producing T cells for diagnosis of active TB is questionable

in different patient groups with initial suspicion of active TB.

Secondly and in contrast to previous investigations, T cells were

co-stained with IFN-c only and not with any other cytokines

[7,9,18]. Therefore, we are not able to directly compare our results

with the data published in the literature as ‘‘single’’ cytokine

producing T cells. Consequently, we used the term ‘‘one cytokine

producing T cell’’ as opposed to ‘‘single cytokine producing T

cell’’. Nevertheless, the complete lack of difference between patient

groups - as shown for example for TNF-a - questions the actual

usefulness of individual cytokines in general despite minor

differences in read out.

The later administration of Brefeldin A (6 hours in our study

instead of 1–2 hours, as reported in [7]) to the stimulatory assay

does not explain the lack of discrimination between the subject

groups, as we have found reliable pro- as well as anti-inflammatory

responses after PPD and ESAT-6 stimulation in all groups.

Additional experiments have also not shown substantial differences

in cytokine expression when Brefeldin A was added 4 hours earlier

(data not shown).

The only significantly increased multifunctional T cell subpop-

ulations were CD4+IFN-c+IL-10+ T cells, when TB patients were

compared to patients with non-TB diseases. Given their relative

reduction in patients with extrapulmonary TB, it is tempting to

speculate about immune-regulatory properties of this cellular

subpopulation. However, CD4+IFN-c+IL-10+ T cells did not

contribute independently to the logistic regression model,

questioning their relevance for diagnostic purposes.

To date, the available data on multi- and polyfunctional MTB

specific T cells during active TB are inconsistent. Different reports

suggested increased [17], decreased [9] and no differences [10] of

multi-functional T cells in active TB if compared to different

control groups. In our clinical cohort, including the by far largest

number of patients published to date, multifunctional T cells were

not associated with the active TB. This finding could be either

explained by the decrease of multiple cytokine producing T cells in

the TB patient group caused by the exhaustion of T cells during

active TB, as suggested earlier in analogy to viral infections

[19,20]. On the contrary, however, this result may also be ex-

plained by an increase of multifunctional T cells in the patient

group suffering from non-TB diseases. Indeed, polyfunctional T

cells were associated with chronic viral infections and vaccine

memory [10,21–23].

Differences between extra-pulmonary and pulmonary TB were

minor when assessing one cytokine expressing CD4+ T cells and –

unexpectedly - restricted to differences among CD8+ T cells. These

differences have not been described before, possibly because

differences between pulmonary and extrapulmonary TB were not

subject of many studies. The current data available suggest, for

example, that miliary TB is associated with an immune-regulatory

phenotype [24], whereas pleural TB is associated with a strong,

localized type 1 immune response [4,12]. Regarding CD8+ T cells,

different concepts exist on their role during infection with MTB

[25]. CD8+ T cells produce IFN-c and TNF-a upon exposure to

different MTB specific peptides in latent infected individuals [8] and

have been suggested to be associated with disease progression [9].

The distinction between pulmonary TB and extrapulmonary

TB might seem arbitrary, given that the latter is quite a

heterogeneous group of disease manifestations. This classification,

however, has significant clinical impact, because extrapulmonary

TB is thought not to be contagious or at least much less so if

compared to pulmonary TB [26] and has different treatment

Table 2. Summary of receiver-operating-characteristic curves (ROC).

Antigen AUC S.E. Sig. 95% CI

pulmonary TB/other diseases
cytokines

CD4+ IFN-c+ ESAT-6 0.644 0.047 0.003 0.551 0.736

IL-2+ 0.428 0.047 0.136 0.337 0.519

pulmonary TB/other diseases
cytokine-ratios

CD4+ IFN-c/IL-2 PPD 0.704 0.045 ,0.001 0.617 0.792

TNF-a/IFN-c ESAT-6 0.613 0.048 0.019 0.519 0.706

TNF-a/IL-2 0.593 0.049 0.054 0.497 0.688

IFN-c/IL-2 0.654 0.048 = 0.001 0.560 0.747

extrapulmonary TB/other
diseases cytokines

CD4+ IFN-c+IL-10+ PPD 0.439 0.059 0.349 0.324 0.555

IFN-c+ ESAT-6 0.665 0.067 0.009 0.534 0.795

extrapulmonary TB/other
diseases cytokine-ratios

CD4+ TNF-a/IL-2 PPD 0.756 0.051 ,0.001 0.657 0.856

IFN-c/IL-2 0.712 0.057 0.001 0.600 0.824

TNF-a/IFN-c ESAT-6 0.648 0.062 0.020 0.527 0.768

TNF-a/IL-2 0.652 0.064 0.017 0.525 0.778

IFN-c/IL-2 0.685 0.063 0.004 0.561 0.809

extrapulmonary TB/pulmonary
TB cytokines

CD8+ IL-2+ PPD 0.689 0.067 0.005 0.558 0.819

CD8+ IFN-c+TNF-a+ ESAT-6 0.645 0.067 0.031 0.514 0.776

extrapulmonary TB/pulmonary
TB cytokine-ratios

CD4+ TNF-a/IL-2 PPD 0.634 0.066 0.045 0.505 0.765

Legends: AUC: area under the curve; S.E.: standard error; Sig.: significance level; CI: confidence interval.
doi:10.1371/journal.pone.0035290.t002
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periods. The recent data suggest that immunological differences

between the two manifestations of MTB associated diseases exist,

which have to be considered in both immune based diagnostics as

well as vaccine trials.

To our surprise, the highest AUCs after ROC analysis to

discriminate pulmonary and extrapulmonary TB from other

diseases were PPD induced cytokine ratios of IFN-c/IL-2 and

TNF-a/IL-2, respectively. A higher IFN-c/IL-2 ratio has been

reported previously to be associated with untreated TB [18,27,28].

This might be related to a generally higher frequency of PPD

specific T cells in peripheral blood as compared to ESAT-6

specific T cells [6,12–14,29].

In our study cohort, PPD stimulation was followed by a relative

increase of IFN-c over IL-2, which discriminated best between

patient groups and confirmed the presence of an IFN-c secreting,

‘‘effector’’ phenotype of CD4+ T cells in patients with active TB

[16,30]. Assessment of the TNF-a/IL-2 ratio derived of CD4+ T

cells revealed increased TNF-a in patients suffering from extra-

pulmonary TB, suggesting a more pro-inflammatory cytokine

profile if compared to pulmonary TB. Thus, the use of cytokine

ratios rather than single cytokine measurements could help to

overcome the pronounced, inter-individual variability of cytokine

responses that currently limit their usefulness for immune-

diagnosis of active TB.

Our study has some drawbacks. The study was not designed

to discriminate between active TB and latent infection but for

defining active TB cases. Moreover, the study design did not allow

interfering or suggesting any interventions which could alter

patient management. Therefore and in accordance with interna-

tional guidelines, a TST was not routinely administered. As a

result, the poor diagnostic performance of MTB specific T cells

for the diagnosis of active TB could also be explained by a high

frequency of latently infected individuals, who also have MTB

specific, polyfunctional T cells detectable in peripheral blood [31].

However, this fact does not alter the conclusions drawn from our

study, because active TB was clearly defined in a large number of

patients. Whether the T cell response of non-TB patients is caused

by latent TB infection, non-tuberculous mycobacteria or by

unspecific immunological activation during neoplastic disease is

insignificant for a tool aiming at defining active TB out of the large

group of TB suspects.

Taken together, our recent study shows in a large clinical cohort

that neither pro- nor anti-inflammatory T cell derived cytokines

are able to discriminate between TB and non-TB-diseases

sufficiently to be suitable as a diagnostic tool. However, cytokine

ratios could introduce an improvement in sensitivity and specificity

Figure 5. Cytokine ratios. Significant differences between different
cytokine ratios are depicted, detected with a one way between-groups
analysis of variance using the tukey test for post hoc analysis. Data from
60 patients with pulmonary TB (light grey), 27 extrapulmonary TB (dark
grey) and 91 with non-tuberculous diseases (white) are depicted. Boxes
and whiskers are displayed, the black line marks the median. Percentile
ranges are additionally shown in Tables 3, 4, 5. (A) shows statistically
significant differences between non-tuberculous diseases and pulmo-
nary TB: PPD induced IFN-c/IL-2 (p,0.001), ESAT-6 induced TNF-a/IFN-c
(p = 0.048), TNF-a/IL-2 (p = 0.03), IFN-c/IL-2 (p = 0.005), all CD4+ T cell
derived. (B) shows statistically significant differences between non-
tuberculous diseases and extrapulmonary TB: PPD induced TNF-a/IL-2
(p,0.001), IFN-c/IL-2 (p = 0.001), ESAT-6 induced TNF-a/IFN-c
(p = 0.026), TNF-a/IL-2 (p = 0.008), IFN-c/IL-2 (p,0.001), CD4+ T cell
derived. (C) shows statistically significant differences between pulmo-
nary TB and extrapulmonary TB: PPD induced TNF-a/IL-2 (p = 0.001),
CD4+ T cell derived.
doi:10.1371/journal.pone.0035290.g005
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if compared to absolute cytokine amounts, offering new possibil-

ities for immune-diagnosis of active TB.
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