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The prevalence of disabled survivors of prematurity has increased dramatically in the past

3 decades. These survivors, especially, very preterm infants (VPIs), born ≤ 32 weeks

gestational age, are at high risk for neurodevelopmental impairments. Early and clinically

effective personalized prediction of outcomes, which forms the basis for early treatment

decisions, is urgently needed during the peak neuroplasticity window—the first couple

of years after birth—for at-risk infants, when intervention is likely to be most effective.

Advances in MRI enable the noninvasive visualization of infants’ brains through acquired

multimodal images, which are more informative than unimodal MRI data by providing

complementary/supplementary depicting of brain tissue characteristics and pathology.

Thus, analyzing quantitative multimodal MRI features affords unique opportunities to

study early postnatal brain development and neurodevelopmental outcome prediction

in VPIs. In this study, we investigated the predictive power of multimodal MRI data,

including T2-weighted anatomical MRI, diffusion tensor imaging, resting-state functional

MRI, and clinical data for the prediction of neurodevelopmental deficits. We hypothesize

that integrating multimodal MRI and clinical data improves the prediction over using each

individual data modality. Employing the aforementioned multimodal data, we proposed

novel end-to-end deepmultimodal models to predict neurodevelopmental (i.e., cognitive,

language, and motor) deficits independently at 2 years corrected age. We found that

the proposed models can predict cognitive, language, and motor deficits at 2 years

corrected age with an accuracy of 88.4, 87.2, and 86.7%, respectively, significantly

better than using individual data modalities. This current study can be considered as

proof-of-concept. A larger study with external validation is important to validate our

approach to further assess its clinical utility and overall generalizability.

Keywords: deep learning, neurodevelopment, very preterm infants, MRI, resting state functional MRI, diffusion
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INTRODUCTION

With the continuing high incidence of preterm births (about
380,000 in 2018) (Martin et al., 2019) and improving survival
rates (exceeding 90%) (Blencowe et al., 2012) in the United States,
the prevalence of disabled survivors of prematurity has increased
dramatically. These survivors, especially, very preterm infants
(VPIs), born ≤ 32 weeks gestational age (GA), are at high risk
for cognitive deficits and other neurodevelopmental disorders,
thereby increasing their risk for poor educational, health, and
social outcomes (Jarjour, 2015). Efforts to target interventions to
prevent and/or treat neurodevelopmental sequelae are hampered
by our current inability to diagnose or predict risk of disabilities
before the age of 3–5 years (Nordhov et al., 2010; Kwon
et al., 2014). The imminent challenge lies in early identification
of infants who are at the greatest risk for developing later
disorders at an individual level. Early and clinically effective
personalized prediction of outcomes, which forms the basis for
early treatment decisions, is urgently needed during the peak
neuroplasticity window—the first couple of years after birth—
for at-risk infants, when intervention is likely to be most effective
(Johnston, 2009).

Advances in MRI enable the noninvasive visualization of
infants’ brains through acquired multi-modal images. Research

supports the findings that brain imaging features are modulated
by genetic (Thompson et al., 2001), non-genetic biological

(Hackman and Farah, 2009), and environmental (May, 2011)

influences, and therefore show high variability among subjects.
Such variability can potentially provide valuable information
for personalized prognosis based on the characteristics of
individual patients (Valizadeh et al., 2018). Brain anatomical
features have been recently extended to the prognostication
of neurodevelopmental impairments (cognitive, motor, working
memory, and language), autism spectrum disorder (ASD), and
attention deficit hyperactivity disorder (ADHD) (Boardman
et al., 2010; Thompson et al., 2014; Chaddad et al., 2017). We
have externally validated our findings (He and Parikh, 2013;
Li et al., 2019; Parikh et al., 2020) that objectively-diagnosed
diffuse white matter abnormality (DWMA) at term equivalent
age is an independent predictor of cognitive and language
development in VPIs. In addition, brain connectivity patterns
are formed during early brain development and reshaped in
cases of prematurity or perinatal brain injury (Cao et al.,
2017). Brain connectome studies have revealed microstructural
alterations in cognition and motor tracts that correlate with
poorer cognitive andmotor performance (Thompson et al., 2014;
Rogers et al., 2016). Atypical functional connectivity has been
reported in children who develop adverse cognitive, language and
motor outcomes (He and Parikh, 2015; Gozdas et al., 2018; He
et al., 2020). Multimodal MRI data are more informative than
unimodalMRI data by providing complementary/supplementary
depicting of how brain tissue characteristics and their pathology
information are segregated and integrated. Therefore, accurately
analyzing quantitative multimodal MRI features affords unique
opportunities to study early postnatal brain development and
neurodevelopmental outcome prediction in preterm infants
(Thompson et al., 2016). Through this, we may gain a better

understanding of how an individual brain’s organizational
changes influence cognitive, language, and motor functions.

Although, it is easy to understand, how to endow machines
with capabilities to perceive patients through comprehensive
information from multiple imaging or other data modalities is
still an open question. The feature representations from different
modalities originally locate in unequal subspaces, resulting that
similar feature representationsmay be associated with completely
different semantics. Therefore, the biggest challenge is how to
project heterogeneous features into a common space, where the
multimodal data with similar semantics will be represented by
similar features (Rasiwasia et al., 2010; Guo et al., 2019). In the
computer vision domain, studies have been conducted to address
this problem in various applications, such as, video description
and classification (Liu et al., 2016), event detection (Wu et al.,
2014), cross-modal retrieval and translation (Qi and Peng, 2018;
Wu et al., 2018), image caption (Xu et al., 2015), and text-to-
image synthesis (Reed et al., 2016). In light of these existing
works, and with recent advances in deep learning techniques
(Hjelm et al., 2014; Plis et al., 2014; Mostapha and Styner, 2019),
we propose to encode each unimodal representation, and then
fuse the encoded unimodal features.

Unlike most published studies that describe unimodal MRI
data (Kawahara et al., 2017; Moeskops et al., 2017; Girault
et al., 2019; He et al., 2020; Saha et al., 2020), in this paper,
we employed multimodal MRI and proposed deep multimodal
learning models. We hypothesize that integrating multimodal
MRI and clinical data improves early prediction of cognitive,
language, and motor deficits independently, at 2 years corrected
age in VPIs over using each individual data modality. By
doing so, the proposed prediction model is capable of analyzing
different types of inputs by fusing different neural networks.
Specifically, the different model inputs, which were all collected
at term-equivalent age, include: (1) structural brain connectome
data from diffusion tensor imaging (DTI); (2) functional brain
connectome data from resting-state functional MRI (rs-fMRI)
connectome data; (3) DWMA quantified from anatomical T2-
weighted images; and (4) perinatal clinical data. The fusion
technique used here is a concatenation of the four encoded
feature vectors, which is then used as an input to fully-connected
layers before the network outputs its prediction. The resulting
classification system is a deep multimodal learning model, an
automated prognostic system that uses four types of data as
inputs to determine at term-equivalent age whether or not
an individual VPI is at high risk of developing moderate or
more severe cognitive, language, and/or motor deficits and to
predict individual standardized neurodevelopmental scores (on
the Bayley Scales of Infant and Toddler Development, Third
Edition (Bayley III) (Bayley, 2009) Cognitive, Language, and
Motor subtest scores) at 2 years corrected age.

Themain contributions of our work are highlighted as follows:
(1) We proposed end-to-end deep multimodal learning models
that incorporate features from multimodal MRI (anatomical,
DTI, and rs-fMRI) and clinical data; (2) We demonstrated that
the application of deep multimodal learning to analyze high-
dimensional objectively-quantified anatomical and connectome
features may detect brain structural and functional abnormalities
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and tissue pathology that are not readily visible to the naked
eye, thereby facilitating risk stratification; (3) We unwrapped
and identified discriminative MRI and clinical features used by
the proposed models to make predictions. Such discriminative
feature identification will generate greater trust in the prognostic
models and enhanced pathophysiologic understanding.

METHODS AND MATERIALS

Subjects and MRI Acquisition
The Institutional Review Boards of the Nationwide Children’s
Hospital (NCH) and Cincinnati Children’s Hospital Medical
Center (CCHMC) approved this study, and written parental
informed consent was obtained for every subject. This study
has been carried out in accordance with The Code of Ethics
of the World Medical Association. This study included 261
prospectively recruited VPIs from five Cincinnati Ohio neonatal
intensive care units (NICUs) as cohort I (for unsupervised model
pre-training), and 108 VPIs from four Columbus area/Central
Ohio NICUs as cohort II (for supervised model fine-tuning). All
subjects were scanned during natural sleep without the use of any
sedation after being fed and swaddled. Infants with congenital
structural central nervous system anomalies (e.g., Dandy-Walker,
encephalocele, diffuse calcifications, and meningomyelocele) or
congenital chromosomal abnormalities known to be associated
with neurodevelopmental impairments were excluded.

Subjects in the Cohort I were scanned at 39–44 weeks
postmenstrual age (PMA) on a 3T MRI scanner (Ingenia, Philips
Healthcare, Best, The Netherlands) at CCHMC using a 32-
channel head coil. Anatomical scans were conducted with a
2D T2-weighted fast spin-echo sequence. Functional MRI data
were conducted using multi-band rs-fMRI (multi-band factor
= 3). Diffusion MRI data were collected using single-shot echo
planar imaging (EPI). Detailed acquisition parameters are listed
in Supplementary Table 1.

All cohort II subjects were scanned at 38–43 weeks PMA on
a 3T MRI scanner (Skyra; Siemens Healthcare) at NCH using a
32-channel head coil. Anatomical scans were conducted with a
2D T2-weighted fast spin-echo sequence. Functional MRI data
were collected using single-band/multi-band rs-fMRI (multi-
band factor = 3). Diffusion MRI data were collected using
single-shot EPI. Detailed acquisition parameters are also listed in
Supplementary Table 1.

Clinical Features and Neurodevelopmental
Assessments
For each VPI, 72 a priori defined and prospectively
collected perinatal clinical features were retrieved
(Supplementary Table 2). Clinical features related to five
overarching domains, including: (1) maternal demographics
(e.g., mothers age, gravida, parity, mother’s highest educational
level, etc.); (2) pregnancy complications (e.g., diabetes,
hypertension, hypothyroidism, etc.); (3) labor and delivery
(e.g., rupture of membranes, antenatal steroids, magnesium
administration, etc.); (4) neonatal information at birth (e.g., sex,
gestational age, birth weight, etc.); and (5) medical history (e.g.,

oxygen or positive pressure support, surfactant administration,
pneumothorax, sepsis, bronchopulmonary dysplasia, etc.).

The Bayley III Cognitive, Language, and Motor subtest scores
[each standardized on a scale of 40–160, with a mean of 100
and standard deviation (SD) of 15] served as the primary
neurodevelopmental outcome measures. We dichotomized the
VPIs using Bayley-III score of 90 into those high-risk (≤90) vs.
low-risk (>90) for neurodevelopmental deficits.

DWMA Quantification
We quantified DWMA using our published objective algorithm
(He and Parikh, 2013). Briefly, brain tissue segmentation (white
matter, gray matter, and cerebrospinal fluid) was achieved by
unified segmentation on T2-weighted images with spatial priors
obtained from a neonatal probabilistic atlas (Shi et al., 2011).
We considered voxels with signal intensity values greater than
α standard deviation above the mean of cerebral (white +

gray matter) tissues to be DWMA. Volume of DWMA was
calculated as the product of voxel volume and total number
of voxels in the detected DWMA region. We determined the
normalized volume of DWMA by dividing DWMA volume
by total cerebral white matter volume. The optimal α may be
different for different cohort MRI data acquired with different
imaging protocols (He and Parikh, 2013, 2015; Li et al., 2019;
Parikh et al., 2020). Instead of determining one single optimal
α value, in this work, to take advantage of the strength of feature
integration, we defined a DWMA feature vector which contained
a series of DWMA volumes that were obtained by varying the
threshold α from 1.4 to 2.0 with increment of 0.1. To control
inter-subject variability, we also include the volume of white
matter, gray matter, and CSF as confounders into the DWMA
feature vector.

Structural Connectome Quantification
We preprocessed DTI data with a pipeline involving skull
stripping, registration, head motion, and eddy current artifacts
correction using FMRIB Software Library (FSL, Oxford
University, UK) (Woolrich et al., 2009). We conducted diffusion
tensor reconstruction based on a linear least-square fitting
algorithm and brain fiber tracking based on a deterministic
tracking algorithm in the subject’s native space using Diffusion
Toolkit/TrackVis (Wang et al., 2007). We harmonized fractional
anisotropy maps using a batch-effect correction algorithm
ComBat (Fortin et al., 2017) to remove undesirable variabilities
caused by different acquisition parameters. The brain was
parcellated into 90 regions of interest (ROIs) according to
a neonatal anatomical template (Shi et al., 2011), forming
the nodes of the individual structural networks. Structural
connectivity map (i.e., 90 × 90 network adjacency matrix
symmetric about the diagonal), were constructed using the
UCLA Multimodal Connectivity Package (Bassett et al., 2011).
Each entry in the structural connectome map represents the
brain structural connectivity between each pair of ROIs, which
was calculated as the mean fractional anisotropy of each voxel
intersecting the tract and then averaged over all tracts between
the two nodes.
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Functional Connectome Quantification
We performed rs-fMRI preprocessing using previously validated
pipelines (Pogribna et al., 2014; He and Parikh, 2016), to (1)
Reorient all acquired scans with anterior commissure (AC)—
posterior commissure (PC) line; (2) Remove non-brain parts of
the image; (3) Correct motion artifact by aligning each time
point’s frame to themiddle frame, and estimate corresponding six
motion parameters [three translation (displacement) and three
rotation parameters]; (4) Register both rs-fMRI and structural
T2-weighted images to be in the same “standard space” [a
neonatal brain atlas (Shi et al., 2011)]; (5) Regress out the mean
time courses of cerebral white matter, ventricles, and whole
brain and their derivatives; as well as six motion parameters
and their derivatives and squares (Power et al., 2014); (6)
Improve signal-to-noise ratio and ameliorate the effects of
functional misalignments across subjects (Lowe and Sorenson,
1997) using spatial smoothing with isotropic Gaussian filter
with 6mm kernel; and (7) remove the lowest and highest
temporal drifts in the data via band-pass filtering (0.008 <

f < 0.09Hz; Hallquist et al., 2013). We then parcellated the
brain into 223 ROIs according to a neonatal functional template
(Shi et al., 2017), forming the nodes of the individual brain
functional networks. We extracted rs-fMRI time series from
each ROI, then computed the functional connectivity as the
correlation between the time series of each pair of ROIs. This
resulted in a functional connectome map (i.e., 223 × 223
network adjacency matrix symmetric about the diagonal). All
above operations were conducted using FMRIB Software Library
(FSL, Oxford University, UK), Statistical Parametric Mapping
software (SPM, University College London, UK; Friston, 1994)
and functional connectivity toolbox (CONN) (Whitfield-Gabrieli
and Nieto-Castanon, 2012).We also conducted connectomemap
harmonization using the ComBat algorithm (Fortin et al., 2017).

Data Augmentation and Balancing
We conducted data augmentation and balancing on the training
data to enable a robust model training. A challenge in the
proposed supervised model training is the relatively small
number of infants at high-risk compared to those at low-risk.
Imbalanced datasets can severely affect the model’s learning
ability (Haixiang et al., 2017). In such cases, the deep learning
models may become majority class classifiers, i.e., they fail to
learn the concepts of the minority class. To overcome this
challenge, we employed a data balancing and augmentation
method (Kawahara et al., 2017), which uses neighborhood
samples to create artificial minority samples. By synthetically
generating more samples of the minority class, the classifiers are
able to broaden their decision regions for the minority class.
Specifically, similar to a prior work (Kawahara et al., 2017),
we first categorized supervised training dataset into five bins
according to a VPI’s Bayley-III subtest score (<70, 70–79, 80–
89, 90–100, and >100). We randomly selected a sample (i.e.,
functional, or structural connectivity data) in a bin with the
fewest samples and searched for k nearest neighbors for the given
sample based on Euclidean distance. Assuming that the selected
sample is x0, and its associated neighbors are [x1, . . . xi, . . . , xk],
a synthetic data xs is generated by: xs = β0x0+ β1x1+ . . . βixi+

. . . βkxk, where βi is a random weight, and
∑k

i=0 βi = 1. The
corresponding Bayley-III score ys was generated in the same way.
We repeatedly generated synthetic samples for each bin until the
numbers of training samples in all bins were equal. This process
was also repeated until the number of training samples reached
10 times that of the original training dataset. Importantly, the
synthetic data were only used for model training, but not
for testing.

Model Design
We proposed deep multimodal learning models for the early
prediction of cognitive, language, and motor deficits using
multimodal MRI and clinical data (Figure 1). We have presented
how imaging and clinical data were acquired and preprocessed,
as well as how multimodal MRI features were quantified in
subsections (Subjects and MRI Acquisition, Clinical Features
and Neurodevelopmental Assessments, DWMA Quantification,
Structural Connectome Quantification, Functional Connectome
Quantification, and Data Augmentation and Balancing). Each
of our proposed models contain a feature extractor and
a fusion classifer. The feature extractor has four parallel
channels to extract discriminative high-level functional and
structural connectivity, DWMA, and clinical features out of
high-dimensional input data, respectively. Both functional
and structural connectivity channels have the same network
architecture. It consists of 16 convolutional layers and 5 pooling
layers adopted from the pre-trained VGG-19 model (Simonyan
and Zisserman, 2014), followed by fully connected blocks. Since
the feature dimensions of the DWMA and clinical data are
not high, both DWMA and clinical channels only consist
of fully connected blocks, without pre-trained VGG-19 layers
for the feature dimensionality reduction. Each fully connected
block contains a fully connected layer, a batch normalization,
and a dropout layer. The dropout layer is a regularization
technique that randomly selects a certain ratio of neurons and
ignores them during training (Srivastava et al., 2014). The
“dropped-out” neurons do not contribute to the feedforward
process, and the weights of these neurons are not updated
in backpropagation. Dropout regularization helps avoid model
overfitting. Batch normalization solves the internal covariate shift
problem (Ioffe and Szegedy, 2015). Similar to feature scaling,
batch normalization works to adjust, and scale hidden unit
shifts across hidden layers. Batch normalization also speeds up
the training process when handling a large number of features.
Finally, we design a fusion classier to integrate the discriminative
information from all extracted high-level imaging and clinical
features using a fully connected layer with one output neuron.
We conduct the outcome classification using a softmax function
and outcome regression using a linear function.

Model Training and Optimization
Deep learning models generally require training on large datasets
to achieve good performance while our annotated dataset for the
target tasks (i.e., prediction of cognitive, language, and motor
deficits) is relatively small. To address this issue, we utilized
both supervised and unsupervised transfer learning approaches.
In particular, the VGG-19 (Simonyan and Zisserman, 2014)
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FIGURE 1 | A deep multimodal learning model consists of feature extractor and fusion classifier, for the prediction of neurodevelopmental (cognitive, language, and

motor) deficits using MRI and clinical data.

layers described above were pretrained with supervision using
ImageNet database (∼1.2 million images). The weights of these
layers were fixed and reused in our model. The weights of
all other neural network layers were first pretrained without
supervision using a relatively large unannotated VPI data from
cohort I. These weights were finally retrained and fine-tuned
in a supervised fashion using annotated VPI data from cohort
II for outcome classification/regression. The mechanism behind
this rationale is that we can repurpose models developed for
other tasks ulitizing a large dataset to ultimately improve the
performance and generalizbility of our proposed models as well
as decrease the amount of data needed for model training.

Specifically, given m training samples in the cohort I,
[

Xi
f
, Xi

s, x
i
d
, xic

]

, i ∈ [1,m] are the input data of the i-th

sample without label, where Xi
f
is a two-dimensional adjacency

matrix (i.e., 223 × 223) of functional connectivity; Xi
s is a

two-dimensional adjacency matrix (i.e., 90 × 90) of structural
connectivity; xi

d
is the one-dimensional vector (i.e., 1 × 11) of

DWMA measures; and xic is a one-dimensional vector (i.e., 1
× 72) of clinical data. As mentioned above, we first utilized
pretrained VGG-19 layers to extract high-level morphological
features of adjacency matrix from both functional and structural
connectivity. The outputs of VGG-19 layers are flattened as
one-dimensional vectors (i.e., 1 × k) and denoted by H(Xi

f
)

andH(Xi
s).

Next, to mitigate the issue of mismatch between ImageNet
database and the small annotated VPI dataset in cohort II, we
continued to perform an unsupervised transfer learning using the
relatively large unannotated VPI dataset from cohort I. Except
for VGG-19 layers, we pretrained the weights of all other neural
network layers of both functional and structural connectivity
channels without supervision. We pretrained the fully connected

layers of both functional and structural connectivity channels
using an unsupervised learning strategy. We constructed a
stacked sparse autoencoder (SSAE) for the fully connected layers.
A rectified linear unit (ReLU) activation function was used in
hidden nodes, and a sigmoid unit was chosen in the output layer.
For each brain connectivity channel, we minimized the mean
squared error loss function:

L = −
1

m

m
∑

i=1

k
∑

j=1

(

H(Xi)
j
− Ĥ(Xi)

j
)2

where Ĥ(Xi)
j
is the reconstructed functional or structural

input H(Xi)
j
from j-th neuron of the SSAE. A mini-batch

Adam algorithm (Kingma and Ba, 2014) was selected to
minimize the loss function. The learning rate was selected
from empirical values [0.001, 0.01, 0.1, and 0.5]. Batch size
was chosen using (Hackman and Farah, 2009; Johnston, 2009;
Nordhov et al., 2010; Blencowe et al., 2012). Total number of
epochs was 50. These hyperparameters were optimized based
on validation data during model training/validation before
model testing.

With these pretrained fully connected layers, we continued
to retrain and fine-tune the whole model using a supervised
training strategy using annotated VPI data from cohort II.
Assume that there are n training samples in cohort II, and
[

Xi
f
, Xi

s, x
i
d
, xic

]

, i ∈ [1, n] are the input data of the i-th

sample with label/score yi, i ∈ [1, n] (i.e., high risk vs. low risk
of developing cognitive, language, or motor deficits). For the
classification task, we fine-tuned the fully connected layers and
fusion classifier of the model by minimizing cross-entropy loss
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function as:

L = −
1

n

n
∑

i=1

yi log
(

p
(

yi
∣

∣

∣
H

(

Xi
f

)

,H
(

Xi
s

)

, xid, x
i
c

))

+
(

1− yi
)

log
(

1− p
(

yi
∣

∣

∣
H

(

Xi
f

)

,H
(

Xi
s

)

, xid, x
i
c

))

where p
(

yi
∣

∣

∣
H

(

Xi
f

)

,H
(

Xi
s

)

, xi
d
, xic

)

is the output of the fusion

classifier, i.e., the probability of subject i being classified as the
label yi. For the score regression task, we applied a linear unit at
the end of the model and optimized the mean absolute error loss
function as follows:

L =
1

n

n
∑

i=1

∣

∣

∣
yi − ŷi(H

(

Xi
f

)

,H
(

Xi
s

)

, xid, x
i
c)

∣

∣

∣

where ŷi(H
(

Xi
f

)

,H
(

Xi
s

)

, xi
d
, xic) is the predicted output of the

linear unit of the model, i.e., the predicted score. The mini-
batch Adam algorithm was also used in the supervised learning.
Training hyperparameters are listed in Table 2. To accelerate
the model convergence, we applied an adaptive gradient update
decay parameter (e.g., learning rate/maximal epoch). We used
an early stop mechanism, which would cease the optimization
process when multiple consecutive epochs returned the same
validation loss errors.

With the fixed optimized pre-trained VGG19, our model
architecture optimization focuses on the determination of the
optimal number of fully connected layers and the optimal
number of neurons at each layer. During the model training
and validation, we tried the numbers of layers with empirical
values from 1 to 4 in increments of 1; and we tried the
numbers of neurons at each layer with empirical values from:
2n, n ∈ [3, 4, 5, 6]. For each architecture setting, we ran 2-fold
validations multiple times. According to the optimal validation
performance, we set the optimal modal architecture (Table 1).
The final training hyperparameters are listed in Table 2.

The proposed model development was implemented using
Python 3.7.4, Keras (version: 2.1.6) with TensorFlow (version
1.14) backend on a computer workstation (256GBRAM, 2GPUs,
Nvidia GTX1080 Ti).

Most Discriminative Feature Identification
To unravel and illuminate the proposed deep multimodal
learning models’ predictive feature identification process and
to generate greater trust in the models, we first adopted a
feature ranking approach (Olden and Jackson, 2002) for one
dimensional input of deep learning models to identify the most
predictive clinical and DWMA risk factors. Specifically, we
calculated the partial derivatives of the softmax output with
respect to the clinical and DWMA features. For the softmax
output (i.e., neurodevelopmental deficit) s, the partial derivatives
∂s
∂f ci

and ∂s

∂f dj
, where f ci is the ith clinical feature and f dj is the

jth DWMA features, are computed for individual clinical and
DWMA features. A higher absolute value of the partial derivative
of ∂s

∂f ci
and ∂s

∂f dj
indicates a higher level of the importance for

neurodevelopmental deficit prediction s.

We then implemented gradient-weighted class activation
mapping (Grad-CAM) algorithm (Selvaraju et al., 2017), which
was designed for two dimensional image input of deep
learning models, to highlight both discriminative structural
and functional brain connectivity in brain connectome maps
(i.e., adjacency matrices). The Grad-CAM produces a coarse
localization map highlighting predictive brain connectivities in
the adjacency matrix by using gradient information of the last
convolutional layer of the structural and functional channels
(refer to Figure 1 and Table 1). Specifically, we first computed
the gradient of the softmax output s respect to the kth 2D
feature map A of the last convolutional layer by ∂s

∂Ak
ij

, where

i, j ∈ [1,m], andm is the size of feature maps. Then, we obtained
the weights of feature maps as αk = GAP( ∂s

∂Ak
ij

), where GAP(∗)

is the global average pooling function. The heatmap of Grad-
CAM was obtained by calculating the ReLU activation of the
weighted combination of feature maps as: H = ReLU(

∑

k αkA
k).

The heatmap H was then normalized to [0, 1] and rescaled to
the same size as adjacency matrices of structural and functional
connectome. A higher value within H indicates a higher level of
the importance for neurodevelopmental deficit prediction s.

Model Validation
To evaluate the performance of the risk stratification (i.e.,
two-class classification), we calculated balanced accuracy,
sensitivity, specificity, and area under the receiver operator
characteristics curve (AUC). To evaluate the performance
of the Bayley III score prediction (i.e., regression), we
reported Pearson’s correlation coefficient (r), mean absolute
error (MAE) and standard deviation of absolute error (SD
of AE). We conducted nested five-fold cross-validation. In
each iteration, the entire cohort II was divided into training
data (60%), validation data (20%), and testing data (20%).
Model optimization was conducted based on validating data
without seeing testing data. We conducted this process for five
iterations until all the cohort had been tested once. We then
computed the performance across all five iterations. To test the
reproducibility of the model, we repeated such five-fold cross-
validation experiment 50 times and reported mean and standard
deviation (SD).

Statistical Analysis
Continuous demographic data and model performance
metrics (described in the section Model Validation) were
summarized as means and SDs, and categorical demographic
data were summarized as counts and percentages. The two-
sided Student’s t-test (continuous data) and Chi-squared test
(categorical data) were used to assess demographic characteristic
differences between groups. The two-sided Student’s t-test
was also utilized to compare the model performances of
using different feature sets. A p < 0.05 was considered
statistically significant. Analyses were performed with the
statistical package of Matlab 2019b (MathWorks, Natick MA,
United States).

Frontiers in Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 753033

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


He et al. Multimodal Learning for Neurodevelopmental Deficits

TABLE 1 | Architecture of the proposed deep multimodal learning model.

Layer index Functional connectivity channel Structural connectivity channel DWMA channel Clinical channel

(1) Conv2D, ReLU (fixed) 64@3×3 Conv2D, ReLU (fixed) 64@3×3 FC (trainable) 64 FC (trainable) 64

(2) Conv2D, ReLU (fixed) 64@3×3 Conv2D, ReLU (fixed) 64@3×3 Batch Norm. N/A Batch Norm. N/A

(3) Maxpooling 2D 2 Maxpooling 2D 2 Dropout 0.2 Dropout 0.2

(4) Conv2D, ReLU (fixed) 128@3×3 Conv2D, ReLU (fixed) 128@3×3 FC (trainable) 16 FC (trainable) 16

(5) Conv2D, ReLU (fixed) 128@3×3 Conv2D, ReLU (fixed) 128@3×3 Batch Norm. N/A Batch Norm. N/A

(6) Maxpooling 2D 2 Maxpooling 2D 2 Dropout 0.2 Dropout 0.2

(7) Conv2D, ReLU (fixed) 256@3×3 Conv2D, ReLU (fixed) 256@3×3

(8) Conv2D, ReLU (fixed) 256@3×3 Conv2D, ReLU (fixed) 256@3×3

(9) Conv2D, ReLU (fixed) 256@3×3 Conv2D, ReLU (fixed) 256@3×3

(10) Conv2D, ReLU (fixed) 256@3×3 Conv2D, ReLU (fixed) 256@3×3

(11) Maxpooling 2D 2 Maxpooling 2D 2

(12) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(13) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(14) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(15) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(16) Maxpooling 2D 2 Maxpooling 2D 2

(17) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(18) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(19) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(20) Conv2D, ReLU (fixed) 512@3×3 Conv2D, ReLU (fixed) 512@3×3

(21) Maxpooling 2D 2 Maxpooling 2D 2

(22) FC (trainable) 64 FC (trainable) 64

(23) Batch Norm. N/A Batch Norm. N/A

(24) Dropout 0.2 Dropout 0.2

(25) FC (trainable) 16 FC (trainable) 16

(26) Batch Norm. N/A Batch Norm. N/A

(27) Dropout 0.2 Dropout 0.2

Fusion classifier

(28) FC (trainable) 8

(29) Batch Norm. N/A

(30) Softmax 2

Conv2D, 2D convolutional layer; Maxpooling 2D, 2D Maxpooling layer; Batch Norm. Batch Normalization layer; FC, Fully connected layer.

RESULTS

Subjects
After data quality control, excluding the data with largely
incomplete brain coverage, high movement peaks, ghosting,
incomplete imaging scans, and other scanner artifacts, we
included 257 of 261 VPIs (mean (SD) GA at birth 29.3
(2.5) weeks; PMA at scan 42.7 (1.3) weeks; 111 (43.2%)
male) without Bayley III assessments (cohort I), and 72 of
108 VPIs (mean (SD) GA at birth 28.3 (2.4) weeks; PMA
at scan 40.3 (0.5) weeks; 41 (56.9%) male) with Bayley III
assessments (cohort II). For all three neurodevelopmental
(cognitive language, and motor) deficits prediction tasks,
PMA was not significantly different between high-risk and
low-risk groups. As expected, GA and birth weight were
significantly different between the high-risk and low-risk groups.
Additional demographic data for cohort II subjects with
neurodevelopmental assessments at 2 years corrected age is listed
in Table 3.

TABLE 2 | Hyperparameters for the unsupervised and supervised training.

Hyperparameters Value

High-risk neurodevelopmental deficits >0

Low-risk neurodevelopmental deficits 0

Batch size 4

Dropout rate 0.2

Total number of epochs 50

Learning rate 0.01

Cognitive Deficit Prediction
We tested the model performance of classifying VPIs into high-
vs. low-risk group and predicting actual Bayley III Cognitive
scores (i.e., continuous scale) using only clinical, functional
connectome, structural connectome, andDWMAdata alone; and
then using combined features. As shown in Table 4, our model
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TABLE 3 | Demographic information of cohort II subjects with

neurodevelopmental assessments at 2 years corrected age.

Cognitive deficit

Low risk

(N = 47)

High risk

(N = 25)

p-value

PMA at early MRI in

weeks;

median (range)

40.3 (39.4–42.0) 40.1 (39.3–41.4) 0.5

GA in weeks;

median (range)

29.1 (24.0–31.9) 28.0 (23.7–31.4) 0.04

Birth weight in grams;

median (range)

1165 (570–2,340) 855 (510–1,755) 0.02

Sex; number of males

(percentage)

27 (57.4%) 14 (56.0%) 0.906

Language deficit

Low risk

(N = 47)

High risk

(N = 25)

p-value

PMA at early MRI in

weeks;

median (range)

40.3 (39.4–42.0) 40.1 (39.3–41.3) 0.14

GA in weeks;

median (range)

29.7 (24.0–31.8) 26.8 (23.7–31.0) 0.0004

Birth weight in grams;

median (range)

1285 (570–2,340) 855 (510–1,400) <0.0001

Sex; number of males

(percentage)

26 (55.3%) 15 (60.0%) 0.7025

Motor deficit

Low risk

(N = 30)

High risk

(N = 42)

p-value

PMA at early MRI in

weeks;

median (range)

40.1 (39.4–41.3) 40.3 (39.3–42.0) 0.1

GA in weeks;

median (range)

29.9 (25.1–31.9) 27.7 (23.7–31.4) 0.0003

Birth weight in grams;

median (range)

1325 (715–1,900) 878 (510–2,340) 0.0004

Sex; number of males

(percentage)

18 (60.0%) 23 (54.7%) 0.6581

PMA, postmenstrual age; GA, gestational age.

was able to correctly identify high-risk infants for cognitive
deficits with a mean (SD) AUC of 0.87 ± 0.05 and the
Pearson’s correlation coefficient r between the predicted and
actual Bayley III Cognitive scores of 0.62 ± 0.04 (p < 0.0001)
using the combined clinical and multi-modal MRI data. This was
significantly greater than individually using only, (1) clinical data
[AUC = 0.74 ± 0.05 (p < 0.0001) and r = 0.34 ± 0.06 (p <

0.0001)]; (2) functional connectome data [AUC = 0.74 ± 0.05
(p < 0.0001) and r = 0.34 ± 0.07 (p < 0.0001)]; (3) structural
connectome data [AUC = 0.81± 0.06 (p < 0.0001) and r = 0.44
± 0.05 (p < 0.0001)]; and (4) DWMA data [AUC = 0.74 ± 0.05
(p < 0.0001) and r = 0.39 ± 0.04 (p < 0.0001)]. These support
our hypothesis that integrating multimodal MRI and clinical data

improves early prediction of cognitive deficits at 2 years corrected
age in VPIs over using individual data modalities.

Language Deficit Prediction
We next evaluated the model performance for language deficit
risk stratification and Bayley III Language score prediction using
individual and combined feature sets (Table 5). The model using
the functional connectome alone achieved the lowest balanced
accuracy of 74.8 ± 3.9%, while the one using DWMA data alone
had the lowest Pearson’s correlation coefficient r of 0.39 ± 0.06.
The deep multimodal learning model using combined features
achieved the highest performance for risk stratification with a
balanced accuracy of 87.2 ± 5.3% and AUC of 0.85 ± 0.04.
These were significantly higher than the second highest balanced
accuracy of 78.4 ± 4.2% (p < 0.0001) using DWMA alone, and
the second highest AUC of 0.78 ± 0.04 (p < 0.0001) using
clinical features alone. The deep multimodal learning model
achieved a Pearson’s correlation coefficient r of 0.63 ± 0.04
between the predicted and actual Bayley III language scores,
significantly higher than the one using functional connectome
(p < 0.0001), structural connectome (p < 0.0001), clinical data
(p < 0.0001), and DWMA data (p < 0.0001). The results support
our hypothesis that integrating multimodal MRI and clinical data
improves early prediction of language deficits at 2 years corrected
age in VPIs over using individual data modalities.

Motor Deficit Prediction
Table 6 demonstrates the model performance for classifying
high- vs. low-risk motor deficit group and predicting actual
Bayley III Motor scores using individual and combined feature
sets. The model using combined features was able to correctly
identify high-risk VPIs for motor deficits with an AUC of 0.85±
0.06, significantly better than using functional connectome (0.71
± 0.05; p < 0.0001), structural connectome (0.75 ± 0.05; p <

0.0001), clinical data (0.75± 0.06; p < 0.0001), and DWMA data
(0.76 ± 0.05; p < 0.0001). This model also achieved the highest
Person’s correlation coefficient r of 0.63 ± 0.05 (p < 0.0001).
This was significantly greater than using functional connectome
data with a r of 0.38 ± 0.06 (p < 0.0001), structural connectome
data with a r of 0.45 ± 0.07 (p < 0.0001), clinical data with a
r of 0.41 ± 0.06 (p < 0.0001), and DWMA data with a r of
0.38 ± 0.05 (p < 0.0001). These support our hypothesis that
integrating multimodal MRI and clinical data improves early
prediction of motor deficits at 2 years corrected age in VPIs over
using individual data modalities.

Most Discriminative Feature Identification
Figure 2 shows the most discriminative region-to-region
functional connections ranked by the proposed deep multimodal
learning model for the prediction of cognitive, language, and
motor deficits. Among 13 functional connections discriminative
for at least two deficits, 8% are within the right hemisphere
and 23% are within the left hemisphere only. Interhemispheric
connections account for 69% of top discriminative connections.
More detailed predictive functional connections to the individual
deficits are shown in Supplementary Figures 1–3. Functional
brain connections contributing to the prediction of all three
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TABLE 4 | Performance comparison shows that our proposed deep multimodal learning model that uses combined feature sets (i.e., functional connectome + structural

connectome + clinical data + DWMA) obtained at term-equivalent age outperforms each individual feature set for early identification of very preterm infants at high-risk for

cognitive deficits and predicting their actual Bayley III Cognitive scores at 2 years corrected age.

Features Cognitive deficit risk stratification Cognitive Bayley III score prediction

Accuracy (%) Sensitivity (%) Specificity (%) AUC r MAE SD of AE

Functional connectivity 72.0 ± 4.6 63.4 ± 7.7 80.5 ± 6.0 0.74 ± 0.05 0.34 ± 0.07 19.5 12.6

Structural connectivity 79.9 ± 4.1 73.5 ± 5.7 86.4 ± 6.0 0.81 ± 0.06 0.44 ± 0.05 13.3 11.8

Clinical features 77.3 ± 4.2 73.8 ± 5.1 82.3 ± 6.2 0.77 ± 0.05 0.41 ± 0.05 15.5 12.6

DWMA 80.6 ± 5.7 78.3 ± 4.8 82.8 ± 5.0 0.74 ± 0.05 0.39 ± 0.04 14.9 13.1

Combined 88.4 ± 3.7 83.4 ± 6.5 90.3 ± 5.2 0.87 ± 0.05 0.62 ± 0.04 11.7 8.6

TABLE 5 | Performance comparison shows that our proposed deep multimodal learning model using combined feature sets (i.e., functional connectome + structural

connectome + clinical data + DWMA) obtained at term-equivalent age outperforms each individual feature set for early identification of very preterm infants at high-risk for

language deficits and predicting their actual Bayley III Language scores at 2 years corrected age.

Features Language deficit risk stratification Language Bayley III score prediction

Accuracy (%) Sensitivity (%) Specificity (%) AUC r MAE SD of AE

Functional Connectivity 74.8 ± 3.9 71.3 ± 5.4 78.2 ± 6.4 0.76 ± 0.04 0.44 ± 0.06 14.4 12.1

Structural Connectivity 76.2 ± 4.7 74.1 ± 7.2 78.2 ± 6.1 0.75 ± 0.05 0.48 ± 0.05 12.9 11.1

Clinical features 75.9 ± 4.2 74.2 ± 6.5 81.3 ± 4.2 0.78 ± 0.04 0.40 ± 0.06 13.7 10.4

DWMA 78.4 ± 4.2 75.3 ± 5.7 81.5 ± 5.9 0.78 ± 0.05 0.39 ± 0.06 15.4 10.2

Combined 87.2 ± 5.3 83.6 ± 6.4 89.6 ± 6.1 0.85 ± 0.04 0.63 ± 0.04 10.5 8.2

DWMA, diffuse white matter abnormality; r, Pearson’s correlation coefficient; MAE, mean absolute error; SD of AE, standard deviation of absolute error.

TABLE 6 | Performance comparison shows that our proposed deep multimodal learning model using combined feature sets (i.e., functional connectome + structural

connectome + clinical data + DWMA) obtained at term-equivalent age outperforms each individual feature set for early identification of very preterm infants at high-risk for

motor deficits and predicting their actual Bayley III Motor scores at 2 years corrected age.

Features Motor deficit risk stratification Motor Bayley III score prediction

Accuracy (%) Sensitivity (%) Specificity (%) AUC r MAE SD of AE

Functional connectivity 68.6 ± 4.8 70.9 ± 6.3 66.2 ± 8.1 0.71 ± 0.05 0.38 ± 0.06 15.9 12.5

Structural connectivity 74.1 ± 5.2 71.3 ± 8.2 77.0 ± 6.1 0.75 ± 0.06 0.45 ± 0.07 13.7 12.4

Clinical features 75.4 ± 5.3 73.4 ± 5.7 78.2 ± 6.3 0.75 ± 0.06 0.41 ± 0.06 13.8 10.7

DWMA 77.1 ± 4.7 80.7 ± 4.8 73.4 ± 6.4 0.76 ± 0.05 0.38 ± 0.05 14.5 11.1

Combined 86.7 ± 5.2 87.6 ± 5.8 82.5 ± 4.9 0.85 ± 0.06 0.63 ± 0.05 11.6 9.2

DWMA, diffuse white matter abnormality; r, Pearson’s correlation coefficient; MAE, mean absolute error; SD of AE, standard deviation of absolute error.

deficits span frontal, limbic, occipital, temporal, and parietal
lobes.

Similarly, Figure 3 shows the most predictive structural
connections ranked by the proposed deep multimodal learning
model for the prediction of all three deficits. Among 13 structural
connections discriminative for at least two deficits, 62% are
within the right hemisphere and 23% are within the left
hemisphere. Fifteen percent of top discriminative connections
are interhemispheric connections. Structural brain connections
contributing to the prediction of all three deficits focus on frontal,
limbic, and parietal lobes, as well as subcortical gray nuclei.
More detailed predictive structural connections to the individual
deficits are shown in Supplementary Figures 4–6.

Table 7 shows the discriminative clinical features
ranked by our deep multimodal learning model for the
prediction of all three neurodevelopmental (cognitive,
language, and motor) deficits. As expected, several well-
known neurodevelopment-relevant clinical features were
repeatedly selected by the model as discriminative features
for all three prediction tasks, such as mother’s highest
educational level, infant positive pressure respiratory therapy,
head circumference at birth, birth weight, and gestational
age at birth. Among 11 severity levels of DWMA feature,
we found that threshold α = 1.8 DWMA feature was
ranked as the most predictive DWMA feature for all three
prediction tasks.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 753033

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


He et al. Multimodal Learning for Neurodevelopmental Deficits

FIGURE 2 | Top discriminative region-to-region functional connections for early prediction of cognitive, language, and motor deficits. (A) circos plot visualization; (B)

Full names and abbreviations table. Three common connections were identified to be important for the prediction of all three deficits (red); five common connections

were identified to be predictive of both cognitive and language deficits (red and green); seven common connections were identified to be predictive of both language

and motor deficits (red and blue); and seven common connections were identified to be predictive of both cognitive and motor deficits (red and yellow).
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FIGURE 3 | Top discriminative region-to-region structural connections for early prediction of cognitive, language, and motor deficits. (A) circos plot visualization; (B)

Full names and abbreviations table. Three common connections were identified to be important for the prediction of all three deficits (red); eight common connections

were identified to be predictive of both cognitive and language deficits (red and green); seven common connections were identified to be predictive of both language

and motor deficits (red and blue); and four common connections were identified to be predictive of both cognitive and motor deficits (red and yellow).
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TABLE 7 | Top discriminative clinical features for early prediction of cognitive, language, and motor deficits.

Cognition Language Motor

Features Weights Features Weights Features Weights

Head circumference at birth (cm) 0.9 Birth weight (grams) 1.0 Mothers age 1.1

Mothers age 0.9 Head circumference at birth (cm) 0.8 Birth weight (grams) 1.0

Gestational age at birth (total weeks) 0.8 Gestational age at birth (weeks) 0.8 Parenteral alimentation (days) 0.9

Parenteral alimentation (days) 0.8 Highest education level 0.8 Maternal smoking status 0.9

Pulmonary hypertension history 0.8 Mothers age 0.8 PRBC transfusions 0.9

Birth weight (grams) 0.8 PRBC transfusions 0.7 Total time on oxygen therapy (days) 0.8

Fertility treatment 0.7 Birth length (cm) 0.7 Head circumference at birth (cm) 0.8

Birth length (cm) 0.7 Pulmonary hypertension history 0.7 Birth length (cm) 0.8

Gestational age at birth (weeks) 0.7 CS history before 35 weeks PMA 0.7 Patent ductus arteriosus history 0.8

Highest education level 0.7 Referral to child protective services 0.7 Pulmonary hypertension history 0.8

Pulmonary hemorrhage 0.6 Total time on oxygen therapy (days) 0.7 Ventilation therapy 0.8

Ventilation therapy 0.6 Maternal annual income 0.6 Respiratory support type at 36-week 0.8

Necrotizing enterocolitis 0.6 CS history at or after 35 weeks PMA 0.6 Pulmonary hemorrhage 0.7

Iron supplementation 0.6 Parenteral alimentation (days) 0.6 Gestational age at birth (weeks) 0.7

GI surgery that resulted in short gut 0.6 Retinopathy of prematurity exam 0.6 Iron supplementation 0.7

PRBC transfusions 0.6 Pulmonary hemorrhage 0.6 GI surgery that resulted in short gut 0.7

Total time on oxygen therapy (days) 0.6 Placental pathology 0.6 Pneumothorax 0.7

Hyperthyroidism 0.6 Birth hospital 0.6 Total number of days on CPAP 0.7

Surfactant 0.6 Total number of days on CPAP 0.5 Necrotizing enterocolitis 0.7

Seizure history 0.5 Chorioamnionitis 0.5 Infections history 0.7

DISCUSSION

Brain Connectome Data Are Predictive of
Neurodevelopmental Deficits
There is an increasing consensus that human brain can

be modeled as a complex network both at a structural
as well as functional level (Stam et al., 2016). Structural

networks typically represent connection pathways corresponding
to white matter tracks between pairs of brain regions,
measuring white matter integrity. Functional networks represent
magnitudes of temporal cross-correlations between blood-
oxygen-level dependent (BOLD) signals, measuring coupling
strength. Neurodevelopmental deficits can be understood
as dysconnectivity syndromes, therefore the quantifications
of the abnormal structural and functional network using
graph theory may enable neurodevelopmental prognosis. In
VPIs, we have previously established correlations of later
neurodevelopmental outcomes with at term obtained functional
connectivity features derived from rs-fMRI (Gozdas et al.,
2018); and structural connectivity features derived from DTI
(Chen et al., 2020). In this work, our results showed both
structural and functional connectivity features obtained at term-
equivalent age are predictive of abnormal cognitive, language,
and motor outcomes at 2 years corrected age. Our results also
suggest that the predictive power of structural connectivity
features is stronger than functional connectivity features. The
significant performance improvement supports our hypothesis
that integrating multimodal MRI and clinical data improves
early prediction of cognitive, language, and motor deficits

independently, at 2 years corrected age in VPIs over using each
individual data modality.

Recent advances in deep learning techniques, based on
artificial neural networks (ANN), have made it possible to
extract physiologically meaningful features and reveal new
discriminative information from high dimensional MRI data
(Hjelm et al., 2014; Plis et al., 2014; Mostapha and Styner,
2019). Applications of deep learning to analyze high-dimensional
objectively-quantified connectome features derived from DTI,
and rs-fMRI data may detect brain structural and functional
abnormalities and tissue pathologies that are not readily visible
to the human eye, thereby facilitating risk stratification (Kassner
and Thornhill, 2010; Mostapha and Styner, 2019; Sahiner
et al., 2019). There is a growing interest in developing deep
learning approaches to predict a variety of brain disorders
and neurodevelopmental deficits using MRI data (Wee et al.,
2012; Kawahara et al., 2017; Gilmore et al., 2018; He et al.,
2018; Heinsfeld et al., 2018; Girault et al., 2019; Saha et al.,
2020). However, early prediction of neurodevelopmental deficits
for preterm infants is a very challenging task. For example,
Kawahara et al. (2017) developed a BrainNetCNN model to
predict cognitive and motor developmental outcome scores
from brain structural connectome with a Person’s correlation
coefficient r of 0.188 and 0.310, respectively. In another study,
Saha et al. (2020) achieved a mean accuracy of 73% on predicting
motor outcome in preterm infants by applying a CNN model on
DTI data. Similarly, we previously developed a transfer learning
neural network model using functional connectome data to
predict cognitive outcome at 2 years of corrected age, achieved
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an accuracy of 70.6% (He et al., 2018). These studies using
single modality data demonstrated that deep learning models
were promising tools, but there is still a long way ahead. In the
current work, we demonstrated that deep multimodal learning
model is able to significantly improve prediction performance
by integrating multiple data modalities. This facilitates the
early prediction of neurodevelopmental deficits for preterm
infants in the clinical setting using deep learning models and
multimodal data.

Potential Brain Connectome Biomarkers at
Birth of Later Neurodevelopment
We observed multiple common functional brain connections,
bridging brain regions within bilateral frontal lobe, left
limbic system, left temporal lobe, and right parietal lobe,
that significantly contributed to the prediction of all three
neurodevelopmental deficits at 2 years corrected age (Figure 2).
These regions serve important functions for language, sensory,
motor, and cognitive function. For example, our proposed
model identified the functional connection between the right
postcentral gyrus and superior part of left temporal pole in
all prediction tasks. The postcentral gyrus is located within
the parietal lobe and is adjacent to the precentral gyrus of
the frontal lobe (which was also selected). It is the primary
somatosensory cortex and the main sensory receptive area
(Hyvärinen and Poranen, 1978). On the other hand, the temporal
pole is involved in high level semantic representation and socio-
emotional processing (Olson et al., 2007). It is conceivable that
the network between these brain regions is involved in cognitive,
language, and motor functions as assessed by the Bayley III
standardized tests at 2 years corrected age. Several other regions
that are well-established hubs for these three core functions, such
as the inferior temporal gyrus, inferior frontal gyrus, and cuneus
were also identified as predictive biomarkers by our multimodal
model. These results highlight the self-taught learning capability
of the proposed deep multimodal learning model.

In terms of structural brain connectome, we also found
multiple common connections that significantly contributed
to decision-making of all three neurodevelopmental deficits
at 2 years corrected age (Figure 3). Bilateral putamen regions
were associated with some of these discriminative structural
connections. Putamen is a critical subcortical nuclei that
regulates movement and learning (de Jong et al., 2008).
Significant microstructural or macrostructural alterations of
putamen have been associated with neurodevelopmental and
neurodegenerative disorders, including developmental language
impairment (Lee et al., 2013), Parkinson’s disease (Menke et al.,
2009), and epilepsy (Keller et al., 2011; Gerdes et al., 2012). For
example, Keller et al. (2011) demonstrated increased fractional
anisotropy and decreased volume of the putamen region in
patients with juvenile myoclonic epilepsy. Furthermore, the
fractional anisotropy of putamen was showed to be significantly
correlated with age in prior studies (Snook et al., 2005; Silk
et al., 2009). This enables putamen to be a potential biomarker
of human brain developmental trajectory. In another study,
Fischi-Gómez et al. (2015) showed that decreased connectivity

between basal ganglia (caudate, putamen, and globus pallidum
combined) with frontal or parietal regions was associated with
cognitive and emotional development in school age extremely
preterm infants. We also previously demonstrated that the
lenticular nucleus (combined putamen and globus pallidum)
is ∼15% smaller in extremely low birth weight infants as
compared to full-term controls (Parikh et al., 2013). Apparently,
our model took advantage of discriminative information
embedded in the putamen-related structural connections for
the neurodevelopmental prediction in this current work.
Anatomically, the putamen is closely connected to the pallidum
region. The short-range structural connection between putamen
and pallidum within the right hemisphere was identified by
our model to be predictive for both cognitive and language
deficits. Our finding is consistent with several previous studies
in non-VPI populations that highlighted the synchronization
and dyssynchronization of putamen and pallidum (Cheruel
et al., 1994; de Jong et al., 2008; Gooijers et al., 2016).
Noteworthily, our model identified the structural connection
between putamen and hippocampus within the left hemisphere
for all neurodevelopmental deficits risk stratification, but only
associated the mirror connection within the right hemisphere to
language and motor deficits. It might be interesting to further
investigate the mechanism behind such differences between
structural connections linking putamen and hippocampus of left
and right hemispheres.

The hippocampus was repeatedly identified by our models
for all three prediction tasks using both brain functional and
structural connectome data. The hippocampus is well-known
for its primary role in organizing and storing information,
and particularly in forming new memories (Kesner, 2007;
Ekstrom and Ranganath, 2018). Prior studies reported that
patients with mild Alzheimer’s disease exhibited altered
hippocampal activity on functional MRI during memory tasks
(Small et al., 1999; Sperling, 2007). In a DTI study, mean
diffusivity of the hippocampus was significantly associated with
verbal memory performance (den Heijer et al., 2012). Our
model appears to recognize the importance of hippocampus
structurally and functionally. Our findings support the idea
that the hippocampus plays a critical role in learning and
cognition during early infancy (Beauchamp et al., 2008).
These further indicate that our proposed deep multimodal
learning model is capable of automatically learning and
identifying neurologically meaningful functional and structural
connectivity for prediction tasks of neurodevelopmental
deficits. Intriguingly, the model identified multiple structural
connections related to bilateral hippocampi, while it only
recognized one functional connection associated with the
hippocampus region within the left hemisphere of the brain.
This may be due to fact that a multimodal integrative machine
learning model tends to learn and utilize complementary
features, instead of duplicated information. It is also notable
that over half of the top discriminative functional connections
were long-range connections across bilateral hemispheres,
but only a small portion (15%) of structural connections
were interhemispheric. Further investigation is needed to
explore the influence of long-range functional connections
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and short-range structural connections on neurodevelopment
of neonates.

Identified Clinical and DWMA Predictors of
Later Neurodevelopment
We identified several antepartum, intrapartum, and
postnatal clinical factors that were predictive of one or
more neurodevelopmental outcome at 2 years corrected
age. Most of these factors have been shown in one or more
prior studies to be predictive of such outcomes, including
gestational age, birth growth parameters, duration of oxygen
therapy/respiratory support and cognitive, language, and motor
outcomes (Ambalavanan et al., 2012; Linsell et al., 2015, 2016;
Parikh et al., 2020). These predictors that are consistent with
prior research demonstrate the self-taught learning capability
of our deep multimodal learning model on discovering useful
knowledge from high dimensional big data. For DWMA
features, the threshold α = 1.8 DWMA feature was ranked as
the most predictive feature for all three prediction tasks. In a
prior independent study, we also found that threshold α = 1.8
DWMA feature is significantly correlated with 2 years cognitive
and language outcomes (Parikh et al., 2020). Importantly,
the proposed deep multimodal learning model ranked these
clinical predictors by simultaneously considering functional
and structural connectome features. Thus, the rankings of these
predictors do not necessarily reflect their individual predictive
power on neurodevelopment. In other words, the most predictive
variable in a univariable analysis may not be ranked as the top
discriminative feature by our models.

Related to Deep Multimodal Learning
It has been long recognized that the integration of multimodal
features improves the performance of machine learningmethods.
Each feature modality has its own characteristic, which is
different from others, leading to the complexity of heterogeneous
data. Therefore, the key factor in multimodal fusion task is
how to fill the heterogeneity gap of different modalities. For
example, in this work, the problem is how to fuse heterogeneous
features (i.e., very high dimensional structural and functional
connectome data, as well as, low dimensional clinical and
DWMA data) in a multimodal setting. In other words, how
one solves the challenge of fusing high-dimensional and low-
dimensional data will significantly impact the final results (Xu
et al., 2016). If integrated directly, low-dimensional data would
be completely overwhelmed by high-dimensional data. Instead,
we proposed to encode each unimodal data via an independent
neural network. By varying the architecture of the individual
neural network, we reduced the dimensions of the high-
dimensional data, and augmented or maintained the dimensions
of the low-dimensional data. We then projected the encoded
representations with equal dimensions into a shared semantic
subspace, where the multimodal features/representations can
be aggregated into a single feature/representation vector.
Such learned vector is expected to fuse complementary
and supplementary semantics from different modalities. The
advantages of the multimodal learning strategy we proposed
include: (1) convenience of fusing several modalities and (2)

the shared common subspace tends to be modality-invariant,
which is helpful for transferring knowledge from one modality
to another (Guo et al., 2019).

Study Limitations
This study has several limitations. First, though we have
previously demonstrated that joint prediction of multiple
neurodevelopmental deficits improves performance over
independent prediction of each individual deficit (He et al.,
2020), we opted to go with the latter approach in this work,
since the training augmentation algorithm we used were
not supported for multi-task label simulation. Second, the
multimodal predictive feature identification was conducted
based on the optimal multimodal neural network architecture
rather than the optimal unimodal neural network. That is, the
identified predictive unimodal features were constrained by the
other modalities, therefore such feature identification schema
cannot be used to infer the separated predictive features for each
modality. Third, the current study is mainly about outcome
prediction, more systematic statistical analysis will be needed
to determine if brain connectome, DWMA or certain clinical
risk factors are biomarkers for later neurodevelopment. Fourth,
an atlas without the cerebellum was used for brain connectome
quantification, however, functional and structural connections
within the cerebellum may also be important for emerging
functional outcomes. Finally, this current study should be
considered as proof-of-concept due to the limited sample size. A
larger population is necessary to test the model generalizability.

CONCLUSION

We presented a novel deep multimodal learning framework
integrating features derived from anatomical MRI, rs-fMRI, DTI,
and clinical data obtained at term-equivalent age to predict
Bayley-III developmental scores and identify very preterm
infants at-high risk of developing cognitive, language, and motor
deficits at 2 years corrected age. We demonstrated the value of
multimodal MRI features as potential biomarkers for prediction
of later neurodevelopmental deficits. We also reported a set
of predictive functional and structural connections and clinical
risk factors of neurodevelopmental deficits. A larger study with
external validation is important to validate our approach to
further assess its clinical utility and overall generalizability.
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